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ABSTRACT. We develop Drinfeld’s theory of elliptic modules and their moduli
schemes to establish the correspondence of irreducible continuous ¢-adic rank
r representations of the Weil (subgroup of the Galois) group of a function field
F (equivalently irreducible smooth ¢-adic sheaves on Spec F') with irreducible
restriction to some decomposition group, and cuspidal automorphic represen-
tations of GL(r) over F which have a cuspidal local component, on realizing
it in the étale cohomology with compact supports of the geometric fiber of the
moduli scheme. The comparison is based on matching the simple trace formula
with a form of the Lefschetz fixed point formula on Q,-adic cohomology with
compact supports formulated by Deligne, and on congruence relations, which
we establish. The Ramanujan conjecture for such cuspidal representations fol-
lows, but this we deduce also from the Grothendieck fixed point formula for
powers of the Frobenius independently of Deligne’s (proven) conjecture. The
restriction of having a cuspidal local component was removed in 1997 and 2002
by L. Lafforgue on developing Drinfeld’s theory of Shtukas. But our work here
from 1983 is considerably simpler and can serve as an entrance to the subject.
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Introduction

Let F be a geometric global field, of characteristic p > 0, A its ring of adeéles,
G = GL(r) and 7 an irreducible admissible representation of G(A), namely a G(A)-
module, over C. Then 7 is the restricted direct product ®,m, over all places v of F'
of irreducible admissible G,, = G(F,)-modules m,. For almost all v the component
7, is unramified. In this case there are nonzero complex numbers zj y, ..., 2r 4,
uniquely determined up to order by 7, and called the Hecke eigenvalues of m,,, with
the following property: 7, is the unique irreducible unramified subquotient 7((z;,.))
of the G,-module I(z,) = Ind(6'/?z,; B,,G,,) which is normalizedly induced from
the unramified character z, : (b;;) — [[, zfj g0(bii) of the upper triangular subgroup
B, of G,.

The first main theme in this work concerns Congruence Relations (see below).

The second such theme concerns the following Purity Theorem for cuspidal G(A)-
modules. Let 7 be a complex cuspidal G(A)-module; it is an irreducible admissible
representation 7 of G(A) which occurs as a direct summand in the representation
of G(A) by right translation on the space of complex valued cuspidal functions on
G(F)\G(A). If © has a cuspidal component and a unitary central character, then
the absolute value of each Hecke eigenvalue z;, of almost all unramified components
m, of m is equal to one. This is Theorem 9.8. Its proof uses neither Deligne’s
conjecture nor the congruence relations. The Purity Theorem is a representation
theoretic analogue of Ramanujan’s conjecture concerning the Hecke eigenvalues (or
rather Fourier coefficients) of the cusp form A(z) = e2™# []{°(1 — €*™*") on the
upper half plane Im(z) > 0 for the group SL(2,7Z).

The third major theme in this work concerns the Higher Reciprocity Law. Let
o be a continuous r-dimensional (-adic representation o : W(F/F) — GL(r,Q,)
of the Weil group of F', which is constructible, namely unramified for almost all
v. Equivalently ¢ is a smooth f-adic sheaf on Spec F' which extends to a smooth
f-adic sheaf on an open subscheme of the smooth projective curve whose function
field is F'. For such v the restriction o, of o to the decomposition group W (F,/F,)
at v factorizes through W (F,/F,) ~ Z, where F, is the residue field of F,. The
isomorphism class of ¢, is determined by the eigenvalues {u; , = u;(0,);1 <7 <r}
of the (geometric) Frobenius o, (Fr,). Then we say that such ¢ and the G(A)-
module 7 = ®m,, correspond if for almost all v the r-tuple (u;(0,)) is equal, up to
order, to the r-tuple (z;(m,)).

The case of 7 = 1 is class field theory: W(F/F)a, ~ AX/F*, which in the local
case asserts that W (F, /F, ), ~ F.*, normalized by mapping a geometric Frobenius
Fr, to a local uniformizer m, in FX. Here Fr, € W(F,/F,) is any element which
maps to the inverse ¢! of the “arithmetic” Frobenius substitution ¢ : x > 2%,
which generates W (F, /F,) and is an automorphism of F, over F,. Let oo be a
fixed place of F.

The special case of the Higher Reciprocity Law which is proven in this work
asserts that the correspondence defines a bijection between the sets of (1) equiv-
alence classes of cuspidal representations m of GL(r,A) whose component Too is
cuspidal, and (2) equivalence classes of irreducible r-dimensional continuous £-adic
constructible representations o of W(F/F), or irreducible rank r smooth (-adic
sheaves on Spec F' which extend to smooth sheaves on an open subscheme of the
curve underlying F, whose restriction 0o to W (F o /Fs) is irreducible.
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This Reciprocity Law is reduced in sections 10, 11, to Deligne’s Conjecture (The-
orem 5.8), introduced by Deligne in the 1970’s for the purpose of this reduction.
The fixed point formula expresses a trace on f-adic cohomology with compact sup-
ports and coefficients in a smooth sheaf, in terms of traces on the stalks of the sheaf
at fixed points. Deligne’s conjecture asserts that the fixed point formula remains
valid in the context of the composition of a certain correspondence on a separated
scheme of finite type over a finite field, and a sufficiently high power, depending on
the correspondence, of the Frobenius morphism.

The present work existed as an unpublished manuscript since 1983. It is the first
openly circulated manuscript where Deligne’s conjecture appeared. Its results, first
discussed in a seminar with Kazhdan in 1982, were announced in the publication
[?]. Perhaps this work contributed a little to the interest in Deligne’s important
conjecture. This was the original purpose of this work, to motivate Deligne’s con-
jecture by means of exhibiting some of its applications. Since then this conjecture
was proven unconditionally by Fujiwara [?] in 1997 and later by Varshavsky [?] in
2007, after work by Th. Zink [?], Ed Shpiz [?] and R. Pink [?] in special cases.
This completed that part of our work which relied on Deligne’s conjecture. Our
results concern the full local correspondence (for GL(r) over a local field of positive
characteristic), as well as the global correspondence for cuspidal representations
(of GL(r,A) over a global function field) which have a cuspidal component. They
are based on Drinfeld’s theory of elliptic modules, also named Drinfeld modules by
Deligne, introduced by Drinfeld [?], [?] in 1974, 1977 to prove the reciprocity law
when r = 2.

Drinfeld later introduced a generalization, which he named Shtukas, to remove
the restriction that the global cuspidal representations have a square integrable
component. The work was carried out by L. Lafforgue [?] and [?] in 1997 and
2002, who in addition to Deligne’s (proven) conjecture used the full trace formula of
Arthur in the function field case, to obtain the reciprocity law for any global cuspidal
representation. His important work is nevertheless technically very challenging, so
on the occassion of teaching a course on the topic at OSU in winter 2012, we
updated our work to include the references to the proofs of Deligne’s conjecture
and other works that continued and extended ours. I hope it is still of interest not
only as the first work where the local correspondence and a major case of the global
correspondence were established in the general rank case, but also since our work
is considerably simpler than that of Lafforgue, as we use only a simple case of the
trace formula, and the relatively elementary theory of elliptic (= Drinfeld) modules.
In particular we were led to develop in section 12 a “simple” converse theorem for
GL(r) over a function field, “simple” meaning for cuspidal global representations
with cuspidal local components at a fixed finite set of places of the global field F'.
However, note that the converse theorem is not used in the decomposition of the
cohomology (see below), not in the proof of the existence theorem (for each 7 there
is a o), nor in the proof of the local correspondence. It is used only to show the
surjectivity of the map 7 +— o.

Thus, assuming Deligne’s conjecture (Theorem ?7?) we show in section 11 that
there exists a unique bijection, denoted m, — o, or o, — m, and called the Lo-
cal Reciprocity Correspondence, between the sets of (1) equivalence classes of ir-
reducible G, = GL(r, F,)-modules m,, and (2) equivalence classes of continuous
(-adic r-dimensional representations o, of W (F,/F,), namely rank r smooth (-adic
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sheaves on Spec F,,, with the following properties. It preserves L- and e-factors of
pairs, relates cuspidal m, with irreducible o,,, commutes with taking contragredient
and relates the central character of m, with the determinant of the corresponding
o, by local class field theory W (F, /F,)ap =~ F.*, which is normalized by mapping
a geometric Frobenius to a uniformizer in F;*. The local correspondence has the
property that m and o correspond if and only if their components 7, and o, corre-
spond for all v. Again, Deligne’s conjecture was used in the original version of this
work as a conjecture, but it is now proven.

To state our fourth main theme, we introduce some notations. Our work relies
on Drinfeld’s theory of elliptic modules (see [?], [?]). Their definition and basic
properties are discussed in sections 1 and 2. Denote by A the ring of elements of F'
which are integral outside the fixed place co. Let I £ {0} be any ideal in A which is
contained in at least two maximal ideals. In section 3 we recall the construction of
the (Drinfeld) moduli scheme X = M, 1 of isomorphism classes of elliptic A-modules
of rank r with I-level structure. It is an affine scheme of finite rank over A. In
section 4 we construct a finite étale Galois covering X of X, whose Galois group I'
is a quotient of an anisotropic inner form DX of G(Fy,). Put X = X x4 F, where
F is a separable closure of F. Let p be an irreducible nontrivial representation
of I, and of DX ; let mo be the corresponding square-integrable representation of
G(F). In subsection 5.1 we recall the definition of the associated smooth Q,-sheaf
L = L(p) on X, and of the Q,-adic cohomology spaces H!(X, L) of X with compact
support and coeflicients in .. Let Ay be the ring of F-adeles without a component
at oo, U = Uy the congruence subgroup of G(Ay) defined by I, and H; the Hecke
algebra of Q,-valued U;-biinvariant compactly supported functions on G(Ay). An
irreducible H;-module will be regarded here as an irreducible G(A f)-module which
has a nonzero Uj-fixed vector. The Galois group Gal(F/F) acts on F, hence on X
and on H! = H'(X,L(p)); so does the Hecke algebra H;. Put H = > .(—1)'H!; it
is a virtual H; x Gal(F'/F)-module. Namely it is a sum of finitely many irreducibles
¢ ® 0, with integral multiplicities.

Our fourth main theme is the following FEzxplicit Reciprocity Law. It underlies
the proofs of the Purity Theorem and the Reciprocity Law. Suppose that my is
cuspidal. Put v(z) = |z| for  in A*. Then (1) Each T = Ty @ T is cuspidal
automorphic and each cuspidal automorphic G(A)-module m with component oo
can be realized in HY for some I # 0. (2) The multiplicity of 7y @ ¢ in H* is
one. (3) Each ¢ in H} has dimo = r. (4) The component 0o s irreducible and
corresponds to Too & 1/0_0(7'_1)/2 by the Local Reciprocity Law. (5) Fach (-adic r-
dimensional continuous constructible representation o of Gal(F /F) with irreducible
Ooo such that det(c @ v"=1/2) = 1 occurs as & for some I and cuspidal 7. (6)
T@uv~(=1/2 &5 5 is the reciprocity correspondence if Ty ®0o occurs in HY for some
I. This Explicit Law is reduced in section 11 to Deligne’s conjecture (= Theorem
5.8).

Moreover we conjecture that (7) HY(X,L(p)) = H!(X,L(p)) for all i. This
implies that H*? vanishes unless i = r — 1.

The first step in the proof is to decompose the cohomology Hecke x Galois module
H? and to show that each irreducible constituent ¢ X o has that 7y ®m is cuspidal
(automorphic), and each cuspidal representation with the cuspidal component 7o,
occurs, thus establishing the existence of the map 7 + o. This is the heart of the
work. It uses the construction of the moduli scheme of elliptic modules and their
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covering schemes. In the proof of this existence theorem (for each such cuspidal
7 there exists a corresponding o) in section 10, we use (in Lemma ?7?(1)) the
congruence relations of Theorem 77, in addition to the simple trace formula and
the Lefschetz fixed point formula.

The second step is to deduce from this existence theorem 7 + o the local
correspondence, and its compatibility with the global correspondence. Only in the
third and final step, asserting that the map 7 +— o is surjective, is the converse
theorem used.

The first major theme in this work, developed in section 5.2, is the Congruence
Relations approach initiated by Eichler-Shimura and Thara in the case of GL(2, Q).
It involves an intrinsic geometric relation concerning Hecke correspondences and
powers of the Frobenius. We shall describe here only an application thereof (Theo-
rem ?7) to the study of eigenvalues. Thus let 7 ®& be an irreducible constituent of
H' as an H; x Gal(F/F)-module, for any i (0 <4 < 2(r —1)). For almost all v the
component 7, is unramified, and we put pz, (t) = [];_, (t—2i(7,)); the z;(7,) are the
r Hecke eigenvalues of 7,. Also, for almost all v the restriction &, = &| Gal(F,/F,)
is unramified. Let Fr,, or 1 x Fr,, denote any element of Gal(F/F) whose image in
Gal(F,/F,) is the “arithmetic” Frobenius substitution, and Fr;* or Fr, x1 denotes
the geometric Frobenius. Then the conjugacy class of 7(Fr,) is well-defined. Theo-

rem 77 asserts that pz, (qv_(r_l)/Z&(Frgl)) = 0. We conclude that: each eigenvalue

u of the geometric Frobenius endomorphism &(Fr, ') is of the form qi(,rfl)/2z(7~rv)
for some Hecke eigenvalue z(7,) (depending on u). Consequently &(Fr;') has at
most r distinct eigenvalues.

This relates the (geometric) Frobenius and Hecke eigenvalues of & and 7y which
occur together as an irreducible constituent 7y ® ¢ in the composition series of H 4
independently of Deligne’s conjecture. When combined with the Purity Theorem,
this result asserts that each conjugate of each (geometric) Frobenius eigenvalue (for
almost all v) has complex absolute value qf,r_l)/ 2. This fact is used in the reduction
of the existence part (for all 7 there exists a o, Theorem ??) of the Reciprocity
Law to Deligne’s conjecture.

Note that the technique of Congruence Relations applies with any irreducible
DZ -module p, equivalently any square-integrable 7o,. Its applications hold in both
cases of cohomology with, and without, compact supports. Also note that the
statement dimo = r for all & can be shown to imply the Reciprocity Law. In [?]
this is proven in the case of r = 2 by means of a different technique.

The work of part 4 depends on a comparison of the Fixed Point Formula and
the Trace Formula. Since only automorphic G(A)-modules occur in the Selberg
Formula, the purpose of this approach is to show that the G(A)-modules 7; which
occur in the virtual module H} = ", (—1)"H! are automorphic, in addition to
establishing the relation concerning the local Frobenius and Hecke eigenvalues. The
Grothendieck fixed point formula gives an expression for the trace of the action of
the (geometric) Frobenius Fr, x1 on the cohomology module H} by means of the
set of points in M, I,U(E,) fixed by the action of the Frobenius, and the traces of
the resulting morphisms on the stalks of the Q,-sheaf LL(p) at the fixed points.

