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Abstract. The theory of lifting of automorphic and admissible representa-
tions is developed in a new case of great classical interest: Siegel automorphic
forms. The self-contragredient representations of PGL(4) are determined as
lifts of representations of either symplectic PGSp(2) or orthogonal SO(4) rank
two split groups. Our approach to the lifting uses the global tool of the trace
formula together with local results such as the fundamental lemma. The lift-
ing is stated in terms of character relations. This permits us to introduce a
definition of packets and quasi-packets of representations of the projective sym-
plectic group of similitudes PGSp(2), and analyse the structure of all packets.
All representations, not only generic or tempered ones, are studied. Globally
we obtain a multiplicity one theorem for the discrete spectrum of the projective
symplectic group PGSp(2), a rigidity theorem for packets and quasi-packets,
determine all counterexamples to the naive Ramanujan conjecture, and com-
pute the multiplicity of each member in a packet or quasi-packet in the discrete
spectrum. The lifting from SO(4) to PGL(4) amounts to establishing a prod-
uct of two representations of GL(2) with central characters whose product is
1. The rigidity theorem for SO(4) amounts to a strong rigidity statement for
a pair of representations of GL(2, A).

According to the “principle of functoriality”, “Galois” representations ρ : LF →
LG of the hypothetical Langlands group LF of a global field F into the complex
dual group LG of a reductive group G over F should parametrize “packets” of
automorphic representations of the adèle group G(A). Thus a homomorphism
λ : LH → LG of complex dual groups should give rise to lifting of automorphic
representations πH of H(A) to those π of G(A).

We report here on the work of [F1]. It proves the existence of the expected
lifting of automorphic representations of the projective symplectic group of simil-
itudes H = PGSp(2) to those on G = PGL(4). The image is the set of the
self-contragredient representations of PGL(4) which are not lifts of representations
of the rank two split orthogonal group SO(4).

The global lifting is defined by means of local lifting. We define the local lifting
in terms of character relations. This permits us to introduce a definition of packets
and quasi-packets of representations of PGSp(2) as the sets of representations that
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occur in these relations. Our main local result is that packets exist and partition
the set of tempered representations. We give a detailed description of the structure
of packets (in Sect. 4).

Our global results include a detailed description of the structure of the global
packets and quasi-packets (the latter are almost everywhere nontempered). We
obtain a multiplicity one theorem for the discrete spectrum of PGSp(2), a rigidity
theorem for packets and quasi-packets, determine all counterexamples to the naive
Ramanujan conjecture, and compute the multiplicity of each member in a packet
or quasi-packet in the discrete spectrum, in Sect. 5.

Interesting phenomena of instability are described in Sect. 6. Sect. 7 discusses
the special case of generic representations. It serves as another introduction. The
first three sections are preparatory. They describe the relevant parts of abstract
functoriality in our case.

We also prove the lifting from SO(4) to PGL(4). This amounts to establishing
a product of two representations of GL(2) with central characters whose product
is 1. Our rigidity theorem for SO(4) amounts to a strong rigidity statement for a
pair of representations of GL(2, A); see [F6]. Our method uses the global tool of
the trace formula and the local tool of the fundamental lemma. We deal with all,
not only generic or tempered, representations.

For applications to decomposition of cohomology of Shimura varieties see [F7].

1. Homomorphisms of dual groups

Let G be the projective general linear group PGL(4) = PSL(4) over a number
field F . Our initial purpose is to determine the automorphic representations π of
G(A), A being the ring of adèles of F , which are self-contragredient: π ! π̌, equiv-
alently ([BZ1]), θ-invariant: π ! θπ. Here θ, θ(g) = J−1tg−1J , is the involution
defined by J = ( 0 w

−w 0 ), w = ( 0 1
1 0 ), where tg denotes the transpose of g ∈ G, and

θπ(g) = π(θ(g)). According to the principle of functoriality ([Bo], [A]) these au-
tomorphic representations are essentially described by representations of the Weil
group WF of F into the dual group Ĝ = SL(4, C) of G which are θ̂-invariant,
namely representations of WF into centralizers ZĜ(ŝθ̂) of Int(ŝ)θ̂ in Ĝ. Here θ̂ is
the dual involution θ̂(ĝ) = J−1tĝ−1J , and ŝ is a semisimple element in Ĝ. These
centralizers are the duals of the twisted (by ŝθ̂) endoscopic groups ([KS]).

A twisted endoscopic group is called elliptic if its dual is not contained in a
proper parabolic subgroup of Ĝ. Representations of nonelliptic endoscopic groups
can be reduced by parabolic induction to known ones of smaller rank groups. For
our Ĝ, up to conjugacy the elliptic twisted endoscopic groups have as duals the
symplectic group Ĥ = ZĜ(θ̂) = Sp(2, C) and the special orthogonal group Ĉ =
ZĜ(ŝθ̂) = “SO(4, C)” =

{
g ∈ SL(4, C); gŝJ tg = ŝJ = ( 0 ω

ω−1 0 )
}
, of all A ⊗ B =

( aB bB
cB dB );

(
A = ( a b

c d ), B
)
∈ (GL(2, C)×GL(2, C))/C× which satisfy det A·det B = 1.

Here z ∈ C× embeds as (z, z−1), ŝ = diag(−1, 1,−1, 1) and ω = ( 0 −1
1 0 ).

The group Ĥ is the dual group of the simple F -group H = PSp(2) = PGSp(2),
the projective group of symplectic similitudes. It is the quotient of the group GSp(2)
of (g,λλλ) ∈ GL(4) × Gm with tgJg = λλλJ , by its center {(λλλ,λλλ2)} ! Gm. Since λλλ is
uniquely determined by g (we write λλλ = λλλ(g)), we view GSp(2) as a subgroup of
GL(4) and PGSp(2) of PGL(4).
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The group Ĉ is the dual group of the special orthogonal group C =“SO(4)” of
pairs (g1, g2) ∈ (GL(2)×GL(2))/Gm with det g1 = det g2. Here z ∈ Gm embeds as
the central element (z, z). Also we write ((GL(2) × GL(2))/ GL(1))′ for C, where
the prime indicates that the two factors in GL(2) have equal determinants, and
(. . . )′′ if their product is 1.

The principle of functoriality suggests that automorphic discrete spectrum rep-
resentations of H(A) and C(A) parametrize (or lift to) the θ-invariant automorphic
discrete spectrum representations of the group G(A) of A-valued points of G. Our
main purpose is to describe this parametrization, in particular define tensor prod-
ucts of two automorphic forms of GL(2, A) the product of whose central charac-
ters is 1, and especially describe the automorphic representations of the projective
symplectic group of similitudes of rank two, PGSp(2, A), in terms of θ-invariant
representations of PGL(4, A).

2. Unramified lifting

We proceed to explain how the liftings are defined, first for unramified represen-
tations.

An irreducible admissible representation π of an adèle group G(A) is the re-
stricted tensor product ⊗πv of irreducible admissible ([BZ1]) representations πv

of the groups G(Fv) of Fv-points of G, where Fv is the completion of F at the
place v of F . Almost all the local components πv are unramified, that is contain
a (unique up to a scalar multiple) nonzero Kv-fixed vector. Here Kv is the stan-
dard maximal compact subgroup of G(Fv), namely the group G(Rv) of Rv-points,
Rv being the ring of integers of the nonarchimedean local field Fv; G is defined
over Rv at almost all v. For such v, an irreducible unramified G(Fv)-module πv

is the unique unramified irreducible constituent in an unramified principal series
representation I(ηv), normalizedly induced ([BZ2]) from an unramified character
ηv of the maximal torus T(Fv) of a Borel subgroup B(Fv) of G(Fv) (extended
trivially to the unipotent radical N(Fv) of B(Fv)). The space of I(ηv) consists
of the smooth functions φ : G(Fv) → C with φ(ank) = (δ1/2

v ηv)(a)φ(k), k ∈ Kv,
n ∈ N(Fv), a ∈ T(Fv), δv(a) = det[Ad(a)|LieN(Fv)], and the G(Fv)-action is
(g · φ)(h) = φ(hg), g, h ∈ G(Fv).

The character ηv is unramified, thus it factorizes as ηv : T(Fv)/T(Rv) →
C×. As T(Fv)/T(Rv) % X∗(T) = Hom(Gm,T), ηv lies in Hom(X∗(T), C×) =
Hom(X∗(T̂ ), C×), where T̂ is the maximal torus in the Borel subgroup B̂ of Ĝ,
both fixed in the definition of the (complex) dual group Ĝ ([Bo], [Ko]). Now
Hom(X∗(T̂ ), C×) = X∗(T̂ )⊗C× = T̂ ⊂ Ĝ, thus the unramified irreducible G(Fv)-
module πv determines a conjugacy class t(πv) = t(I(ηv)) (the “Langlands parame-
ter”) in Ĝ, represented by the image of ηv in T̂ .

For lack of space here we shall describe elsewhere (see [F6]) our results on our
secondary lifting λ1, to G = PGL(4) from C = SO(4) = ((GL(2)×GL(2))/ GL(1))′.