In part 3 we prepare what is needed for this approach. Following [?], in section
6 the set M, 1, (F,) is expressed as a disjoint union of isogeny classes of elliptic

modules over F,,, and their types are studied. In section 7 it is shown that the
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elliptic modules with level structure of a given type make a homogeneous space
under the action of G(Ay), and the stabilizer is described. Moreover, the action of
the Frobenius Fr, is identified with multiplication by a certain matrix. A type is
described in group theoretic terms as an elliptic torus in G(F), and the cardinality
of the set M, 1,(Fyn) ([Fon : Fy] = n) is expressed in terms of orbital integrals
of conjugacy classes v in G(F) which are elliptic in G(Fy) and n-admissible (see
subsection (7.3)) at v.

Next, in section 8, it is shown that the orbital integral at v obtained in section
7 can be expressed as an orbital integral of a spherical function f, = T(f) on G,
whose normalized orbital integral F(f,,) is supported on the n-admissible set. This

spherical function is defined by the relation tr(m,(2))(fa) = qp" "/ Sy 2" The
work of section 8 is independent of the rest of the work. Two different computations
of the orbital integrals of f,, are given. The first is representation theoretic, the
second (due to a letter of Drinfeld dated March 15, 1976) is elementary.

In section 9 we develop a new form of the Trace Formula, for a test function
f = ®f, with a cuspidal component f,, and with component f,% as above at a
place v, where n is sufficiently large compared to the other components f,, (w # v)
of f. Tt relates the sum of the traces tr 7(f) of the cuspidal G(A)-modules 7 whose
component 7., is cuspidal, with a sum of orbital integrals of f at the elliptic ~y
which are elliptic in G(Fy) and n-admissible in G(F,). The group theoretic side
is then the same as that obtained from the stalk side of the Fixed Point Formula,
and we are in a position to derive our theorems. This trace formula is suggested
by Deligne’s conjecture. For applications of this trace formula in representation
theory see [?], [?], [?].

Now the scheme M,. 1 is not proper. The Fixed Point Formula (of Grothendieck)
is known in this case only for the powers of the Frobenius (see Theorem 5.6).
Hence the components f,, (w # v,00) of the test function f are taken to be the
characteristic function of Uy N G,,. We conclude that each Hecke eigenvalue of the
component 7, of 7y which occurs in the virtual module H is equal to the product
by qu (r=1/2 4f a Frobenius eigenvalue of 7, (Fr, x1) for some & which occurs in the
same H;. However 7y and o are not shown to appear together as an irreducible
constituent 7y ® o of some H!. This establishes the Purity Theorem, since the

Frobenius eigenvalues have complex absolute values of the form qi/ % where ¢ is
an integer, by the Frobenius Integrality Theorem of Deligne [?], while the Hecke
eigenvalues z; of the unitarizable cuspidal 7 satisfy g, 12 o |z;] < qi/ % for all i.

The same techniques suggest a proof of the Reciprocity Law as well. Assuming
Deligne’s Conjecture (Theorem ?7) we have the Hecke algebra, at the places w # v,
at our disposal. The Hecke algebra separates the finitely many G(Af)-modules
which occur in the formulae, and we conclude in section 10 that for each 7¢ in H*
there is a cuspidal 7 = ®m, with To, = Teo(p) (cuspidal) and 7, ~ m, for all v.
Moreover, the Hecke eigenvalues of 7, and the Frobenius eigenvalues of o, (Fr, x1)
are related for almost all v. This implies (using Theorem ?7?) a weak form of the
Explicit Reciprocity Law, namely the existence theorem: for each cuspidal 7 there
is a corresponding o. We also use (in Lemma ?7?(1)) the congruence relations of
Theorem ?77.

In section 11 we reduce the Explicit Reciprocity Law (bijection of 7 and o) to
its weak form (for each 7 there is a ), on using (1) properties of local L and
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e-factors, due to Deligne [?]; (2) the Grothendieck functional equation for ¢-adic
representations o; (3) Laumon’s formula [?], expressing ¢(o) as a product of the
local e-factors of o; and (4) the simple converse theorem ?? where only cuspidal
GL(r — 1)-modules with a cuspidal component are used.

As noted above the theory of elliptic modules was introduced by Drinfeld in [?],
[?] in 1974 and 1977 in order to prove the reciprocity law over function fields, in
analogy with the theory of Shimura varieties which had been used by Deligne in
1971 to prove cases of the reciprocity law over number fields. While the theory of
Shimura varieties is more amenable to the study of automorphic representations of
symplectic, unitary and orthogonal groups, groups with rather complicated repre-
sentation theories, Drinfeld discovery of elliptic modules introduced in the function
field case a theory where the prominant group is GL(n), a group whose represen-
tation theory is relatively simple, as it has no nontrivial packets. Drinfeld used
his theory to prove the reciprocity law for GL(2) over a function field, for cuspidal
representations with a square integrable component, and our work is simply an
extention to the case of GL(r), r > 2. Drinfeld introduced other methods. One is
that of Shtukas, developed by L. Lafforgue [?], [?] in 1997 and 2002, whose aim is
to remove the restriction that at least one component be square integrable. An-
other, in Amer. J. Math. 1983, dealt with unramified representations, and initiated
Drinfeld’s geometric Langlands program.

Deligne lectured in 1975 on Drinfeld’s theory of elliptic modules, and the notes
appeared in [?], 1987. Deligne coined the term Drinfeld modules. The idea, in
both the number field case of Shimura varieties, and the function field case of Drin-
feld moduli schemes, is to realize the reciprocity law in suitable cohomology of
the moduli scheme, which is a Galois x adele - bimodule. To determine the con-
situents one uses a comparison of the automorphic trace formula with the geometric
fixed point formula. Since these moduli schemes, Shimura’s for elliptic curves and
more generally for abelian varieties, and Drinfeld’s for elliptic modules, are not
proper, that is, not compact, the Lefschetz fixed point formula does not apply, and
Grothendieck’s fixed point formula for powers of the Frobenius does not provide
sufficient information. Deligne then proposed that the Lefschetz formula holds for a
correspondence on a variety over a finite field, provided it is twisted by a sufficiently
high — depending on the correspondence — power of the Frobenius.

Of this fundamental conjecture I learned from Kazhdan who proposed holding a
seminar at Harvard in 1982 to study Drinfeld’s original papers. The present work
stems from that seminar, and a course given by Kazhdan the following semester. It
existed as an unpublished manuscript since 1983, summarized in [?] in 1987. The
current version was updated during a course I gave at OSU in winter 2012, mainly
to add references to literature following [?], translate TeX to LaTeX, and restate
the reciprocity law in terms of smooth f-adic sheaves in the later part of section
11. Since this work was written at different times, there are some repetitions in it,
and other expository shortcomings, which I preferred not to eliminate in order to
reduce the risk of introducing other lacunae.

Our work concerns cuspidal representations with a cuspidal local component.
This permits us to use the simple trace formula, as we developed in purely rep-
resentation theoretic context in [?], [?], [?], [?], motivated by the present work.
That is, much of the complicated trace formula developed by Arthur is not used.
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More precisely, without Deligne’s conjecture we obtain Ramanujan’s conjecture us-
ing very little of Arthur’s work, and using Deligne’s conjecture we obtain all our
results on the reciprocity law using only the simple trace formula as in [?].

To extend our work from the context of cuspidal representations of GL(r) with
a cuspidal component, to that of those with a Steinberg component, one needs
Arthur’s work. This is discussed in [?], 1996, which uses an alternative method of
Kottwitz to count the points on the moduli scheme by means of twisted orbital in-
tegrals, and then proves a “fundamental lemma”, relating these to standard orbital
integrals. We follow Drinfeld, describing the points directly by orbital integrals.

Another approach was given in [?], 1993, to consider instead of GL(r) an inner
form thereof. But that meant automorphic representations of the multiplicative
group of a division algebra, whose transfer to GL(r) amounts to cuspidal represen-
tations with at least two places where the components are square integrable. Here
the local reciprocity law could be obtained without using Deligne’s conjecture.

To obtain the global reciprocity law, in our work we use Deligne’s conjecture, and
a simple form of the converse theorem, for global representations whose components
at a finite nonempty set are cuspidal. In the present draft this simple converse
theorem, motivated by our work but of independent interest and techniques far
from those of sections 1-11, is delegated to section 12.

Work on Deligne’s conjecture was done by Th. Zink [?], 1990, who dealt with
surfaces, and in Ed Shpiz Harvard thesis [?] of 1990 and R. Pink [?], 1992, both
dealing with the case where the variety in question has compactification by a divisor
with normal crossings. The Drinfeld moduli scheme is most likely of this type but
this has not been shown as yet. In 1997 appeared Fujiwara’s proof [?], using rigid
analytic techniques, and in 2007 Varshavsky’s [?] lucid proof. This made our work
hold unconditionally. As noted above L. Lafforgue developed Drinfeld’s theory of
Shtukas in [?] and [?] of 1997 and 2002 and used [?] to prove the reciprocity law (and
Ramanujan conjecture) for all cuspidal representations of GL(r,A), removing the
restriction that we put, that at least one component be cuspidal. This important
work was used in [?]. However, in view of the length and depth of [?] and [?] it
seems that there is still merit in our original work, beyond its historical value as
the first work where the local and many cases of the global reciprocity law over a
function field and in arbitrary rank were proven. Moreover the theory of elliptic,
or Drinfeld, modules, is of interest in its own right, as evidenced from the wealth
of literature on it, and so is our simple converse theorem ?77.

Within each section, Theorems, Propositions, Lemmas are numbered consecu-
tively, and so are — separately —Definitions, Remarks, Examples.

I wish to express my very deep gratitude to David Kazhdan for teaching me the
theory of Drinfeld modules, first in a seminar which we had on Drinfeld’s papers
[?], [?], then in a course he gave, and also in numerous conversations relating to
these notes. The results and some of the techniques of this work are exposed in our
joint note [?].

I wish to thank the referees for useful comments.

Recent support by the Humboldt Stiftung at Berlin’s HU, by MPIM-Bonn, SFB
at Bielefeld, Lady Davis Foundation at the Hebrew University, Newton Institute at
Cambridge, ITHES, and the Fulbright Foundation, is warmly acknowledged.
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Part 1. Elliptic moduli
1. ELLIPTIC MODULES-ANALYTIC DEFINITION

Let p be a prime number; d a positive integer; ¢ = p?; F, a field of ¢ elements; C
an absolutely irreducible smooth projective curve defined over F,; F' the function
field F(C') of C over g, that is, the field of rational functions on C' over F,. At
each place v of F', namely a closed point of C, let F,, be the completion of F' at v,
and A, the ring of integers in F,,. Fix a place co of F'. Let C be the completion
of an algebraic closure Fo of Fo.

Let A= H° (C — {0}, O¢) be the ring of regular functions on C' — {oo}, namely
the ring of functions in F' whose only possible poles are at co. For each v in
Spec A = C — {o0}, the quotient field F, = A/v is finite. Denote its cardinality by
¢v. Note that A, is the completion of A at v. For any a in A let (a) = aA be the
ideal in A generated by a. Let |.| = |.|oo be the absolute value on A which assigns
to a # 0 in A the cardinality of the quotient ring A/(a). It extends uniquely to
F, Fo,Fo and Cs. Let o be a generator of the maximal ideal of Aso. Let goo
be the cardinality | Ao /Too| of the finite field A /Too. If @ € A has a pole of order
n at 0o, then |a|o = |7 | = /L.

A function f from Cy to Cy is called entire if it is equal to an everywhere
convergent power series. Thus f = 30 a,a™ (a, € Cw), where |a,|*/™ — 0.

Lemma 1.1. Let f be a nonconstant entire function on Coy. Then f attains each
value of Cs.

Proof. This is the same as the proof in the case of characteristic zero; see [?], Ex.
13, section IV.4 (p. 108), where the lemma is proven with C., replaced by the
completion €2 of the algebraic closure @p of Q. O

A quotient f = h/g of two entire functions h,g on C, with g # 0, is called a
meromorphic function on Cy,. The divisor Div f of a meromorphic function f on
Coo, with zeroes a; and poles b; of multiplicities n; and m; (respectively), is the
formal sum »°; ni(a;) — >, m;(b;).

Corollary 1.2. Let f, g be entire functions on Cy with Div f = Divg. Then there
is ¢ # 0 in Cy with f = cg.

Proof. If g # 0 then f/g is entire, as its Taylor expansion at 0 converges everywhere.
But f/g has no zeroes; hence it is constant by Lemma ?7. [

A set L in Cy is called discrete if for each positive number ¢ the set {x in
L;|z| < ¢} is finite. Since Cw is a nonarchimedean field, then for each discrete set
L there is an entire function e;, with Dive; = L. If L contains zero then there is
a unique ey, normalized so that ¢ (0) = 1. It is given by the product

er(z) = xH(l —z/a) (a#0 in L).

Proposition 1.3. Let L be an additive discrete subgroup of Coo. Then er defines
an isomorphism from Co /L to Coo as additive groups.

Proof. (i) From Lemma ?7? it follows that ey, defines a set theoretic surjection from
Coo/L to Cw. (ii) To show that ey, is a group homomorphism, we first consider the
case where L is finite. It is clear from the definition of ey, that ey (z +y) —er(z) —
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er(y) =0 if z or y lie in L. Hence the polynomial ey (z)er(y) whose degree in x
is |L|, divides the polynomial ey (x 4+ y) — e, () — er(y), whose degree in x is less
than |L|. We conclude that er(z +y) = er(x) + er(y). In general we can write L
as a union of finite subgroups L,,. Then ey, = lim, ey, , and (ii) follows. (iii) Since
the kernel of ey, is L, the proposition follows from (i) and (ii). O

Definition 1.1. A lattice L is a discrete, finitely generated A-submodule of C.

Lemma 1.4. A finitely generated module over a Dedekind domain (an integral
domain in which every nonzero proper ideal factors into a product of prime ideals)
is projective if and only if it is torsion free.

Proof. See [?], VII, section 4.10, Prop. 22 (p. 543). O

Since C, is a field, the lattice L is a torsion free A-module. Since A is a Dedekind
domain, L is projective. Denote by r = rankL the rank of the lattice L. We have

Lemma 1.5. For any a # 0 in A there is an isomorphism from L/aL to (A/aA)".

The isomorphism e, : Coo/L — Cs and the A-module structure on Cy /L
define an A-module structure on Coo by az = ¢, 1.(z) = e, (a (e '(z))) (ain A, z
in Coo).