3. The lifting λ from PGSp(2) to PGL(4)

We now turn to the study of our main lifting λ, and of the automorphic rep-
resentations of the F -group H = PGSp(2) = GSp(2)/Gm. The center Gm of
GSp(2) = {g ∈ GL(4); tgJg = λλλJ, ∃λλλ = λλλ(g) ∈ Gm} consists of the scalar matrices.
Its dual group is Ĥ = Sp(2, C) = ZĜ(θ̂) ⊂ Ĝ = SL(4, C), where θ̂(g) = J−1tg−1J .
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It has a single elliptic endoscopic group C0 different from H itself. Thus

Ĉ0 = ZĤ(ŝ0) =










a 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d



 ∈ Ĥ





" SL(2, C) × SL(2, C),

where ŝ0 = diag(−1, 1, 1,−1), and C0 = PGL(2) × PGL(2). Write λ0 for the
embedding Ĉ0 ↪→ Ĥ , and λ for the embedding Ĥ ↪→ Ĝ.

The embedding λ0 : Ĉ0 = SL(2, C)×SL(2, C) ↪→ Ĥ = Sp(2, C) defines the “endo-
scopic” lifting λ0 : π2(µ1, µ

−1
1 ) × π2(µ2, µ

−1
2 ) &→ πPGSp(2)(µ1, µ2). Here π2(µi, µ

−1
i )

is the unramified irreducible constituent of the normalizedly induced PGL(2, Fv)-
module I(µi, µ

−1
i ) (µi are unramified characters of F×

v , i = 1, 2); πPGSp(2)(µ1, µ2) is
the unramified irreducible constituent of the PGSp(2, Fv)-module IPGSp(2)(µ1, µ2)
normalizedly induced from the character n · diag(α, β, γ, δ) &→ µ1(α/γ)µ2(α/β)
of the upper triangular subgroup of PGSp(2, Fv) (n is in the unipotent radical,
αδ = βγ).

The embedding λ : Ĥ = Sp(2, C) ↪→ SL(4, C) = Ĝ defines the lifting λ which
maps the unramified irreducible PGSp(2, Fv)-module πPGSp(2)(µ1, µ2) to the un-
ramified irreducible PGL(4, Fv)-module π4(µ1, µ2, µ

−1
2 , µ−1

1 ).
The composition λ ◦ λ0 : Ĉ0 = SL(2, C) × SL(2, C) → Ĝ = SL(4, C) takes

π2(µ1, µ
−1
1 )×π2(µ2, µ

−1
2 ) to π4(µ1, µ2, µ

−1
2 , µ−1

1 ) = π4(µ1, µ
−1
1 , µ2, µ

−1
2 ), namely the

unramified irreducible PGL(2, Fv)× PGL(2, Fv)-module π2 × π′
2 to the unramified

irreducible constituent π4(π2, π′
2) of the PGL(4, Fv)-module I4(π2, π′

2) normalizedly
induced from the representation π2⊗π′

2 of the parabolic of type (2, 2) of PGL(4, Fv)
(extended trivially to the unipotent radical). For example λ ◦ λ0 takes the trivial
PGL(2, Fv)×PGL(2, Fv)-module 12 × 12 to the unramified irreducible constituent
π4(12,12) of I4(12,12), and 12 × π2 to π4(12, π2) = π4(ν1/2π2, ν−1/2π2). This last
π4 is traditionally denoted by J .

The definition of lifting is extended from the case of unramified representations
to that of any admissible representations. For this purpose we defined in [F5] norm
maps from the θ-stable θ-regular conjugacy classes in G = G(F ) to stable conjugacy
classes in H = H(F ), and from these to conjugacy classes in C0(F ). These norm
maps extend the norm maps on the split tori in these groups. The latter maps are
dual to the homomorphisms λ and λ0 of the dual groups. This is used to define a
relation of matching functions f , fH and fC0 (they have suitably defined matching
orbital integrals) and a dual relation of liftings of representations.

To express the lifting results we use the following notations for induced repre-
sentations of H = PGSp(2, F ). For characters µ1, µ2, σ of F× with µ1µ2σ2 = 1
we write µ1 × µ2 ! σ for the H-module normalizedly induced from the character
mu &→ µ1(a)µ2(b)σ(λλλ), u ∈ U , m = diag(a, b,λλλ/b,λλλ/a), a, b,λλλ ∈ F×, of the upper
triangular minimal parabolic of H .