Lemma 1.6. For each a in A the function p, 1, is a polynomial of degree |a|” over
Coo.

Proof. Put 1,.1(z) = er(azx). The kernel of 9, 1, is a~'L. Hence there is some
¢ # 0 with ¢, (z) = c[], (er(z) —er (b)) (bin a™'L/L). Consequently ¢, 1(z) =
c[1, (x —er(b)) is a polynomial over Cy, whose degree is equal to the cardinality
la|” of L/aL. O

Let Eo be a fixed finite extension of F., in Co,. Let E, denote the completion
of the separable closure F; of Eo, in Cy. The fields E.,, Fs, Es appear only in
section 1.

Definition 1.2. A lattice L is called a lattice over E if it lies in E, and it is
invariant under the action of the Galois group Gal(F;/Fy,) of Es over En,.

Example 1.1. The ring L = A is a lattice over F, of rank one.
Proposition 1.7. If L is a lattice over Eo then ¢, 1, is a polynomial over E.

Proof. The coefficients of the Taylor expansion at 0 of e, lie in E,, and they are
invariant under Gal(E;/FE,) by definition of L. Hence they lie in Eo, (by [?],
Theorem 1, p. 176). The proposition now follows from the proof of Lemma ??. [

Definition 1.3. (i) The lattices L, L’ over E, are isomorphic if L' = uL for some
u#0in Ey. (i) Let L, L’ be lattices of rank r. A morphism from L to L' is u in
Eo with uL C L'.

Lemma 1.8. If L is a lattice over En and u # 0 is in Es, then u™ g up (uz) =
Pa,L(T).
Proof. Using the identity e, (z) = uer (v~ "'x) we rewrite the relation g o1 (€nr())
= eyr(ax) in the form ¢, 1 (uer (u™'z)) = uer (au=tx). This implies the required
identity

1

u_1<pa7uL(ueL(x)) =er(ax) = @q,1(er(2)).
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Definition 1.4. A polynomial h in Cw[z] is called additive if h(z+y) = h(z)+h(y).
Lemma 1.9. If h is additive then h(x) = 25:1 az?’ .

Proof. 1f h(z) = Y b;z' is additive, then b;((x + y)t — a2t —yt) = 0. If i = p"j with
j > 1 prime to p, then (z +y)’ = (xpn + ypn)] is not equal to 2 + y*, since it has

the term jz?"G—DyP" in its binomial expansion. Hence b; = 0 if i is not a power
of p. ([l

The map ¢, : a — @4, 1, has several properties which suggest the following

Definition 1.5. (1) A map ¢ : A = E[z], a — ¢q, is called an elliptic module
of rank r over Eo if (1) wa(z +y) = wal(z) + @a(y) (@ in A); (i) Yab = ©a © ©b,
Gatb = Pa + @p; (ill) degpa = |a|™; (iv) @o(z) = az mod zP.

(2) The elliptic modules @, ¢’ are isomorphic if there is u # 0 in Ey with ¢/ (z) =
wpa(u™tz) (a in A).

(3) Let ¢, ¢’ be two elliptic modules of rank r over Es. A morphism from ¢ to ¢’
is an additive polynomial P in E.[z] with Po ¢, = ¢/, o P (a in A).

Lemma 1.10. Any morphism P is of the form P(x) = )", a;x? , where a; lie in
Ex. The group of automorphisms of an elliptic module is F .

Proof. For any « in the finite subfield F, of A we have ¢, (z) = az and ¢} () = az.
Hence aP(z) = P(az), and the lemma follows. O

Corollary 1.11. (1) For each b in A, we have gp(x) = Zfibl) a;z? | where I1(b) =
704(b), v4(b) = log, |bl, and arwy # 0. (2) If A =TF,[t] then |t| = q, and an elliptic
module is determined by pi(x) = tx + Zle aiz? with a, # 0. (3) In (2), up to

. . L
isomoprhism we may replace a; by a;u? ~1.

Remark 1.1. (1) An elliptic module of rank r over C, is defined on replacing Eo,
by Cw in Definition ??(1). The following theorem holds also with E, replaced by
Cw. (2) Since the case of r = 0 is trivial, we consider from now on only the case of
r > 0.

Theorem 1.12. The map L — ¢ defines an equivalence from the category of
(isomorphism classes of) lattices of rank r over E, to the category of (isomorphism
classes of) elliptic modules of rank r over E,.

Proof. (i) Our first aim, accomplished in (iv), is to construct an inverse to the map
L — ¢r. Thus let ¢ be an elliptic module over E, of rank r. Fix a in A — F;
then |a| > 1. We have ¢, (z) = az + Y, a;27 with a; in Es (1 <i < s=1v,(a)).

We claim that there exists a unique power series e(z) = > oo, e;z? with e = 1,
e; in Ey, and @, (e(x)) = e(ax). To show this we equate the coefficients of 29" in

pale(a™tx)) = e(z) to obtain
n—1 )
en (1 — alfqn> =ana 9 + Z aiefkiafqn
i=1

(an, =0 for n > s; e; =0 for ¢ < 0); this yields a recursive formula for e,,.
(ii) We claim that e is entire. To see this we note that for n > s we have

S
i
en(a? —a) = Zaieflﬂ-.
i=1



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 13

Then
la]r, < max{|ai|p nrn_i; 1<i< s} ,

where 7; = |e;]7 . For  with |a|=* < < 1 there is n’ such that for n > n’ we
have r, < fmax{r,_;;1 <i < s}. Hence r, — 0, and e is entire.

(iii) For any b in A we claim that yp(e(z)) = e(bzr). Indeed, if b # 0 then we
have

(ppoeob ) (z) = (ppogpaoecato bil)(x) = (pao(ppoeo bil) oail)(r).

I = e implies

But then the uniqueness of the solution e for the equation ¢, ceoa™
the claim.

(iv) Let L be the kernel of e. Since the derivative €’ of e is identically one, the
zeroes of e are simple. Hence L lies in Es. The group L is a discrete, Gal(E;/Ex )-
invariant A-module, and we have |L/aL| = |a|". Hence L is finitely generated.
Indeed, if {b;} are |a|" representatives in L for L/aL, then the finite set of = in
L with |z| < max;{|b;|} generates L as an A-module. Now since L is torsion free
and A is a Dedekind domain, L is flat. A finitely generated flat module over a
Noetherian ring is projective. Hence L is a lattice of rank r. Since we have e = e,
and @, = @4 for all a in A, we constructed an inverse to the map L — ¢y,
establishing a set theoretic isomorphism.

(v) Let L, L’ be lattices of rank r over E,, with ul. C L’ for some v in E,. Then
ers(ux) is L-invariant. The proof of Lemma ?? shows that there is a polynomial P
over Eo, with P(er(x)) = ers(uzx). But then P is additive, and

(Poar)(er(r)) = Pler(ax)) = er (uaz)
= ¢a,r’ (e 0u)(x)) = (Pa,Lr © P) (eL(x))
implies that P is a morphism from ¢y, to ¢/ .
(vi) Conversely, if P is a polynomial over E, with P o ¢y, = ¢ o P, then
(Poer)(w) = (Pogaroer)(a x) = (¢par(Poer))(a a).
Hence we conclude from the uniqueness assertion of (i) that there is u # 0 in E
with (Poer)(xz) =er(ux). Then uwL C L', and the theorem follows. O

Remark 1.2. Tt is clear from the proof of (vi) that any polynomial P in E[z] with
Pop, = ¢, 0P forall ain A has to be additive.
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2. ELLIPTIC MODULES-ALGEBRAIC DEFINITION

Definition ?? of an elliptic module over a field extension of F, is purely algebraic.
So it has a natural generalization defining elliptic modules over any field over A.

Let B be a ring of characteristic p (by definition, p = 0 in B). Let R be a
B-algebra, namely a ring with a ring homomorphism ¢ : B — R. Then R has
characteristic p. By an affine group scheme G over B we mean a representable
functor from the category of B-algebras R to the category of groups; thus G(R) =
Hom(B’, R) = Hom(Spec R, Spec B’) if G is represented by the B-algebra B’. Then
B’ is a Hopf algebra (with comultiplication p : B — B’ ® g B’, counite ¢ and
coinverse ¢, which are B-algebra homomorphisms satisfying standard axioms), and
Spec B’ has a natural structure of a group. As usual, we write G = Spec B’ if the
functor G is representable by B’. The group G is called algebraic if B’ is finitely
generated over B. For example, the additive group G, p over B is the functor
which associates to the B-algebra R the additive group of R. Then G, g(R) =
Homp(B[z], R), namely G,_ g is represented by the B-algebra B[z] (which is of finite
type), and G, g = Spec B[z]. The group structure on G, g is defined by the Hopf
algebra structure on B[z]|, namely by the comultiplication p : Blz] — Blz]®pBlz],
r—x®1+1®ax, counit € : x — 0 and coinverse ¢ : © — —x.

The set of morphisms from a functor E to a functor E’ is denoted by Hom(E, E’).
When E = E’ we write End E for Hom(E, E). Put Endg G, for End G, g. If G’ =
Spec B/, G = Spec B” are affine group schemes then the map which associates to
the Hopf algebra morphism P : B” — B’ the morphism P : G’ — G”, defined by
P(u: B — R) = (uoP : B” — R), is an isomorphism Hom(B"”, B’)= Hom(G’, G").
Let B[r] be the ring generated by 7 over B under the relations 76 = b7 for all b
in B.

Lemma 2.1. The ring Endg G, is canonically isomorphic to B[r] as a ring.

Proof. An endomorphism P of G, g is equivalent to a homomorphism Bz] — B|x]
over B which commutes with y. Such P is determined by the image P(z) = Y, a;2"
of z. The morphism P commutes with p if and only if P(y+2) = P(y)+P(z), where
y=2®1 and z = 1 ® z. The proof of Lemma ?? implies that P(z) = > bja?".
Denote by 7 the endomorphism 7(x) = zP. For b in B, denote by b also the
endomorphism b(z) = bx of multiplication by b. Then 7b = b’7. Hence P = Y b; 7!
lies in B[r]. Since B[7] clearly lies in Endp G,, the lemma follows. d

Remark 2.1. (1) We identity B with its image in B[r]. (2) If the characteristic of
B is zero then Endg G, = B: the only endomorphisms of G, over B are b(z) = bx.
The richer structure of Endg G, in the case of characteristic p > 0 is the basis of
the theory of elliptic modules.

Definition 2.1. (i) Let D (37 b;7) = by define the ring homomorphism D :
B[r] — B. (ii) The polynomial P in B[r] is called separable if D(P) # 0.

We can now make the following

Definition 2.2. Let K be a field over A. An elliptic module over K is a ring
homomorphism ¢ : A — K[r] = Endg G,, a — ¢,, whose image is not contained
in K, such that D o ¢ = .

Lemma 2.2. Any elliptic module ¢ : A — K|7] is an embedding.
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Proof. Since K|[r] has no zero divisors, the ideal ker ¢ is prime. Suppose that
keryp # 0. Since A is a Dedekind domain, ker ¢ is a maximal ideal. Hence the
image of ¢ is a field, necessarily contained in K, since all invertible elements in
K|[7] lie in K. We obtain a contradiction to the definition of an elliptic module.
This implies that ker ¢ = 0, as required. O

To compare Definition ??7 with Definition ?7?, define the degree homomorphism
deg : K[r] — Z by deg (> bit*) = p™ if b, # 0, and deg 0 = 0. It satisfies

deg(z + y) < max(degz,degy), deg(zy) = degx - deg y.

Hence the homomorphism d : A — Z, d(a) = deg @, satisfies d(ab) = d(a)d(b) and
d(a +b) < max(d(a),d(b)). Lemma ?? then implies that d is an absolute value on
A at some point of C, in fact at co since d(a) > 1 on A. Hence there exists some
r > 0, which we call the rank of ¢ and denote by rank ¢, with d(a) = |a|”. Once
we show, in Corollary ?? below, that r is an integer, it is clear that when K is the
extension F, of F, as in Definition 77, the elliptic module of Definition 77 is an
elliptic module in the sense of Definition 7?7, with rank 7.

Definition 2.3. (i) The characteristic of an elliptic module ¢ : A — K][7] is
the prime ideal ker[i : A — K] in Spec A. It is denoted by char . (ii) Let E,
be the functor from the category of K-algebras R to the category of A-modules,
whose composition with the forgetful functor from A-modules to groups is Gg x,
with the A-structure defined by . Thus if ¢, = i(a) + Zle bt (b; in K), then
aor = @,(r) =i(a)r+> bir?" in E,(R) (r in R). A functor E is called an elliptic
functor if it is isomorphic to E,, where ¢ is an elliptic module. (4ii) For any ideal
Iin A, let Ef = Ann(J)|E be the subfunctor of the elliptic functor E annihilated
by I. Thus if £ = E, then E7(R) is the A/I-module consisting of all z in E(R)
with aox =0 for all a in [I.

Remark 2.2. (1) Since A is a Dedekind domain, either char ¢ = {0}, in which case
i : A — K is injective, or char ¢ is a maximal ideal. (2) If I = (a) is principal
and E = E,, write E, for E; = ker¢,. In general, E;(R) = NE,(R) (a in I). If
ay,...,as generate I in A then Er(R) = E,, (R)N--- N E,_(R). (3) The functors
E and E, are equal if and only if a =0, and E; = F if and only if I = {0}.

Lemma 2.3. Let w be a mazimal ideal of A. Let © denote a uniformizer in the
local ring A,. Let E" be an A, /m*™A,,-module of cardinality |w|~>™". Suppose the
submodule E' = kerw™ | E” has cardinality |w|=™". Then E' is a free Ay /m™ Ay -
module of rank r.

Proof. As a finitely generated torsion module over a local ring A,,, we have that E”
is a finite direct sum of modules isomorphic to A, /77 A,,. Since w?™ annihilates
E" we have that 0 < j < 2m. Now ker®™ is the sum of A,,/a™""™} A, . Hence
| kerm™|? > |E"|, with equality only when j = 2m for all j. The lemma follows. [

Let ¢ be an elliptic module of rank r over K. Fix an algebraic closure K of K.

Theorem 2.4. Let I be an ideal in A which is prime to chary. Then E;(K) is a
free A/I-module of rank r.

Corollary 2.5. (i) Fiz w in Spec A prime to chary, and b in A — F, whose only
zero is at w. Then limEjprm (K) is a free Fy,/Ay-module of rank r. (ii) The rank of

an elliptic module is an integer.
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Remark 2.3. The ideal I is prime to char¢ if and only if I is not contained in
char .