For a GL(2, F )-module π2 and character µ we write π2 ! µ for the PGSp(2, F )-
module normalizedly induced from the representation p = mu &→ π2(g)µ(λλλ), m =
diag(g,λλλwtg−1w), u ∈ U(2), λλλ ∈ F× (here the product of the central character ω
of π2 with µ2 is 1) of the Siegel parabolic subgroup (whose unipotent radical U(2)

is abelian).
We write µ ! π2, if ωµ = 1, for the representation of PGSp(2, F ) normalizedly

induced from the representation p = mu &→ µ(a)π2(g), m = diag(a, g,λλλ(g)/a),
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u ∈ U(1), λλλ(g) = det g, of the Heisenberg parabolic subgroup (whose unipotent
radical U(1) is a Heisenberg group).

These inductions are normalized by multiplying the inducing representation by
the character p "→ | det(Ad(p))|Lie U |1/2, as usual. For example, IH(µ1, µ2) =
µ1µ2 × µ1/µ2 ! µ−1

1 . Note that π ! σ % π̌ ! ωσ and µ(π ! σ) = π ! µσ. Com-
plete results describing reducibility of these induced representations are recorded
in [ST]—whose results and notations we use—following earlier work of [Ro2], [Sh2],
[Sh3] and [W]. Our lifting results explain the results of [ST].

For properly induced representations, defining λ- and λ0-liftings by character
relations (λ(πH) = π4 if trπ4(f × θ) = trπH(fH) for all matching f , fH , and
λ0(π1 × π2) = πH if tr πH(fH) = tr(π1 × π2)(fC0) for all matching fH , fC0), our
preliminary results (obtained by local character evaluations) are that ω−1 ! π2 λ-
lifts to π4 = IG(π2, π̌2), that µπ2 ! µ−1 (here ω = 1) λ-lifts to π4 = IG(µ, π2, µ−1),
and that I2(µ, µ−1) × π2 λ0-lifts from C0 to µπ2 ! µ−1 on H = PGSp(2, F ).

Let χ be a character of F×/F×2. It defines a one-dimensional representation
χH(h) = χ(λλλ(h)) of H , which λ-lifts to the one-dimensional representation χ(g) =
χ(det g) of G (if h =Ng then λλλ(h) = det g; on diagonal matrices N(diag(a, b, c, d))=
diag(ab, ac, db, dc)). The Steinberg representation of H λ-lifts to the Steinberg rep-
resentation of G, and for any character χ of F× with χ2 = 1 we have λ(χH StH) =
χ StG.

4. Elliptic representations

Our local liftings, λ, λ0 and λ1, are relations of representations, defined by
means of character relations. Thus our finer local lifting results concern elliptic
representations (whose characters are nonzero on the set of elliptic elements). They
follow on using global techniques. Elliptic representations include the cuspidal ones
(terminology of [BZ1], [BZ2]; these are called “supercuspidal” by Harish-Chandra,
who used the word “cuspidal” for what is currently named “discrete series” or
“square integrable” representations).

Local Theorem (PGSp(2) to PGL(4)). For any unordered pair π1, π2 of square
integrable irreducible representations of PGL(2, F ) there exists a unique pair π+

H ,
π−

H of tempered (square integrable if π1 &= π2, cuspidal if π1 &= π2 are cuspidal)
representations of H with

tr(π1 × π2)(fC0) = tr π+
H(fH) − tr π−

H(fH),

tr IG(π1, π2; f × θ) = tr π+
H(fH) + tr π−

H(fH)

for all triples (f, fH , fC0) of matching functions.
If π1 = π2 is cuspidal, π+

H and π−
H are the two inequivalent constituents of 1!π1.

If π1 = π2 = σ sp2 where σ is a character of F× with σ2 = 1, then π+
H and π−

H are
the two tempered inequivalent constituents τ(ν1/2 sp2, σν−1/2) and τ(ν1/212, σν−1/2)
of 1 ! σ sp2.

If π1 = σ sp2, σ2 = 1, and π2 is cuspidal, then π+
H is the square integrable

constituent δ(σν1/2π2, σν−1/2) of the induced σν1/2π2 ! σν−1/2; π−
H is cuspidal,

denoted here by δ−(σν1/2π2, σν−1/2).
If π1 = σ sp2 and π2 = ξσ sp2, ξ (&= 1 = ξ2) and σ (σ2 = 1) are characters of

F×, then π+
H is the square integrable constituent δ(ξν1/2 sp2, σν−1/2) of the induced

ξν1/2 sp2 !σν−1/2; π−
H is cuspidal, denoted here by δ−(ξν1/2 sp2, σν−1/2).
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For every character σ of F×/F×2 and square integrable π2 there exists a non-
tempered representation π×

H of H such that for all matching f , fH, fC0

tr(σ12 × π2)(fC0) = trπ×
H(fH) + tr π−

H(fH),

tr IG(σ12, π2; f × θ) = trπ×
H(fH) − tr π−

H(fH).

Here π−
H = π−

H(σ sp2 ×π2) and π×
H = L(σν1/2π2, σν−1/2).

For any characters ξ, σ of F×/F×2 and matching f , fH , fC0 we have

tr(σξ12 × σ12)(fC0) = trL(νξ, ξ ! σν−1/2)(fH)− tr X(ξν1/2 sp2, ξσν−1/2)(fH),

tr IG(σξ12, σ12; f × θ) = trL(νξ, ξ ! σν−1/2)(fH)+ tr X(ξν1/2 sp2, ξσν−1/2)(fH).

Here X = δ− if ξ #= 1 and X = L if ξ = 1.
Any θ-invariant irreducible square integrable representation π of G which is not

a λ1-lift is a λ-lift of an irreducible square integrable representation πH of H, thus
trπ(f × θ) = tr πH(fH) for all matching f , fH . In particular, the square in-
tegrable (resp. nontempered) constituent δ(ξν, ν−1/2π2) (resp. L(ξν, ν−1/2π2)) of
the induced representation ξν ! ν−1/2π2 of H, where π2 is a cuspidal (irreducible)
representation of GL(2, F ) with central character ξ #= 1 = ξ2 and ξπ2 = π2, λ-
lifts to the square integrable (resp. nontempered) constituent S(ν1/2π2, ν−1/2π2)
(resp. J(ν1/2π2, ν−1/2π2)) of the induced representation IG(ν1/2π2, ν−1/2π2) of
G = PGL(4, F ). !

These character relations permit us to introduce the notion of a packet of an
irreducible representation, and of a quasi-packet, over a local field. Thus we say
that the packet of a representation πH of H consists of πH alone unless it is tem-
pered of the form π+

H or π−
H for some pair π1, π2 of (irreducible) square inte-

grable representations of PGL(2, F ), in which case the packet {πH} is defined to
be {π+

H , π−
H}, and we write λ0(π1 ×π2) = {π+

H , π−
H} and λ({π+

H , π−
H}) = IG(π1, π2).

Further, we define a quasi-packet only for the nontempered (irreducible) repre-
sentations π×

H and L = L(νξ, ξ ! σν−1/2), to consist of {π×
H , π−

H} and {L, X},
X = X(ξν1/2 sp2, ξσν−1/2). We say that σ12 × π2 λ0-lifts to the quasi-packet
λ0(σ12 × π2) = {π×

H , π−
H}, which in turn λ-lifts to IG(σ12, π2), and similarly,

σξ12 × σ12 λ0-lifts to λ0(σξ12 × σ12) = {L, X} which λ-lifts to IG(σξ12, σ12).

5. Automorphic representations

With these local definitions we can state our global results. These global results
are partial, since we work with test functions whose components are elliptic at least
at two places. This constraint will be removed once the trace formulae identity is
established for general test functions. With further work, known techniques can
reduce the constraint to a single place.

With this reservation, emphasized by a ∗-superscript in the following Global
Theorem, the discrete spectrum representations of H(A) = PGSp(2, A) can now be
described by means of the liftings. They consist of two types, stable and unstable.
Global packets and quasi-packets define a partition of the spectrum. To define a
(global) [quasi-]packet {πH}, fix a local [quasi-]packet {πHv} at each place v of F ,
such that {πHv} contains an unramified member π0

Hv (and then {πHv} consists
only of π0

Hv in case it is a packet) for almost all v. The [quasi-]packet {πH} is then
defined to consist of all products ⊗vπ′

Hv with π′
Hv in {πHv} for all v, and π′

Hv = π0
Hv

for almost all v. The [quasi-]packet {πH} of an automorphic representation πH is
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defined by the local [quasi-]packets {πHv} of the components πHv of πH at almost
all places.

The discrete spectrum of PGSp(2, A) will be described by means of the λ0-
and λ-liftings. We say that the discrete spectrum representation π1 × π2 λ0-lifts
to a packet {πH} (or to a member thereof) if {πHv} = λ0(π1v × π2v) for almost
all v, and that a packet {πH} (or a member of it) λ-lifts to an irreducible self-
contragredient automorphic representation π if λ({πHv}) = πv for almost all v.
The unstable spectrum of PGSp(2, A) is defined to be the set of discrete spectrum
representations which are λ0-lifts; its complement is the stable spectrum.

Global Theorem∗ (PGSp(2) to PGL(4)). The packets and quasi-packets parti-
tion the discrete spectrum of the group PGSp(2, A), namely they satisfy the rigidity
theorem: if πH and π′

H are discrete spectrum representations locally equivalent at
almost all places, then their packets or quasi-packets are equal.