Proof. (i) Let w in Spec A be prime to charp. We first consider the case where
I # A is a principal ideal generated by b in A whose only zeroes are at w. Then (b)
is prime to ker i = char ¢, so that i(b) # 0. We have Ej,(K) = ker ¢y, where ¢y (z) =
i(b)xr + - 4 a,z®", and ay # 0. Since dyy/dz(= i(b)) is never zero, the roots of
op(x) = 0 are simple, and the cardinality of E,(K) is [b]". The same argument
implies that the cardinality of Ey2(K) is |b/?". In the notations of Lemma ?? there
is some positive integer m with bA,, = 7™ A,, and we have A/bA ~ A, /7™ A,
and A/b*A ~ A,/m*™A,. The theorem follows on taking E” = Eu:(K) and
E' = Ey(K) in Lemma ??, in our case where I = (b) is principal and supported at
w. In particular the corollary is proven.

(ii) Let I be any ideal which is prime to char . Since A is Noetherian I has
the primary decomposition I = Nw™(®), where w are maximal ideals in Spec A not
contained in char ¢, and n(w) are positive integers. Then A/ = §A/w™™), and
any finitely generated A/I-module M is the direct sum of its primary components
M, which are A/w™(*)-modules. To show that E;(K) is a free A/I-module of
rank r it suffices to show that E;u(K) is a free A/I"-module of rank r for some
positive integer h. We take h to be the (finite) cardinality of the quotient of the
multiplicative group of ideals in A by its subgroup of principal ideals. Then w" ™)

is principal, and the theorem follows from the case proven in (i). O

Let w be a prime ideal of A which is not contained in char ¢. Let b be an element
of A —T, whose only zero is at w. In view of Corollary 7?7 we can make

Definition 2.4. The Tate module T, E of E at w is Homy, (Fyy /Aw, ling Epm (K)).

Corollary 2.6. If w is prime to char ¢ then T\, E is a free Ay-module of rank r.

Let K be a ring over A. Let ¢, ¢’ be two elliptic modules over K. Let E = E,
and E' = E, be the associated elliptic functors. In the rest of this section 2
we study basic properties of the group Hom(F, E’) which are fundamental for the
description in Part 2 of isogeny classes.

Lemma 2.7. The group Hom(E, E’) is isomorphic to the group of all P in K|r]
with Py, = ¢, P for all a in A.

Proof. This follows at once from the definitions. Namely, since the composition
of E or E’ with the forgetful functor from A-modules to groups is G, k, any P
in Hom(E, E') lies in Endg G, = KJr]. The morphism P commutes with the
A-module structures on F and E’ if and only if Py, = ¢}, P for all a in A. d

Remark 2.4. The group Hom(F, E’) has an A-module structure given by ao P =
ol P.

Lemma 2.8. The A-module Hom(E, E") is torsion free.
Proof. There are no zero divisors in K|[r]. O

Let G’ = Spec B’ and G = Spec B be affine group schemes over K. We say that
the morphism G — G’ is injective (resp. surjective) if the corresponding morphism
B’ — B of Hopf K-algebras is surjective (resp. injective). By a subgroup (or group
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subscheme) of G we mean a pair (H,i) consisting of a group H and an injection
i: H — G. A subgroup H of G corresponds to a Hopf ideal I in B, namely an
ideal I with u(I) CI®@ B+ B®1I,e(I)=0and () CI.

The subgroup H of G is called normal if H(R) is normal in G(R) for all K-
algebras R

The kernel H = Hp of a morphism P : G — G’ is the functor defined by
H(R) = ker[P(R) : G(R) — G'(R)]. The kernel H is the (normal) subgroup of
G corresponding to the ideal Ip = P(kere’)B of B, where ¢ : B' — K is the
counit of B’, and P: B — B is the Hopf algebra morphism corresponding to P.
Indeed, g : B — R in G(R) is in the kernel H(R) if and only if go P : B’ — R is
zero in G'(R), namely g o P factorizes through ¢, or g(P(kere’)) = 0, equivalently
g(Ip) = 0.

A quotient of G is a pair (G', P) consisting of an affine group scheme G’ = Spec B’
and a surjection P : G — G’. If H is a normal subgroup of G then there is a unique
quotient P : G — G’ with kernel H (see [?], (16.3)). The quotient (G’, P) of G has
the universal property that for any morphism Q : G — G” which vanishes on the
kernel Hp of P : G — G', namely Q satisfies I C Ip, there is a unique morphism
R: G — G” with Q = RP (see [?], (15.4)).

The group G is called a finite group scheme of order m over K if B is an algebra
of rank m over K. A finite group G over K is called étale if B ® K, is a finite
direct product of copies of the separable closure K, of K in K.

An affine group G is called connected if Spec B is connected (equivalently, ir-
reducible). In the case where G is the additive group G, g, all subgroups and
quotients can be explicitly described, as follows.

Lemma 2.9. (i) Every proper subgroup H of G, i is of the form Hp for some
P #0 in Endg G,. Every quotient of Go i is of the form P : Gq g — Gg,x. The
quotient map corresponding to Hp is defined by P : K[z] — K|z], v — P(z). We
have Hp = Hgq if and only if P = aQ for some a # 0 in K. The order of Hp is
the degree of P(x). (i) The morphism P is separable if and only if Hp is étale.
The group Hp is connected if and only if P = at? for some a # 0 in K and j > 0.

Proof. (i) If H is a proper subgroup of G, x then it corresponds to a proper ideal
I in the principal ideal domain K[z]. Hence H is finite, and I = (P(z)) for some
monic P(z) in Klz]. The ideal I is an Hopf ideal precisely when ¢(P) = 0, thus
P(0) =0, and u(P(x)) = P(x +y) lies in I ® K[z] + K[z] ® I. Namely there are
polynomials a; and b; in K[z] (0 <i<n,0<j <m) with a, # 0, by, # 0, and

P(z+y) = P(x) Z y)x' + Py Z b;(

0<i<n 0<j<m

Choose n > 0 to be minimal. Comparing highest powers of z we conclude that
m = n + deg(P), and a,(y) + P(y)bm(y) = 0, namely n can be reduced by 1 if
n > 0. Thus n = 0. By symmetry (of z and y), the b;(y) are independent of y.
Thus P(x +y) = P(x)ag(y) + P(y)co(z). Comparing the heighest degree terms of
P(x +y), P(x)ao(y), P(y)co(x) we see that ¢o(xz) = 1 and ap(y) = 1. Hence P is
additive, and (i) follows.

(ii) The group of connected components of the finite group H is isomorphic to the
group H(K) of points on H; this is isomorphic to the group of zeroes of P(z) = 0.
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The group H is connected if and only if P(z) has only one zero, necessarily at
x = 0. Since P is additive, it has the asserted form P(x) = az?’; (ii) follows. [

We shall now verify directly the universal property of quotients in the case of
Ga, k-

Lemma 2.10. Let P(z), ®(z) be additive polynomials in K[z] such that P(x)
divides ®(x). Then there is an additive polynomial Q(z) in Klx| with ®(z) =
Q(P(x)).

Proof. Suppose that P = Zf:[/ pitt and & = ZkR:R, o " satisfy P(x) | ®(x).
Then R’ > I'. Our aim is to find Q = Y/_, ¢;7/ with ® = QP and ¢; in K.
Since R’ > I' we may assume that I’ = 0. Suppose first that R’ = 0, namely @ is
separable. Since P(z) divides ®(z), ker P(z) = {b € K; P(b) = 0} is a subgroup
of ker ®(z), and the quotient ker ®(x)/ker P(z) is isomorphic to P(ker ®(x)). The
group P(ker ®(x)) is an additive Gal(K /K )-invariant subgroup of K. Hence there
is some ¢ # 0 in K such that Q(z) = c¢]],(z —u) (v in P(ker ®(z))) is an additive
polynomial (by part (ii) in the proof of Proposition ??) with ®(z) = Q(P(z))
and coefficients in K. In general, define ¢}, in KP " by TR = T and
P = ZkR;O ¢, 7%, where R” = R — R'. Then ® = 7B ®' @ is separable and P(z)
divides ®'(x). Hence there is Q" = Y ¢j7/ with ® = Q'P. Then Q = RQ =
> q}pR/ TITR" has coefficients in K, and it satisfies ® = QP, as required. O

Recall that an elliptic functor F is the additive group equipped with an A-module
structure.

Definition 2.5. (i) A morphism P # 0 in Hom(FE, E') is called an isogeny (from
E to E’ or from ¢ to ¢’). The functors E and E’ (and ¢, ¢’) are called isogenous
if Hom(E, E’) # {0}. (ii) An isogeny P = Y."  b;7" in K[7] is called separable if
bg # 0. It is called purely inseparable if it is of the form P = br™ with some b # 0
in K and a positive integer m.

Remark 2.5. (i) If ¢, ¢ are isogenous then they have the same rank. (ii) If P is a
purely inseparable isogeny then its kernel on E(K) is {0}. (iii) If m > 0 then 7™
lies in End F' if and only if ¢ is defined over F,=. In this case the characteristic of

© is nonzero, and p™ is an integral power of ¢, = |A/v|.

Any P # 0 in Endg G, can be written uniquely in the form S77, where S in
Endg G, is separable, and j > 0. For isogenies we have

Proposition 2.11. Let P be an isogeny in Hom(E, E"). If P is not separable then
() charg = v # {0}, and (it) there are separable and purely inseparable isogenies
S and R = 77 such that P = SR and p’ = ¢ for a positive integer h; here
Qo = |A/v] = [Fy|.

Proof. Let brJ be the first term in P. The relation Py, = ¢, P implies that
i(a)?’ = i(a) for all @ in A. If char = {0} then j = 0. If j # O then p’ has
to be a power of g, = |A/v|, where charp = v # 0, as we now assume. Suppose
that P = Y 0" b7, with by # 0. Put S = >.7" b;7", and R = 77/. Then
77 is an isogeny from ¢ to ¢”, defined by ¢! = Zafj 7 if 9, = > a;7". Since

agj = i(a)pj =i(a), ¢” is indeed an elliptic module. Since K[7] is a domain, the
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relation ¢/, SR = SRy, = S¢!/R implies that ¢/ S = S¢! for all a in A. Hence R
lies in Hom(E, E”) and S in Hom(E", E’), as required. O

Proposition 2.12. Let P # 0 be an isogeny from ¢ to ¢'. Then there exists an
isogeny Q from ¢’ to @, and a # 0 in A, such that QP = ¢,.

Proof. (i) We first consider the case where P is separable. Put H = Hp. Since

H(K) is a finite A-submodule of E(K) there exists a # 0 in A with ¢,(h) = 0 for
all h in H(K). Since P is separable, the polynomial P(z) divides ¢,(z), and the
ideal (¢4 (x)) lies in (P(x)). The universal property of quotients asserts that there
is @ in End G, x with ¢, = QP. It remains to show that () is an isogeny. Since

Py, = ¢, P for all bin A, we have

©yQP = ©ppa = oy = QPoy = Q) P.

Since K[7] is a domain we conclude that ¢,Q = Qy}, as required.

(ii) If P = 779, choose a # 0 in char (since P is purely inseparable, char ¢ #
{0}). Then ¢, = > a;7" with ap = 0, and ¢, = (3. a;7%)7 = Q77 for some Q.

(iii) Suppose that P = SR, where S is separable and R is purely inseparable, R in
Hom(E, E"), S in Hom(E", E'). Then there is T in Hom(E', E”) with T'S = ¢/,
and U in Hom(E"”, E) with UR = ¢,, for some da’, ¢ in A. Put a = a’a” and
Q =UT. Then QP =UTSR =U¢!,R=URpy' = Qo' Pa = Pa, as required. 0

Corollary 2.13. If char ¢ = 0 then End E is commutative.

Proof. The map D : EndE — F, D(>.a;7") = ag, is a ring homomorphism.
Proposition 77 asserts that for each P # 0 in End E' there is a # 0 in A and @ in
End E with QP = ¢,. Since D(p,) = i(a) = a, D is injective, and the corollary
follows. O

Let E = E, be an elliptic functor over K. Then E(K) is an A-module. We
shall now determine those finite subgroups H = Hp of G, x which are kernels of
isogenies.

Proposition 2.14. The morphism P # 0 in Endk G, is an isogeny from E to an
elliptic functor E' if and only if (i) H(K) is an A-submodule of E(K), (ii) P = StJ
where S is a separable isogeny, and (1) j = 0 if char ¢ = {0}, (2) p’ is a power of

Qv lf Char@ = 7£ {O}

Proof. If P lies in Hom(E, E’) then Py, = ¢, P for all a in A. If P(b) = 0 then
@l (P(b)) = 0, hence P(p,(b)) = 0, whence (i). (ii) is verified in the proof of
Proposition ?7. In the opposite direction, we deal first with a separable P which
satisfies (i) and (ii). By (i), the map 1, = Py, in Endx G, is zero on H(K), for
every a in A. Since P is separable, P(x) divides ¢, (x), hence (14 (z)) lies in (P(z)),
and the universal property of quotients implies that there is ¢/, in Endx G, with
Ve = ¢, P, for any a in A. Then ¢’ : A — K]Jr] is the required elliptic module.
In general P = S77, and it is verified in the proof of Proposition ?? that 77 as
in (ii(2)) lies in Hom(E, E”), where E” is defined there. Since by (i) we have tht

Hp(K) is an A-submodule of E(K), it is clear that Hg(K) is an A-submodule of

E"(K). Namely S is separable and satisfies (i), hence it is an isogeny from E” to
some E’ as shown above. The proposition follows. [
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Our next goal is to show that the torsion free A-module Hom(E, E’) is finitely
generated and projective. Let m., be the maximal ideal in the ring A, of integers
in the completion Fi, of I’ at oc.

Lemma 2.15. For each nonnegative integer i the group A+ ml, has finite index
in Fy.

Proof. (i) If B =TF,[t] and J = F,(t) then Jo, = F,((t71)) and J/B is compact.
(ii) Take ¢ in A — F,. The ring A is a finitely-generated torsion-free module over
the principal ideal domain B = F,[t]. Hence A is a free B-module of finite rank s.
Choosing a basis we have A = B® and Foo = AQ®p Joo = J3,. By virtue of (i) the
quotient J.. /B is compact, hence Fi,/A is compact. Since m’_ is open in Fi, the
quotient F../(A+m',) is finite, as required. O

Proposition 2.16. Let V be a subspace of F ® s Hom(E, E') of finite dimension.
Put Voo =V @p Fy and X =V NHom(E, E"). Then (i) X is a discrete subset of
Voo; (i) X is a finitely generated projective A-module.