The λ-lifting is a bijection between the set of packets (resp. quasi-packets) of dis-
crete spectrum representations in the stable spectrum (of PGSp(2, A)) and the set of
self-contragredient discrete spectrum representations of PGL(4, A) which are one di-
mensional, or cuspidal and not a λ1-lift from C(A) (resp. residual J(ν1/2π2, ν−1/2π2)
where π2 is a cuspidal representation of GL(2, A) with central character ξ "= 1 = ξ2

and ξπ2 = π2).
The λ0-lifting is a bijection between the set of pairs of discrete spectrum repre-

sentations {π1 × π2, π2 × π1; π1 "= π2} of PGL(2, A) × PGL(2, A), and the set of
packets and quasi-packets in the unstable spectrum of PGSp(2, A). The λ-lifting is
a bijection from this last set to the set of automorphic representations IG(π1, π2) of
PGL(4, A), normalizedly induced from the discrete spectrum representation π1 ×π2

(π1 "= π2) on the parabolic subgroup with Levi factor of type (2, 2). If π1 × π2 is
cuspidal, its λ0-lift is a packet ; otherwise, a quasi-packet.

Each member of a stable packet occurs in the discrete spectrum of PGSp(2, A)
with multiplicity one. The multiplicity m(πH) of a member πH = ⊗πHv of an
unstable [quasi-]packet λ0(π1×π2) (π1 "= π2) is not (“stable”, or) constant over the
[quasi-]packet. If π1 × π2 is cuspidal, it is m(πH) = 1

2 (1 + (−1)n(πH)) (∈ {0, 1}),
where n(πH) is the number of components π−

Hv of πH and each πH with m(πH) = 1
is cuspidal (n(πH) is bounded by the number of places v where both π1v and π2v are
square integrable).

The multiplicity m(πH) (in the discrete spectrum of PGSp(2, A)) of πH = ⊗πHv

of a quasi-packet λ0(σ12 × π2), where π2 is a cuspidal representation of PGL(2, A)
and σ is a character of A×/F×A×2, is 1

2 (1+ε(σπ2,
1
2 )(−1)n(πH)) (= 0 or 1), where

n(πH) is the number of components π−
Hv of πH , and ε(σπ2, s) is the usual ε-factor

which appears in the functional equation of the L-function L(π2, s). In particular
π×

H = ⊗π×
Hv (n(πH) = 0) is in the discrete spectrum if and only if ε(σπ2, 1

2 ) = 1.
Finally we have m(πH) = 1

2 (1 + (−1)n(πH)) for πH = ⊗πHv in λ0(σξ12 × σ12)
with n(πH) components πHv = Xv. Here πH = ⊗Lv (n(πH) = 0) is residual. !

6. Unstable spectrum

Note that the quasi-packet λ0(σξ1 × σ12) is defined by the local quasi-packets
{Lv = L(νvξv, ξv ! σvν−1/2

v ), Xv = X(ξvν
1/2
v sp2v, ξvσvν−1/2

v )} for every v, where
ξ ("= 1), σ are characters of A×/F× with ξ2 = 1 = σ2 and ξv, σv are their com-
ponents. When ξv, σv are unramified, this quasi-packet contains the unramified
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representation π0
Hv = Lv. Members of this quasi-packet have been studied by

means of the theta correspondence by Howe and Piatetski-Shapiro; see, e.g., [PS1],
Theorem 2.5. They attracted interest since they violate the naive generalization of
the Ramanujan conjecture, which expects the components of a cuspidal represen-
tation to be tempered. (The form of the Ramanujan conjecture which is expected
to be true asserts that the components of a cuspidal representation of PGSp(2,A)
which λ-lifts to a cuspidal representation of PGL(4,A) are tempered.) Members of
this quasi-packet are equivalent at almost all places to the quotient of the properly
induced representation νξ × ξ ! σν−1/2.

Let π2 be a cuspidal representation of PGL(2, A) and σ a character of A×/F×A×2.
The packet λ0(σ12 × π2) contains the constituent π×

H = ⊗vπ
×
Hv of the representa-

tion σν1/2π2 ! σν−1/2 # σν−1/2π2 ! σν1/2 properly induced from an automorphic
representation, hence it is automorphic by [L]. It is known that π×

H is residual
precisely when L(σπ2,

1
2 ) $= 0; hence ε(σπ2,

1
2 ) = 1 in this case.