Proof. (i) The degree homomorphism deg : Hom(E, E') — Z>( satisfies (1) degu >
0; (2) degu = 0 if and only if u = 0; (3) deg(au) = |a|" degu; (4) deg(u + v) <
max(deg u, degv); (5) deg(uv) = degu-degv (u,v € V; a € A). By (3), deg extends
to Vo on taking a in F,. Hence deg is a norm on V., and X is discrete since X is
a group and dega > 1 for all @ # 0 in X. To prove (ii), let z1,..., x4 be a basis of
V over F' which lies in X. We use this basis to identify Vo, with Fiy X -+ X Foo (d
times), which we now denote by [F..]¢. Hence we have [A]¢ C X C [F]¢ C [Fx]4,
and [mi_]¢ C [F]?, for all i > 0. Since X is discrete, there exists some i > 0 with
XN[mi )%= 0. Hence X embeds in [F, /m’_ ]¢, and X/[A]? in [F/m’  + A]%, the
latter being finite by Lemma ??. Since [A]? is a finitely generated A-module, and
X/[A]? is finite, X is a finitely generated A-module. Since X is torsion free over a
Dedekind domain A, X is flat. Since X is also finitely generated we conclude that
X is projective, as required. (Il

Put v = char F, and let w in Spec A be with w # v. For any V' as above we have

Proposition 2.17. The natural map from X ®4 A, to Homu, (TwE, T, E') is
injective.

Proof. Since X is projective and finitely generated, we have X ® 4 A,, = ligX /(™)

m
for any b in A — F, whose only zero is at w. Since T,,E and T,,E’ are free A,-
modules of rank r we have

Homy (T, E, T,E') = @1 Homa, (TwE, T,E')/(b™).

Hence it suffices to show that the map X/(b™) — Homgu, (TwE, T, E')/(b™) is
injective for all m; we may take m = 1 on replacing b by b. Note that

Homy, (TwE, TwE")/(b) = Hom 4 (i) (ker gy, ker ).

w

Hence P in Hom(E, E') maps to zero in Homy, (T, F,TwE’)/(b) if and only if
P(a) = 0 for any a in K with ¢;(a) = 0. Since b does not lie in v, we have i(b) # 0,
and ¢y is separable. Hence ¢}, divides P, and the universal property of quotients
implies that there exists @ in Endg G, with P = Qyy. Since P is an isogeny from

E to F’, s0is Q, as K|[r] is a domain. Hence P is zero in X/(b), as required. O
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Theorem 2.18. Letr be the rank of E. Then (i) Hom(E, E') is a finitely generated
projective A-module of rank bounded by r%; (i) for each w # v = char E in Spec 4,
the natural map from Hom(E, E') ® 4 Ay, to Homyu (T E, T, E') is injective.

Proof. Let V' be a finite dimensional subspace of F ® 4 Hom(E, E’). Since X =
V NHom(E, E’) is projective and finitely generated, the rank of X over A is equal
to the rank of X ®4 A, over A, (for all w), and the latter is bounded by 2 by
the Proposition, since T, F is a free A,-module of rank r. Since V is arbitrary,
the rank of Hom(FE, E') is bounded by 72, and (i) as well as (ii) follow from the
Proposition. (]

Proposition 2.19. (i) The ring Foo ®4 End E is a division algebra of dimension
at most r? over F. (ii) The ring F ® 4 End E is a division algebra of dimension
< 12 over F.
Proof. (i) By Theorem ??, By, = Fy ®4 End E is an algebra of dimension <
r? over F.. It has no zero divisors by the properties (1) and (2) of the degree
homomorphism deg : (End E) ® 4 Foo — Q of Proposition ??. Given b # 0 in B,
let Ly : Boo — Boo the Foo-linear operator x +— bx. This B, is a finite dimensional
vector space over Fi,, and L; is injective, since the ring B, has no zero divisors.
Hence Lj is surjective. Then there is x € By, with bc = 1.

(ii) follows on replacing F, by F' in the proof of (i). O

Corollary 2.20. If char E = {0} then (End F) ®4 F is a field of degree < r over
Fyo.

Proof. When char E = {0}, Corollary ?? asserts that End E is commutative.
Hence FF ® 4 End E' is a commutative division algebra, that is a field extension
of F of degree < r?. Theorem ?? implies that F,, ®4 End E embeds in the al-
gebra Endy, (TwE) ®4, F of 7 x r matrices, hence F, ®4 End E is a direct
sum of field extensions of F),, the sum of whose degrees is bounded by r. Hence
[FF®4EndE : F] <r. Since Fy, ®4 End E is a division algebra, co does not split
in F®sEndFE, so Fiy 4 End E is a field of degree < r over Fi, as required. [
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3. ELLIPTIC MODULES-GEOMETRIC DEFINITION

The definition in section 2 of elliptic modules as A-structures on the additive
group G, i over a field K over A has a natural generalization in which the field K,
that is the scheme Spec K, is replaced by an arbitrary scheme S over A, and G, i
is replaced by an invertible (locally free rank one) sheaf G over S (equivalently a
line bundle over S). An elliptic module of rank r over S will then be defined as an
A-structure on G which becomes an elliptic module of rank r over K for any field
K over S (thus Spec K — S). For our purposes it suffices to consider only affine
schemes S and elliptic modules defined by means of a trivial line bundle G alone.

Definition 3.1. Let S = Spec B be an affine scheme over A, thus we have a ring
homomorphism i : A — B. Let G, s = Spec B[z] be the additive group over S. (i)
An elliptic module of rank r over S is a ring homomorphism ¢ : A = End G, g =
B[r], a = @q, such that for any field K with a morphism s : Spec K — S (or
s : B = K), the homomorphism ¢, = sop : A — B[r] — K]Jr] is an elliptic
module of rank r over K. (ii) Let E, be the functor from the category of rings over
B (or affine schemes over S) to the category of A-modules, which associates to any
ring R over B the additive group of R, together with the A-structure aor = ¢, (r)
defined by ¢. A functor E is called elliptic if it is isomoprhic to some E.

Remark 3.1. A morphism P : E — E’ of elliptic functors E = E, and E' = E is
P in End G, s = B[r] with Py, = ¢, P for all a in A.

Let ¢ be an elliptic module over S. Then ¢, = > 1% b;(a)r® for each a in A.
Here the b;(a) lie in B, and bp(a) = i(a). Denote by B* the group of units in B.
Define v, on F* by v,(unr™) = —mlog, ¢ where u is a unit, m an integer.

Lemma 3.1. For each a in A we have (i) byy (q)(a) is a unit; (i) if i > rv,(a)
then b;(a) is nilpotent in B.

Proof. (i) If by, (a)(a) is not a unit then it lies in some maximal ideal m in B, and
the reduction of ¢ modulo m cannot be an elliptic module of rank r over the residue
field B/m; (i) follows. (4i) For each prime ideal 9 in B, the reduction of ¢ modulo
B is an elliptic module over the fraction field of the domain B/3. Consequently for
each i > rvy(a) we have that b;(a) lies in each prime ideal of B. Since the nilradical
of B, which is defined to be the set of all nilpotent elements in B, is equal to the
intersection of all prime ideals of B (see [?], Prop. 1.8, p. 5), (it) follows. O

Definition 3.2. (i) The element f = Y b;7" of B[] is called strictly of degree p™ if
its leading coefficient b,, is a unit. (#4) An elliptic module ¢ over S is called standard
if ¢, is strictly of degree |a|” for all @ in A. Namely b;(a) = 0 for i > rv,(a).

Proposition 3.2. (1) Every elliptic module is isomorphic to a standard module.
(2) Every automorphism of a standard module is linear.

Proof. We begin with two lemmas, and then deduce the proposition.

Lemma 3.3. Let f = > (b7 be an element of B[r| such that for some d > 0
we have that by is invertible and b; is nilpotent for i > d. Then there exists g =
1 +Zlf ¢;77 in B[7] such that the ¢; are nilpotent (hence g is invertible) and gfg~!
is strictly of degree d.
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Proof. We may assume that n > d. The ideal I generated by the nilpotent elements
b; (d < i < n) is nilpotent. Hence there is some j > 1 with I = {0}. In B’ = B/I?
we have I? = 0, and the degree of

Fr= (0= by T (= by P )

is less than n. Repeating this process with f; replacing f, where n is replaced by
the exponent n; < n of the highest power of 7 in f;, we obtain g; as in the lemma,
such that f/ = glfgfl is strictly of degree d over B/I?. Namely the coefficients
b, (d < i <mn)of f liein I?. Since I/ = {0} the lemma follows on repeating this
process (with I replaced by I?, I*, etc.). O

Lemma 3.4. Suppose that f; = Z?(:% bi;™ (i=1,2) and h = Z?:o h;T7 in Bl7]
satisfy foh = hf1, hq is either a unit or nilpotent # 0, d(1) > 0, and b; 4¢;) are
units. Then d(1) = d(2) and hg is a unit.

Remark 3.2. The proof below shows that the same conclusion is valid if the as-
sumption that: “hg is either a unit or nilpotent # 0” is replaced by “hg # 0 and
Spec B is connected”, i.e., B is not the direct product of two rings.

Proof. If hy is nilpotent, then it lies in a maximal ideal m of B, and we may
assume that hy lies in m*=! but not in m? for some 4 > 1. We then replace B by

B/m' to have m' = 0 and h2 = 0. The highest term in hf is hdbffd(l)Tder(l).
pd(l)

Hence d(2) > d(1), and hdbll’dd(l) = by ayhy . As h% =0 and b1,q(1) is invertible,
we deduce that hy = 0. This contradiction implies that h, is indeed a unit, and
d(1) = d(2). O

Proof of proposition. Consider a in A — F, and use (i) to produce g as in (i) such
that gp,g~ ! is strictly of degree |a|”. Then we define ¢} = gppg~! for all b in A.
Since both ¢ and ¢’ are elliptic modules, the leading coefficients of ¢, and ¢, are
either units or nilpotents. Since ¢/ ) = @), for all b, it follows from (ii) that
@y, is strictly of degree |b|". Hence ¢’ is a standard elliptic module. If P is an
endomorphism of ¢’ and Spec B is connected, then it follows from (ii) that there is
a nonnegative integer s such that P is strictly of degree s. If P is invertible then
s =0 and P is linear. The proposition follows. O

Let I # 0 be an ideal in A. Let &Y = E, be an elliptic functor of rank r over S.
Definition 3.3. Let E; = AnnI|E be the subfunctor of F annihilated by I.

Corollary 3.5. The annihilator E; of I in E is finite and flat as an affine group
scheme over S.

Proof. Up to isomorphism we may assume that £ = E, is a standard elliptic
functor. The affine group scheme underlying F is Spec B|z], and the subgroup
underlying E; corresponds to the ideal J = J; = (Zgipo(a) bj(a)z?’ (a € I)) in Blx],
namely it is Spec B[z]/J. Since E is standard, the leading coefficients b,., (4)(a) are
invertible in B. Let I’ be an ideal in A with I+1" = A and INI’ = (a) for some a # 0
in A (cf. (ii) in the proof of Theorem 2.4). Then Blx]/J;® Blz]/Jr = Blz]/(pa(x))
is finitely generated and free over B. Consequently Blz]/J; is finitely generated
and projective, hence locally free and flat, of rank |A/I|" over B. a
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Let K be a field over B. Then there is a homomorphism j : B — K whose kernel
my lies in Spec B. Let mp be an element of Spec B. A finite flat scheme Spec C
over Spec B is called étale over mp if for any separably (equivalently, algebraically)
closed field K over B with myx = mp we have that C ® g K is a direct product of
copies of K; the number of copies is equal to the rank of C' over B.

Definition 3.4. Let V(I) be the set of m in Spec A which contain the ideal I of
A.

Proposition 3.6. The affine group scheme underlying E; is étale overi~!(Spec A—
V(D).

Proof. Put C' = B[z]/J;. Fix any mp in Spec B with i(mp) 2 I. Since i(mp) is
prime in A, i(mp) 7 I¢ for all d > 1. The ideal class group of A is finite. Hence
there is some h > 1 such that I" = (a) is principal, so that i(a) does not lie in mzp.
Let K be a separably closed field over B, thus we have j : B — K, with myx = mp.
For any P(x) in Blz] we apply j : B — K to the coefficients of P(z) to obtain a
polynomial P(z) in K[z]. Since i(a) does not lie in mp = my, i(a) = j(i(a)) # 0,
and P, (z) is separable. Hence the principal ideal J; = (g,; b € I) in K[z] is
generated by a separable polynomial. But @, € Jr, so Jr is generated by a separable
polynomial. Consequently C ®p K = K[z]/J; is a direct product of copies of K,
and C is étale over mp for any mp in i~!(Spec A — V(I)), as required. O

Lemma 3.7. Let H C Spec B[X] be a finite flat closed subscheme of rank r over
Spec B. Then the ideal I defining H is principal, generated by a uniquely determined
monic polynomial h in B[X] of degree r.

Proof. Our assertion is equivalent to: Suppose H = Spec S, S = B[X]/I, is finite
and flat of rank  over B. Then 1, X, ..., X"~ ! is a basis of S over B.

Consider the natural morphism f: B" — S, f(ag,...,a,-1) = Z{z‘;ogi<r} a; X",
It is an isomorphism. To see this, we may pass to localizations. Thus we may
assume that B is a local ring. Then S is a free B-module of rank r. So it suffices
to show that f is surjective. By Nakayama’s lemma, we reduce to the case of f
modulo the maximal ideal of the local ring B, thus reducing to the case when B is
field. This case it is obvious.

Now X" is a linear combination 37 o<, .y a; X" of X, 0 < i < r, with coeffi-
cients in B, modulo I. Thus f = X" — Z{i;0§i<7‘} a; X" is a monic element of I.
Let g € B[X] be a nonzero element of I of lowest degree. The degree of g is at least
r. If not, 1, X, ..., X"~ ! are linearly dependent in S, that is, modulo I. Then
there is a monomial ¢ € B[X] such that g — ¢f has lower degree than that of g, and
g—qf €1, since g, f € I. Hence g = qf, and [ is principal, generated by f. O

Let ¢ : A — BJr] be an elliptic module of rank r over a ring B (or affine scheme
S = Spec B). Then E;(S), or E(B), is the A/I-module

Hom(S, E;) = Hom(B[z]/Jr,B) ={b € B;p.(b) =0 forall a € I}.
Definition 3.5. (1) A structure of level I on the elliptic functor E = E,, of rank
r over S = Spec B is an A-module homomorphism ¢ : (I71/A)" — E;(S) =
Spec Blz]/J; such that J; = (P(z)), P(z) = [[,e-1/a)-(x —¥(w)). Then Ej is
the kernel of the polynomial map P(z) = [[,c(a,n-(z —¥(w)), P: Go = G In
other words, _,c 4/ (¥(u)) is Ey as divisors on E.
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(2) Let F,.; be the covariant functor from the category R4 of rings B over A to
the category Set of sets, which assigns to the ring B the set of isomorphism classes
of elliptic modules ¢ : A — B[7] over B of rank r with a structure  : (I71/A)" —
E;(B) of level I. The functor F, ; is anti-equivalent to a contravariant functor, also
denoted by F,. ;, from the category S, of affine schemes over A to Set, defined by
F, 1(S)=F, (B) if S = SpecB.