Let n(π2) denote the number of square integrable components of π2. The quasi-
packet λ0(σ12×π2) thus consists of 2n(π2) (irreducible) representations. If n(π2) ≥
1, half of them are in the discrete spectrum, all cuspidal if L(σπ2, 1

2 ) = 0, and all but
one: π×

H = ⊗vπ
×
Hv, are cuspidal if L(σπ2,

1
2 ) $= 0. If n(π2) ≥ 1 and L(σπ2,

1
2 ) = 0,

the automorphic nonresidual π×
H is cuspidal when ε(σπ2,

1
2 ) = 1.

If π2 has no square integrable components (n(π2) = 0), the packet λ0(σ12 × π2)
consists only of π×

H . This π×
H is residual if L(σπ2, 1

2 ) $= 0; cuspidal (by [PS1],
Theorem 2.6, and [PS2], Theorem A.2) if L(σπ2, 1

2 ) = 0 and ε(σπ2, 1
2 ) = 1; or

(automorphic but) not in the discrete spectrum otherwise: L(σπ2, 1
2 ) = 0 and

ε(σπ2, 1
2 ) = −1. In this last case the λ0-lift of σ12 × π2 is not in the discrete

spectrum, and there is no discrete spectrum representation λ-lifting to IG(σ12, π2).
At a place v where π2v is induced I(µv, µ−1

v ), the packet πHv = λ0(σv12 × π2v)
is the irreducible induced µvσv12 !µ−1

v , which λ-lifts to IG(µv, σv12, µ−1
v ), and not

the irreducible induced

σvµvν1/2
v × σvµ−1

v ν1/2
v ! σvν−1/2

v = σvµvν
1/2
v ! I(µ−1

v , σvν−1/2
v ),

which λ-lifts to the reducible induced IG(µv, σvI(ν1/2
v , ν−1/2

v ), µ−1
v ), which has the

constituent IG(µv, σv12, µ−1
v ).

Members of the quasi-packet λ0(σ12 × π2) were studied numerically by H. Saito
and N. Kurokawa, and using the theta correspondence by Piatetski-Shapiro and
others; see [PS1], Theorem 2.6. They attracted interest since they violate the naive
generalization of the Ramanujan conjecture. They are equivalent at almost all
places to the quotient of the properly induced representation σν1/2π2 ! σν−1/2.

A discrete spectrum representation πH with component L(νvξv, ν−1/2
v π2v) (whose

packet consists of itself), where π2v is a cuspidal representation with central charac-
ter ξv $= 1 = ξ2

v and ξvπ2v = π2v, is in the packet of L(νξ, ν−1/2π2). Here π2 is cus-
pidal with central character ξ $= 1 = ξ2, hence ξπ2 = π2, whose components at v are
π2v and ξv. It λ-lifts to JG(ν1/2π2, ν−1/2π2). At v with ξv = 1 the component π2v is
induced. If π2v = I(µv, µvξv), ξ2

v = 1 and µ2
v = 1 (in particular whenever ξv $= 1 and

π2v is not cuspidal), then L(νvξv, ν−1/2
v π2v) is Lv = L(νvξv, ξv !µvν

−1/2
v ), which λ-

lifts to IG(µv12, µvξv12). Its packet contains also Xv = X(ν1/2
v ξv sp2v, ξvµvν−1/2

v ).
Thus the packet of πH is determined by {Lv, Xv} at all v where π2v = I(µv, µvξv),
µ2

v = 1 = ξ2
v , and by the singleton {Lv = L(νvξv, ν

−1/2
v π2v)} at all other v, where
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π2v is cuspidal, or ξv = 1 and π2v = I(µv, µ−1
v ), µ2

v != 1. Each member of this
infinite packet occurs in the discrete spectrum with multiplicity one, and is cuspi-
dal, with the exception of L(νξ, ν−1/2π2) = ⊗vL(νvξv, ν−1/2

v π2v), which is residual
([Kim], Theorem 7.2). Members of the packet L(νξ, ν−1/2π2) are considered in the
Appendix of [PS1] and its corrigendum.

If π1 and π2 are cuspidal but there is no place v where both are square integrable,
λ0(π1 × π2) consists of a single irreducible cuspidal representation. This instance
of the lifting λ0—where πi are cuspidal—can also be studied ([Rb]) using the theta
correspondence for suitable dual reductive pairs (SO(4), PGSp(2)) for the isotropic
and anisotropic forms of the orthogonal group, to describe further properties of the
packets, such as their periods.

7. Generic representations

Our proof of the existence of the lifting λ uses only the trace formula, orbital
integrals and character relations. To compute the multiplicities in the discrete
spectrum we use a global proof. It relies on results of [GRS], [KRS], and [Sh1] from
the theory of generic representations.