(3) A covariant functor F : C — Set is called representable if there is an object
C' in the category C such that F(B) = Hom(C, B) for all B in C. A contravariant
functor F : C — Set is called representable if there is T'in C with F(S) = Hom(S,T)
for all S in C.

Remark 3.3. It is illuminating to describe the (scheme G, p = Spec B[z] over
S = Spec B which underlies the) functor E by a diagram

ES : fiber above s

EI =Spec B[x]/J |

section:
subscheme of

codimension 1

T T
S =Spec B
Base scheme = zero section

FIGURE 1

The sections v(u) may intersect only over the support i=1(V(I)) of I in S =
Spec B. If the image of S in Spec A does not intersect V' (I) then Ey is étale over S,
namely the sections ¥(u) : S — E; do not intersect, and the graph is as in Figure
2 below.

Our aim in Theorem 7?7 is to show that the functor F, ; is representable, for any
ideal I # 0 in A with [V(I)] > 2.

Let ¢ be an elliptic module of rank 7 over B with structure ¢ : (I71/A)" —
E;(S) C B of level I # 0. Suppose that m in Spec A contains I. Let mp be a
maximal ideal in B. Fix u # 0 in (m~!/A)". Recall that we have i : A — B.

Lemma 3.8. If (u) lies in mp then mp contains the image i(m) of m.

Proof. Denote the field B/mp by B. Let $: A — B[r] and ¢ : (I"'/A)" — B be
the elliptic module with level structure over B obtained on composing ¢, with
B — B. Suppose that 1(u) lies in mp, namely ¢(u) = 0 in B. If i(m) does
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)
)

x
)

FIGURE 2

not lie in mp then there is a in m with i(a) # 0. Hence g, is separable, and
Jm = (§,(z); b in m) is generated by a separable polynomial in B[z]. Hence the
restriction ¢ : (m~!/A)" — B of the level structure ¥ to (m~!/A)" is injective.
This contradicts the assumption that ¥ (u) = 0 for u # 0. Hence i(m) lies in
mpg. O

Suppose that there are my # mg in V(I). Fix u; # 0 in (mj_l/A)r.
Proposition 3.9. Put ug = uj +us. Then 1(ug) is a unit in B.

Proof. Let a be an element of A in ms such that a—1 lies in my. If ¢(ug) is not a unit
in B, then it lies in some maximal ideal mp of B. Since auy = u1 + (1 —a)uy + aus,
we have that ¥ (u1) = ¥(aug) = wat(ug) lies in mp. Lemma ?? implies that mp
contains i(mq). Similarly, mp contains i(mz); hence mp contains i(A), 15 and B.
This contradiction implies that ¥ (ug) is a unit in B, as required. ([

Theorem 3.10. Let I # 0 be an ideal in A such that V(I) contains more than
one element. Then the functor F, 1 is representable by an affine scheme M, =
Spec A, 1 of finite type over A.

Proof. (i) We claim that in each isomorphism class of elliptic modules ¢ over a ring
B over A, of rank 7, with structure v of level I, there is precisely one pair (¢, )
with standard ¢ and ¢ with ¥(ug) = 1. Indeed, (¢,%) and (¢’,v’) are isomorphic
if and only if there is a unit b in B with ¢!, = bp,b~! and ' = b for all a in
A. Hence F, 1 is the functor which associates to B the set of pairs (p,) with
’(/J(Uo) =1in B.

(ii) The ring A is finitely generated over F,. Hence there is an epimorphism
e: T =Fylt1,...,ts] = A, with kernel K. Let A; be the free ring A[b;;, b;, c(u)];
here 1 < i < s, 0 < j < rog(e(t;)), u ranges over (I71/A)". We will show that
there is an ideal Ky in A; such that F, ;(B) = Hom(A,/K;,B). To define Kj,
put ¢, = > b; (t;)771°8» 7 where b;(t;) = b;j, and extend ¢ to a homomorphism
0T — Aifr], t = @ = 3, bi(t)71°%0 7 (0 < i < rvg(e(t))). Let K be the ideal
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in A; generated by the relations implied by the following identities. (1) ¢; = 0 for
t in Kv (2) biO =1 (1 <@ < 5); (3) bibrvq(e(ti))(ti) =1 (1 <1< S); (4) C(O) = 07
c(ug) = 1, c(u+v) = c(u) +c(v) for all u,v in (I71/A)"; (5) @i(c(u)) = c(e(t)u) for
each ¢t in T and u in (I71/A)"; (6) the ideal J; = (¢1(z); t in T with e(t) in I) in
A [z] (here 7(z) = 2P) is equal to ([ ], (z—c(u))). It is clear that there is a bijection
between the sets F, ;(B) and Hom(A; /K, B) for every ring B over A. Hence the
ring A, 1 = A;1/K; represents the functor I, ;. Since A; is finitely generated, the
theorem follows. O

Definition 3.6. The elliptic module ¢ : A — A, ;[7] with level structure % :
(I7'/A)" — E;(A,;) in F, (A1) = Hom(A, 1, A, 1), which corresponds to the
identity map A, 1 — A, , is called the universal elliptic module with a structure of
level I. It has the form ¢, = >, b;(a)7"°5» 9 and 1 (u) = ¢(u) for a in A and u in
(I71/A)", where b;(a) and ¢(u) denote the image of b;(a) and c(u) in A, ; = A;/K;.

Lemma 3.11. Let (p,%) be the universal elliptic module of rank r with structure
of level I. Then the map 1 : (I71/A)" — A, 1 is injective.

Proof. We have to show that if u # 0 in (I7!/A)" then ¢(u) # 0 in A, ;. If ¢(u) =0
then relation (6) implies that 2?2 divides o, (z) for all @ in I. But this is impossible
since the homomorphism by : A — A, ; is injective, and ¢, (x) = bo(a)x+ terms of
higher degree. t

Lemma 3.12. Let ¢ : A — BJ[r| be an elliptic module, I' O I # 0 ideals in A with
V()] > 2, and v : (I"*/A)" — E;(B) an I-level structure. Then the restriction
of ¥ to (I'"Y/A)" is an I'-level structure on the elliptic module .

Proof. It suffices to prove the lemma when B = A, ; and (p,) is the universal
elliptic module with an I-level structure. The ideal J; divides the ideal J;, and
(by (6)) Jy is generated by the separable polynomial [],(z — ¢ (u)), uwin (I7!/A)".
The relation (5) in (i) of the proof of Theorem ?? implies that for each w in

(I'"1/A)" we have that o, (1 (u)) = 0, for every a in I'; moreover, for each u
in (I7*/A)" — (I'"Y/A)" there is a in I’ — I such that ¢,(¢)(u)) # 0. Hence
Jr =1, (z —¥(u));ue (I'"'/A)"), and the lemma follows. O

Definition 3.7. A homomorphism B — B’ of rings is called separable if every
element of B’ is separable over the image of B.

Proposition 3.13. Let I' D I # 0 be two ideals in A with [V(I')] > 2. Then the
natural map A, p — A, 1 is separable, finite and flat.

Proof. The ring A, ; is generated over A, ;; by the elements c¢(u), where v ranges
over (I71/A)" — (I'"1/A)". These c(u) satisfy the relations (4), (5), (6) in (ii) of
the proof of Theorem ??. In particular, for any a # 0 in I, (5) implies that

rvg(a)

0 = c(au) = galc(w) = > bi(a)e(u)” .
=0

Since by : A — A, 1 is injective, the map A, ;» — A, ; is separable. The relation (3)
implies that the leading coefficient b,.,, (4)(a) is invertible in A;. As in the proof of
Corollary 77, this implies that A, ; is a flat A, ;-module of finite rank. The rank
is bounded by the product of the number of generators ¢(u) (which is bounded by
|A/II" —|A/T'|"), and |a|", for any a # 0 in I. The proposition follows. O



28 YUVAL Z. FLICKER

Definition 3.8. (i) Put A, = limA,. 7; the direct limit is defined by means of the
transition maps A, — A,y for I’ D I # 0. (i3) Put M, = Spec A, = h&anI’
where M, 1 = Spec A, ;. (iti) Let F, be the functor @FM, which associates to
the ring B over A the set ]'&nFnI(B) = @Hom(AM,B). The transition maps

F, 1(B) = F, ;/(B) are given by mapping (¢, ) to (¢,’), where ¢’ is the restric-
tion of ¢ : (I71/A)" — E,(B) to (I' "1 /A)".

Corollary 3.14. (i) The functor T, is represented by the ring A, (and scheme
M,). (it) The functor F, associates to the scheme S = Spec B over A the set of
isomorphism classes of elliptic modules p over B of rank r with a structure of all
levels, namely an A-module homomorphism v : (F/A)" — E(S) = B such that for
any ideal T # 0 in A the restriction ¢ : (I71JA)" — E;(S) of ¥ to (I71/A)" is a
structure of level I.

Proof. This follows from the definitions. (I

Let A denote the ring of adeles of F. It consists of all sequences (x,;w € |C|)
with z,, in Fy, for all closed points w of C, and z,, in A,, for almost all w. Here |C| is
the set of closed points of C'. Addition and multiplication are componentwise. The
topology on A is defined by making a fundamental system of (open) neighborhoods
of the identity consist of HwGV Ny X Hw¢v A, where V ranges over all finite
subsets of the set |C|, and N,, is a (open) neighborhood of zero in Fy,. Then A is
a locally compact ring.

For any r > 1, let GL(r, F,,) denote the topological group of r x r invertible
matrices with entries in F,,,, and GL(r, A,,) the group of r X r matrices with entries
in A, and determinant in AY. By GL(r, A) denote the group of sequences (g,, in
GL(r, Fy); w in |C|), with g,, in GL(r, A,,) for all but finitely many points w.

The topology on GL(r, A) is defined by a system [, e Nuw X [[, ¢y GL(r, Aw)
of neighborhoods of the identity, where V' is finite and N,, is a neighborhood of 1
in GL(r, F,,). Then GL(r,A) is a locally compact group. The group GL(1,A) is
called the group of ideles; it is denoted by A*, being the multiplicative group of
A. The ring of finite adeles Ay and the groups GL(r,Ay) are defined analogously
on replacing the set C' by the set Spec A = C — {o0}, namely on omitting the
component at the place co. The set F' is dense in Ay, F'* is discrete in A;, and

F*X\A} is compact.

Let A denote the compact open subring [], A, (w in Spec A) of Af. Since
(F/A)" =11, (Fuw/Aw)", the group GL(r, A) = 1, GL(r, Ay) is equal to the group
Aut4(F/A)" of automorphisms of (F/A)". The matrix g in GL(r,A) is the au-
tomorphism of multiplication by g. Hence GL(r, E) acts on (F/A)", and on the
functor F,., by mapping (¢, ) to (p,¢og).

Proposition 3.15. There is an action of GL(r,Ay) on F, extending the action of
GL(r, A).

Proof. (i) Let M(r) denote the algebra of r x r matrices. The semigroup G; =
GL(r,Af) N M (r, A) has the property that GL(r, Ay) = F*G,. We shall define an
action of G1 on F, which is trivial on F'* NGy = A—{0}, thereby defining an action
of GL(r,Ay) on F, which is trivial on F'*. Thus, for each g in G; and a ring B over
A, we have to construct a map p(g) : F,.(B) — F,.(B), such that p(gg’) = p(9)p(g’)

for all g,¢’ in G1. Let ¢ : A — BJ[r] be an elliptic module of rank r over B, with
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a level structure ¢ : (F/A)" — E(S) = B. We shall now construct a new pair
(p(9)(p,¥) = (¢ = gp, ' = gib). Tt suffices to deal—as we now do—with the
case where B = A,, and (p,%) is the universal elliptic module with a structure of
all levels.

(ii) Multiplication by ¢ defines an epimorphism g : (F/A)" — (F/A)" with
a finite kernel H. Consider the polynomial Py (z) = [],cpy(® — ¥(h)) in Blz].
Let H' denote the kernel of the restriction ¢|H of ¢ to H. Put H" = H/H'.
Then ¢|H factorizes through ¢ : H” — B, and Py (z) = [],cpyn(z — " (R))H']
The values ¢”(h) are distinct. Since aH C H for each a in A, we have that
Pr(¢q(b)) =0 for any b in B with Py (b) = 0. Hence Py (z) divides Py (pq(z)) =

e (@alm) — 9" (h))H]

Lemma 3.16. Let P(x), ®(x) be additive polynomials in Blz] such that (1) P(x)
divides ®(x); (2) P(x) is separable; (3) ®(x) splits as a product of linear factors
over B. Then there is an additive polynomial Q(x) in Blx] with ®(x) = Q(P(x)).

Proof. This is the same as the proof of Lemma ?7. O

Applying Lemma ?? with P(z) = Pg(x) and ®(x) = Pgy(p.(x)), we con-
clude that there exists an additive polynomial ¢/ (z) in B[z] with ¢, (Pg(x)) =
Pr(¢a(x)). Tt is clear that ¢’ : A — BJ[7], a — ¢, is an elliptic module of rank r
over B. Put E' = E/, and g¢ = ¢’. Then there is a map ¢’ : (F/A)" — E'(S) =B
which makes commutative the diagram

0 - H — (F/A" % (F/A" = 0
Vi vl L

0 = oH) — EB) 5 FEB — 0

Since v is injective, so is v’; hence 1’ is a level structure. Put g3 for 1)’. Since
(¢, 1) is the universal elliptic module, for each ring B over A we can associate to
any g in Gy the map p(g) : F.(B) — F,.(B) which takes the elliptic module ¢ with
level structure ¥ to the pair (¢’ = g, v’ = g1b). Since p(gg’) = p(g)p(g’) for all g,
g’ in G4, this defines an action of G1 on the functor F,.

(iii) If g = a is a scalar matrix in A — {0}, then the definition of the level structure
¥ implies that (Pg(z)) = (pa(z)) in Blz]. Hence there is b in B* with ¢, (z) =
bPg (z). Since p,pa = arpq for any a’ in A, we have Pgo, = b~ tp,bPy for every
a in A, hence ¢/, = b~ 1¢,b, and the elliptic module ¢’ is isomorphic to ¢. Hence
the elements of A — {0} act trivially on the functor F,., and we obtain an action of
GL(r,Ay)/F* on F,; the proposition follows. O

Remark 3.4. The action of GL(r,Ay)/F* on I, induces an action of this group on
the ring A, and the scheme M,. = Spec A,..

Let I # 0 be an ideal in A.