This global proof in our case of PGSp(2) is similar to the second proof of [F4,
II], Proposition 3.5, p. 48, in the case of U(3). The 2nd proof of [F4, II] is also
based on the theory of generic representations. But it is not complete. Indeed, the
claim in Proposition 2.4(i) in reference [GP] to [F4, II] that “L2

0,1 has multiplicity
1”, is interpreted in [F4, II] as asserting that generic representations of U(3) occur
in the discrete spectrum with multiplicity one. But it should be interpreted as
asserting that irreducible π in L2

0,1 have multiplicity one only in the subspace L2
0,1

of the discrete spectrum. This assertion does not exclude the possibility of having
a cuspidal π′ perpendicular and equivalent to π ⊂ L2

0,1. Multiplicity one for the
generic spectrum of U(3) could be deduced from Proposition 2.4(i) in [GP] of [F4,
II] using the statement that a locally generic representation is globally generic. (In
fact this statement is equivalent to multiplicity one.)

In our case of PGSp(2) a similar statement follows from [KRS], [GRS], [Sh1].
A proof for U(3) (independent of the local proof of [F4, II], p. 47) still needs to

be given.
The first proof of Proposition 3.5 in [F4, II], p. 47, namely that the multiplicity

one theorem holds for the discrete spectrum of U(3), is purely local. It uses only
character relations. It is based on a twisted analogue of Rodier’s result [Ro1] that
the number of Whittaker models (0 or 1) is encoded in the behavior of the character
near the origin. For further details see [F4, IV]. Such a technique was first used in
[FK], to prove the multiplicity one theorem for the metaplectic group of GL(n).

There is some overlap between our results on the existence of the λ-lifting and
the work of [GRS]. However, the methods of [GRS] apply only to generic repre-
sentations, while our methods apply to all representations of PGSp(2). Thus we
can define packets, describe their structure, establish the multiplicity one theorem
and rigidity theorem for packets of PGSp(2), specify which member in a packet or
a quasi-packet is in the discrete spectrum, and we can also λ-lift the nongeneric
nontempered (at almost all places) packets to residual self-contragredient represen-
tations of PGL(4, A). Our liftings are proven in terms of all places, not only almost
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all places. In addition we establish the lifting λ1 from SO(4) to PGL(4), determine
its fibers (that is, prove the multiplicity one theorem for SO(4) and rigidity in the
sense explained in [F6] and [F1]), and show that any self-contragredient discrete
spectrum representation of PGL(4, A) which is not a λ-lift from PGSp(2, A) is a
λ1-lift from SO(4, A).

Our work is an analogue for (SO(4), PGSp(2), PGL(4)) of [F3], which dealt
with the symmetric square lifting, thus with (PGL(2), SL(2), PGL(3)), and of
[F4], which dealt with quadratic base change for the unitary group U(3,E/F ),
thus with (U(2,E/F ), U(3,E/F ), GL(3,E)). These works use the twisted—by
transpose-inverse (and the Galois action in the unitary groups case)—trace formulae
on PGL(4), PGL(3), GL(3,E). They are based on the fundamental lemma: [F5] in
our case, [F3, V] and [F4, I] in the other cases. The technique employed in these
last papers benefited from the work of Weissauer [We] and Kazhdan [K].

The present work, which deals with the applications of the fundamental lemma
and the trace formula to character relations, liftings and the definition of packets,
is analogous to [F3, IV] and [F4, II]. The trace formulae identity is proven in [F3,
VI] and [F4, III] for all test functions. Here we deal only with test functions which
have at least two elliptic components. The trace formulae identity for a general
test function has not yet been proven in our case. Arthur is working on this. It
would be interesting to pursue the elementary techniques of [F3, VI] and [F4, III],
and [F2], which establishes the trace formulae identity for base change for GL(2)
by elementary means, based on the usage of regular, Iwahori test functions. In
particular our work does not develop the trace formula. It only uses a form of it.

Our approach to the lifting uses the trace formula developed by Arthur, as
envisaged by Langlands e.g. in his work on base change for GL(2). It is compatible
with the conjectures of Arthur [A].

Of course Siegel modular forms have been extensively studied by many authors
(e.g. Siegel, Maass, Shimura, Andrianov, and others) over a long period of time.

An important representation theoretic approach alternative to the trace for-
mula, based on the theta correspondence, Weil representation, Howe’s dual reduc-
tive pairs, L-functions and converse theorems, has been fruitfully developed in our
context of the symplectic group by many authors, see, e.g., [PS1], [PS2], [KRS],
[GRS].

Another—purely local—approach is developed in [FZ].
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