Definition 3.9. (i) The congruence subgroup U; of GL(r, A\) is the group of all g
in GL(r, A\) with g — 1 in M (r, IA\) (#4) If U is a group which acts on a ring B then
we write BY for the ring of b in B fixed by U. (4ii) If U is a group which acts on
an affine scheme M then we write U\M for the quotient of M by the action of U.

Remark 3.5. (i) U; is an open compact subgroup of GL(r,A). (i) U;\M, is an
affine scheme which is equal to Spec AY7.
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Definition 3.10. A domain B is called normal if it is integrally closed in its fraction
field, equivalently, if its localization By at each of its prime ideals B is an integrally
closed domain, i.e., normal. A ring B is normal if By is a normal domain for every
prime ideal ¥ of B. A Noetherian normal ring is a finite direct product of normal
domains.

Lemma 3.17. Let B — C be a finite separable homomorphism of rings over Fp,.
Suppose the ring B is normal, and (x) Hom(C, K') — Hom(B, K) is an isomorphism
for every algebraically closed field K. Then B — C' is an isomorphism.

Proof. Without loss of generality we may assume that B and C are domains. Let
B’, C’ denote the fraction fields of B, C. Since B’ — (' is separable, (x) implies
that B" — C" is an isomorphism. In particular, B — C is injective. Since B — C
is finite, C is integral over B. Hence C lies in the integral closure of B in B’. Since
B is normal we have that B = C, as required. (]

Remark 3.6. In the next proposition we use the fact that for I # 0 with [V (I)] > 2,
the ring A, r is normal. The proof, which involves techniques independent of section
4 and Chapters II-IV, is given in [?], sections 1, 4 and 5C).

Proposition 3.18. The ring A, is equal to AYT for I # 0 with [V(I)] > 2.
Equivalently, the scheme Ur\M, = Spec AUT is equal to M, ;.

Proof. We have to show that A, ; = AEIJ for any 0 # J C I in A. In view of
Lemma 7?7 it suffices to show that for an}; algebraically closed field K the natural
map Horn(ATUf]7 K) — Hom(A, 1, K) is an isomorphism. This map takes the elliptic
module ¢ : A — K|[7] with a structure ¢ of level J, to the pair (¢, v’), where ¢’ is
the restriction of ¢ to (I7'/A)". To construct an inverse to this map we need to
extend a structure v’ of level I to a structure 1 of level J. This can be done since
K is algebraically closed, and the proposition follows. (I

For any v in Spec A we make the following

Definition 3.11. (1) Let M, , = M, Xgpec a Spec(A/v) be the fiber of M, at v.
(2) Let My 1 = My 1 Xspec 4 Spec(A/v) = (Ur\M;) Xspec 4 Spec(A/v) = U\ M, .,
be the fiber of M, 1 at v.

Remark 3.7. The affine scheme M, , represents the functor F, ,, which is the re-
striction of the functor F, to the category of rings B over A/v, namely rings B
over A with characteristic v. In particular, the set F,.,(B) consists of pairs (¢, ¥),
where ¢ is an elliptic module of characteristic v.
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4. COVERING SCHEMES

The group GL(r,Ay) acts (by Proposition ??) on the moduli scheme M, =
Spec A, = @MT’ 1 constructed in Theorem ?7?. The central group F'* acts trivially.

In this section we construct a covering scheme Mr of M, for which the action of
GL(r, Ay) extends nontrivially to an action of (GL(r,Af) x DX)/F*, where Dy,
is a division algebra of rank r over Fi.

As in section 1 we have F, co, A, and we let F, be the completion of F at
00, Ay the ring of integers in Fi., My the maximal ideal of Ay, T = T a local
uniformizer, ¢ = ¢, the cardinality of Ay /Mmoo, |-|] = |.|co the absolute value on
F. which is normalized by |r| = ¢~ ! (equivalently |a| = |A/aA| for a # 0 in A).
Put vpy(a) = log, |a| for a € . Then v,(m) = —log, g. Note that AN As, consists
of the constant functions on C (thus AN Ay, = Fy if FF = F(C) as in section 1).
Moreover, Fo, is Fy((m)). As usual, given a ring B of characteristic p we denote by
BJr] the ring generated by 7 over B subject to the relations 7b = b?7 for all b in B.

A reduced ring B is called perfect if for each b in B there exists a (necessarily
unique) x in B with 2 = b. Equivalently, the Frobenius homomorphism from B to
B, by x +— 2P, is an isomorphism. Let B be a perfect ring. Then for each b in B
there exists a unique ¥ ' in B.

Definition 4.1. (1) Let B((77!)) be the ring of formal Laurent series > . “5 b;7°
with coefficients b; in B, N in Z, and multiplication

(wa) S b | =S b e
i J 2

(2) Let B[[7~!]] be the subring of formal Taylor series in 7=1 (thus N < 0).
(3) The ring B((77!)) is a topological ring, where a system of open neighborhoods
of 0 is given by 7 /B[[r71]] (j > 0).

Let ¢ : A — B[7] be a standard elliptic module of rank r over a perfect ring B
over A.

Lemma 4.1. The elliptic module ¢ extends uniquely to a continuous ring homo-
morphism ¢ : Foo — B((771)).

Proof. The homomorphism ¢ extends uniquely to a homomorphism ¢ : F —
B((77!)) such that for each a in F we have ¢, = >, bi(a)7", where N = rv,(a)
and by (a) is invertible. In particular, for each ¢t > 0 the image of F' N'm!_ lies in
77!B[[r7!]] (when t = 0, we put m%, = mY, for A). Hence ¢ extends to Fo, by
continuity, and the lemma follows. ([

Corollary 4.2. The ring B contains a copy of Fy.

Proof. We have F, =F,((m)), and Fy = A /mo, embeds in B{[7]]/7'B[[7']] = B,
where 7/ = 77 (™), O

As usual, we denote the algebraic closure of ), by Fp.

Definition 4.2. Let ¢’ : Fyo — Fp((77')) be the ring homomorphism over F,
defined by ¢ = 7™,
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Remark 4.1. (1) Recall that v,(m) = —log,q. (2) Since Foo = Fy((m)), ¢’ is
uniquely determined by its value at w. (3) For any a # 0 in F, the leading
coefficient by (a) of ¢/, = > "y bi(a)7® has index N = rv,(a). In fact, all homo-
morphisms ¢” : Foy — F,((771)) such that the dominant term in ¢!/ has degree
la|” = p"»(@) for all a in A, are conjugate by an inner automorphism of F,((771));
¢’ can be chosen to be any of these ¢”.

Lemma 4.3. The centralizer Do, of the image F, (7)) of ¢' in F,((771)) is
a division algebra of rank r central over F.

Proof. The centralizer Do, is equal to F,-((%»(™)). It is a division algebra, whose
center is the field F, (77 (™)) = F,((¢})) =~ Fu, as asserted. O

Remark 4.2. The invariant of the division algebra Do, over Fy, is —1/r.

Let B be a perfect A-algebra, and ¢ : F,, — B((77!)) the homomorphism of
Lemma 4.1.

Definition 4.3. Let G, be the functor from the category of perfect B-algebras C' to
the category of sets, which associates to C' the set of pairs (A, u). Here A : Fpr — C
is a homomorphism, which defines a homomorphism A, : Fy-((771)) — C((r71))
by its action on the coefficients, and u is an element in C[[r!]] with an invertible
constant term, such that up, = A (¢!,)u for all a in F.

Let Fr denote the Frobenius endomorphism = + xP of Fp, in particular of Fg-.
Let det : DY, — F denote the reduced norm on D, and put v,(g) = log, | det g
for g in DX. Then v,(g) = v,(det g), and T, (7%»™)) = T, (1) = v, (") = rv, ().
Lemma 4.4. The multiplicative group DX of the division algebra Do, acts on the
functor G, as follows: g in DX, maps (A, u) in G,(C) to

g\ u) = (Ao Fr", 7" A (g)u),
mop(™) of DX acts trivially.
Proof. We have to check that g(\,u) lies in G,(C). Since

n / __ n /I _n
TP, = Fr" o, T

where n = —vy(g). The element T

and g lies in the centralizer Do, of ¢'(Fx), we have

(Ao Fr)ugq [T Au(9)ul = Au(T700) A (9)u = T Au(9)As (@ )u = [T Au(9)ula
for all @ in Fi, as required. It is clear that D acts on G, namely (gh)(\, u) =
g(h(\w)). Since 77%(™) acts trivially on Fy-, it acts trivially on G.,. O
Remark 4.3. (1) Lemma ?7 establishes an action of DX /() on G,,.

(2) The element ® = 7'°8» 7 of DX satisfies U, (®) = log, ¢, and it acts by ®(\,u) =
(A-Fr 989 4). Let Dy be the kernel of the map @, : DX, — Z. Then g in Dy acts
on G, (C) by g(Au) = (A, A(9)u). The group DX is generated by ® over Dy.

Let ¢ : A — B[7] be another elliptic module of rank r over B. Let h = Y " b,
in B[7] be an isogeny from ¢ to ¥ of degree m; thus hy, = ¥,h for all a in A, and
the leading coefficient b,,, of h is invertible. Hence h is invertible in B((7~1)).

Lemma 4.5. The morphism h, : G, — Gy which, for each perfect B-algebra C,
maps the element (A, u) in G,(C) to ho(\ u) = (AoFr™, 7muh™1) in Gy (C), is an
isomorphism of functors. Moreover, h, commutes with the action of DX .
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Proof. To verify the last claim, note that 7™\, (g) = (A o Fr™).(g)7™ for all ¢ in
DX. O
Definition 4.4. Let j be a positive integer. The congruence subgroup D; of DZ
consists of all elements of the form 1+ 37, - bR (™) in D, = F . ((192(M)).

Remark 4.4. Each congruence subgroup is normal, compact and open in DX . It
has a finite index in DX /(mr).

Theorem 4.6. (i) The functor G, is representable by a (perfect) ring B over B.
(i) The stabilizer in DX of any element ofIE contains a congruence subgroup.
(7i1) Let Uy be a congruence subgroup, and BU= the subring of@ fized by the action
of Uso. Then SpecI@IgUc>o is a finite flat étale Galois covering of SpecB with Galois
group DZ /Uso(T).

Proof. (i) Let B be the quotient of the free ring Bly,c;(i > —1)] by the ideal
generated by the following relations. The first relation is (1) cpe—1 = 1. To state
the second, let P(x) be an irreducible polynomial over F, whose splitting field is
Fgr. The second relation is: (2) P(y) = 0. For the third relation, note that we have
amap A : F,r — By, sending a generator of Fyr over F, toy. Put u =3 ¢;7"
The remaining relations are obtained on equating, for each i in Z, the coefficients
of 7% in each of the identities (3) upa, = A\i(@})u, for each a in F. It is clear that

B represents G, once we show the following
Lemma 4.7. The ring B is a perfect ring.

Proof. It suffices to show that B is reduced and that each of the generators ¢; is
a pth power in B. We shall use the identity ug, = A\ (¢} )u, with a = 7=, Then
@ =T1"1% 9 and @ = > i>0b; (m)7 i1, 4 Equating the coefficients of 777

in
g T = u = 7718 Yy, = 7718 4 E T " g b(m)r—I—rlospa
i>0 >0 7>0
_E:Cqb q/pT (i+5),
1,520

we conclude that each ¢; is a pth power in IE, since

Ci—< Z Ckbj(ﬂ)p_j>qr.

jk=i
But these are the only relations among the ¢;. Hence B is reduced and the lemma
follows. 0

(ii) The group DZ acts on the functor G, hence on the perfect ring B. The
normal subgroup Dy acts trivially on y. If j > 0 then the element 1 + 777 of DX
has 0,(1 4+ 777) = 0. It acts by

u—Zcz T (L4 U_ZCZT —&-Zcz—kcp

>0 0<i<y i>]

Namely 1 4+ 777 maps ¢; to ¢; if 0 < i < j, and to ¢; + cf’:; if ¢ > j. Similarly we
have that each element of the congruence subgroup D; acts trivially on ¢; for 4 in
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0 <i < j. Now every element b of B is a polynomial in only finitely many ¢;’s, say
0 << j, over Bly], and it is stabilized by Dj.

(iii) Denote by B; the image of By, ¢;(i < j)] in B, where j > 0. If Uy, =
then BV~ is equal to B;. The coefficient by(7) of ¢, defined in the proof of Lemma
??, is a unit in B. Hence the last displayed formula (for ¢;) in the proof of Lemma
7?7 implies that B,1; is a free B;-module (j > 0), and By is a free Bly]/(P(y))-
module, of finite rank (bounded by ¢" in all cases). Consequently B; is a finite flat
B-module.

To show that B; is étale over B we shall now show that B; is étale over B;_; for
all ¢ > 1 (and By over Bly]/(P(y))). Thus let K be a separably closed field over
B;_1. We have a homomorphism h : B;_; — K. Applying h to the last displayed
formula (for ¢;) in the proof of Lemma ?? we obtain a separable equation for ¢;
over K. Hence B; ®p, , K is a direct product of copies of K, and B; is indeed étale
over B;_1, as required. Since DX /Uy (m) acts on B; = = BU~ without fixed points,
BU= is a finite étale Galois covering of B, with Galois group DX X JUso(m), and the
theorem follows. O

To formulate the following proposition we recall
Definition 4.5. A ring homomorphism D — D is called radical if for each alge-
braically closed field K the homomorphism Hom(D, K') — Hom(D, K) is injective.
Equivalently, SpecID — Spec D is universally injective.

Remark 4.5. See [?], 1. (3.7.2) and (3.7.1) for equivalent definitions.

Proposition 4.8. Let D — I be a flat radical homomorphism such that SpecD —
Spec D is surjective. Then the categories of étale covers of D and D are equivalent.

Proof. See [?], Exp. IX, Cor. 4.11, p. 241. O

We can now construct the covering scheme Mr. Recall that M,. = Spec B, where
B = A, is a Noetherian ring over A. Denote by (¢, ) the universal elliptic module
of rank r with its level structure. Let B = l'ganfn be the perfect closure of B.
Theorem 7?7 constructs a B-algebra B with an action of D> % /{m). For any congru-
ence subgroup Uy, in DX, the B-subalgebra BU~ of B stabilized by Uy is étale
over B with Galois group D X JUso{m). It is easy to check that the homomorphism
B — B is radical, and flat. The morphism SpecB — Spec B is onto since the
radical m = lignmp% of the prime ideal m in Spec B is a prime ideal of B with
m N B = m. Hence we can make the
Definition 4.6. (i) Let BU= be the étale B- algebra which corresponds to BV~
by Proposition ?7 and the homomorphism B — B. (#i) Put MnU = Spec BUs,

IEBUOo and M = SpecB L rUos

Remark 4.6. (1) The ring BU= is an étale cover of B with Galois group D> 20/ Uso(m).
(2) We have MTU = OO\M In sections 5 and 9 we need to use only MT’UOO,
and not M, .

The group F* embeds diagonally in (Us,\DZ) x GL(r,Af).
Proposition 4.9. The actions of Lemma 7?7 and Definition 77 define an action
of (Uss\DZ) x GL(r,Ay))/F* on UOO\]\/Z,. for each normal open subgroup Uy, of
DX of finite index; equivalently, of (DX x GL(r,Ayf)) /F* on M,
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Proof. (i) The action of DX on the functor G, in Lemma ?7? defines an action of
DX on the B-algebra B and B-algebra §7 hence an action on MT. On the other
hand, GL(r, Ag)NM (r, X) acts on the functor F, which is represented by the scheme
M, = Spec B. As in Proposition ??, g in GL(r,Ay) N M(r, E) defines an isogeny
from the universal elliptic module ¢ over B, to gy. This defines (by Theorem ?7?)
an action g, on the functor G, which commutes—by Lemma ?7—with the action

of DX on M,. In particular g lifts to an endomorphism of MT.
(ii) For each a # 0 in A, the elements (1) a of GL(r,Af), and (2) a=' of

DX, acts on M, in the same way. Indeed, (1) if s = ¢,, then m = rvy(a) and
se(Au) = (Ao Fror(@ zrop(@yp-1). (2) via A — {0} < F* < FX < DX,
a maps to ). Since |dety)| = la|l,, we have n = —rv,(a), and a(\,u) =

(Ao Fr=mo(@) z=rup(a) X (! Yu). Since A, (¢, )up;! = u, the composition of these
two maps is the identity.

(i) We obtained an action of [GL(r,As) N M(r, A)] % DX, such that for each
a # 0 in A, the diagonal element (a,a) acts trivially. Hence we obtain an action of
GL(r,Ay) x DX, where F'* acts trivially, as required. O
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Part 2. Hecke correspondences

In this part and in parts 3 and 4 we study some relations between two natural
actions—of a Galois group and of a Hecke algebra—on /-adic cohomology groups
with compact support and coefficients in a Q,-sheaf L(p), attached to the geometric
generic fiber M, 1 ®4 F of the moduli scheme M, 1 constructed in part 1, section
3. We present two approaches. That of part 2, section 5.2, is based on congruence
relations and Hecke correspondences. That of part 4 is an application of the trace
formula. The sections 6-8 of part 3 develop the tools needed for the comparison
in sections 9-10 of part 4 of the Grothendieck-Lefschetz fixed point formula with
the Selberg trace formula. We begin with a summary (in subsection 5.1) of those
properties of the f-adic cohomology groups with compact support which we need
in order to state—and use in the proof of—our main theorems in sections 5, 9, 10.
The main application of the theory of congruence relations is given in Theorem
?7?, which asserts that if 7¢ X ¢ is an irreducible G(Ay) x Gal(F/F)-subquotient
of Hi(M,; xa F,L(p)), then for almost all v each eigenvalue of the geometric

Frobenius endomorphism o(Fr, x1) at v is the product by ql(,T_l)/ 2 of a Hecke
eigenvalue of the component 7, of 7 at v. Consequently o(Fr, x1) has at most r
distinct eigenvalues.

5. DELIGNE’S CONJECTURE AND CONGRUENCE RELATIONS

5.1. ¢-adic cohomology. In this subsection (5.1) we summarize some properties
of the étale cohomology groups with compact support needed for our study of the
action of the Hecke operators and the Galois group on them. This is a rather
selective summary, and not a complete exposition. For an introductory textbook
to the subject see [?]. The shorter exposition of [?]; Arcata, Rapport; is very useful,
and so are the fundamental results of [?], Exp. XVII, XVIII; and [?]; Exp. IIL
5.1.1 Throughout this section, by a scheme we mean a separated scheme of finite
type over a scheme S. Basic definitions now follow. An étale covering of a scheme U
is a finite set g; : Z; — U of étale morphisms with U = U;g;(Z;). The (small) étale
site Xg¢ of X is the category whose objects are all the étale morphisms f: U — X,
and whose morphisms are the étale morphisms U — U’ over X, together with the
étale topology, which is defined to be the Grothendieck topology (see [?], p. 15), in
which the coverings of U are the étale coverings. A sheaf (resp. of sets) on the site
Xt is a contravariant functor from the category underlying X¢; to the category of
abelian groups (resp. sets) which satisfies standard axioms (see [?], p. 49). The
sheaves on X make a category (see [?], p. 50).

The simplest example of a sheaf (resp. of sets) on Xg is the constant sheaf
Nx associated to a finite abelian group (resp. finite set) N. The constant sheaf
Nx assigns to each étale morphism g : Z — X the abelian group (resp. set)
Hom(Z, N) = N™(%): here m(Z) is the finite set of connected components of Z.
Denote by Homx (Z, N x X) the group (resp. set) of morphisms Z — N x X whose
composition with the projection NV x X — X on the second factor is the morphism
g:Z — X. Then Hom(Z,N) = Homx (Z, N x X). This suggests the following
definition of a locally constant sheaf.

5.1.2 Let Y — X be a finite étale morphism. Then Z — Yx(Z) = Homx(Z,Y)
defines a sheaf Yx of sets on the étale site Xg. The sheaf of set Yx is a sheaf if
Y is an abelian group scheme. A locally constant sheaf on Xy is a sheaf which is
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locally constant, namely it is of the form Yx. A sheaf L on X is locally constant
if and only if (see [?], p. 155) there is an étale covering Z; — X of X such that the
restriction L|Z; of L to the étale site Z; ¢ of Z; is constant for all 4. If Y — X and
Y’ — X are finite and étale then we have Homx (Y,Y”’) = Hom(Yx, Y% ), the later
Hom is taken in the category of sheaves on Xg;.

Remark 5.1. Our definition of “locally constant sheaf” is the same as that of a
“locally constant sheaf with finite stalks” in [?], p. 155.

Example 5.1. Let K be a field of characteristic p > 0. Let n be a positive integer
with (p,n) = 1. Let X =Y be the affine group scheme G,, x = Spec K[z,z7].
Then the morphism Y — X defined by z — 2" is étale, since (n,p) = 1, and we
obtain a locally constant sheaf Yy on X¢. Let N be the group of n'” roots of unity
in the multiplicative group K* of K. We claim that the restriction of Yx to the
étale covering {Z — X} = {Y — X} of X is the constant sheaf defined by N.
Indeed,

ZxxY=YxxY=A{(zy);z"=y"}={(2,0);2€Z,(eN}=ZxN

defines a constant sheaf on Zg.

5.1.3 Let X be a scheme, S(X) the category of sheaves on X, and f: X' — X
a morphism of schemes. For any sheaf L in S(X’) define the direct image f.L of
Lby (f«L)(Z) = L(Z xx X') for any Z in X¢. Then f.L is a sheaf in S(X) (see
[?], p- 59). Moreover, f. : S(X’) — S(X) is a functor which is exact if f is a
finite morphism, for example, a closed immersion (see [?], p. 72). If L is the locally
constant sheaf Yy defined by the finite étale morphism ¥ — X' and f: X' — X
is finite étale, then the direct image f,Yx is locally constant, defined by the finite
étale morphism Y — X’ — X. Indeed,

(f*YX/)(Z) = HOII’IX/(Z Xx XI,Y) = HomX(Z, Y) = Yx(Z)

The direct image functor f, : S(X’) — S(X) has a left adjoint functor (see [?], p.
68) which is denoted by f* : S(X) — S(X’) and called the inverse image functor.
Thus f* is the unique functor which satisfies

Hom(f*L,L') = Hom(L, f.L') (L € S(X),L" € S(X")).

If Yx is a locally constant sheaf on X, then its inverse image f*Yx is the locally
constant sheaf Y%, on X’ defined by the finite étale morphism V' =Y x x X’ — X’;
indeed, Homx-(Z',Y') = Homx(Z',Y). If f is finite and étale then the inverse
image f*Yx is the restriction of the sheaf Yx from the étale site X¢; to X/,. Hence
for all L in S(X) we define the restriction L| X’ of L to X’ to be f*L.

The direct image of a locally constant sheaf is not necessarily locally constant
when f is not finite étale. A sheaf L on X is called constructible (see [?], p. 161)
if every irreducible Zariski closed subscheme Z of X contains a nonempty open
subscheme U such that the restriction L|U of L to the étale site of U is locally
constant. Equivalently L is called constructible if X is the union of locally closed
subschemes U; such that each L|U; is locally constant. If f is a proper (in particular
a finite) morphism, and L’ is a constructible (in particular locally constant) sheaf
on X', then the sheaf f,L’ is constructible (see [?], p. 223).

5.1.4 Fix a prime £ # p. A Zy-sheaf . on X is defined to be a projective system
of constructible sheaves L,, of Z/¢"Z-modules such that the transition morphisms
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L, — L, _, factorize via the isomorphism
Ln®g/emz L/ 'L S Ly for all n;

see [?], p. 163. The Z,-sheaf L is called smooth if the L, are locally constant.
We also introduce the category of (smooth) Q-sheaves to be the category whose
objects are the (smooth) Zs-sheaves, and whose morphisms are given by

Hom(L ® Q;, L’ ® Q) = Hom(L,L") ® Qp.
Here L ® Q; denotes the Zg-sheaf L viewed as a Qg-sheaf. If no confusion is likely
to occur we write “Q-sheaf L.” for L® Q. The fiber of L& Q, at a geometric point
T of X is defined to be
(L®Q)z =Lz ®z, Q.

Example 5.2. The scheme Y, = G,,, x with the morphism p,, : ¥;, = X = G,,, x
given by p,(z) = z¢" defines a locally constant sheaf L, which is locally (in the
étale topology) isomorphic to Z/¢"Z (since Y,, x x Y;, = Y,, X Z/¢"Z). The transition
morphisms £ : Y, — Y,,_1, z — ¢, define a smooth sheaf L.

In this work we shall be interested mainly in the following fundamental

Example 5.3. Let X be a scheme, X a finite étale Galois covering of X with Galois
group m = m(X/X), and p : m — Aut Q! an irreducible (finite dimensional)
representation. Since 7y is finite, in particular compact, p factorizes through o
m — Aut Z!. Then m acts on X x (Z/¢"Z)" by g(T,v) = (97, p'(g9)v). The quotient
Y., has the property that the natural projection p, : Y, — X is finite and étale.
Locally, in the étale topology, Y, is a trivial bundle with fiber (Z/¢"Z)*. The
projective system LL(p), of locally constant sheaves L, = Y, x of Z/¢"Z-modules
defined by the morphisms p,, : Y,, — X, is a smooth Z,-sheaf.
Suppose that G is a topological group with the property that the direct product

G x m acts on X. Then G acts on X, and we assume (in our example) that
G acts on X without fixed points. Fix n, put Y for Y;, and L for the locally
constant sheaf determined by Y. Let U be an open subgroup of G, put Xy for
U\X, and Ly for the locally constant sheaf on (the étale site of) Xy defined by
Yy = U\Y (= m\[(U\X) x (Z/¢"Z)!]). Let g be an element of G. Then there are
morphisms

h:UNg *Ug\X — U\X (quotient by U),

f:UNgUg "\X — U\X (quotient by U),

g:UNg 'Ug\Y = UnNgUg '\Y (multiplication by g).

The sheaf Liyng-17, on U N g 'Ug\X determined by U N g~'Ug\Y is isomorphic
to h* Ly, since the morphism

U\Y — (U\X) X(UNg—1Ug\X) (U n gilUg\Y)

is an isomorphism. Similarly we have f*Ly = Lyngyg-1. The morphism g defines
a sheaf morphism Lyng-1y74 — Lyngug—1, hence a sheaf morphism 5 = £(g) :
h*Ly — f*Ly. Clearly f*Ly can be viewed as a locally constant sheaf on U N
g 1Ug\X defined by the morphism

-1
UngUg \Y — (UngUg "\X L) Ung 'Ug\X.

We shall return below to the example above. Now we make the following
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Definition 5.1. (a) If L is a constructible sheaf (of finite abelian groups; in par-
ticular a locally constant sheaf Yx defined by an abelian group scheme Y which
is finite and étale over X), denote by H:(X, L) the étale cohomology group with
compact support and coefficients in the sheaf L of the scheme X (see [?], p. 227).
When X is a separated scheme of finite type over a separably closed field (this is the
only case used below), these are finite groups, defined for i > 0, with H{(X,L) =0
for i > 2dim X (see [?], p. 221). Note that H:(X, L) is defined to be H* (X, L)
for any compactification j : X — X of X, where jiL is the “extension by zero” of
L to X; it is independent of the choice of compactification.

(b) The ¢-adic cohomology group Hi(X,L) of X with compact support and co-
efficients in the Z,-sheaf L is the projective limit @nH;ﬁ (X, L,). It is a Zp-module
of finite rank, which vanishes unless 0 < 7 < 2dim X. For a Qp-sheaf L =Ly ® Qy
we write Hi(X,L) = H(X,Lo) ®z, Q. The effect of tensoring with the field Q,
is to make H(X,L) into a vector space, and so erase the torsion in the Z,-module
Hé(Xa LO)

Remark 5.2. Let E) be a finite field extension of Q, Ry the ring of integers in F},
and 7 a uniformizer in Ry. Then we can define an Rj-sheaf as above on replacing
Z/0"Z by Rx/m™Ry. An Rjy-sheaf is equivalent to a Zs-sheaf L together with a
homomorphism R) — EndL. Each A-adic cohomology group is an Ry-module of
finite rank; it is constructed as a Z;-module on which Ry acts (see [?], p. 85).
Similarly we have Ej-sheaves and also Q,-sheaves, where Q, is an algebraic closure

of Qf.

Let f: X’ — X be a finite morphism. The inverse image functor f* yields, for
each constructible sheaf L on X and Z,-sheaf L. on X, the inverse image homomor-
phisms

H!f*: H(X,L) — H(X', f*L)
and
HUf*: HY(X,L) = H(X', f*L);
f*L is the Zy-sheaf obtained as the inverse image of the constructible sheaf I on

X. When f is finite, the direct image functor f, is exact (see [?], p. 72; and [?], p.
24), and we have the direct image isomorphisms

Hyfo : HU(X',L') 5 HY(X, f.L)
and

Hefo: Hy(X', 1)) 5 Hi(X, f.L)
for any constructible sheaf L’ on X’ and Z,-sheaf " on X’. Here f,IL’ is the Z,-sheaf
obtained as the direct image of the Z,-sheaf " on X'.

5.1.5 If f : X’ — X is finite and étale then the functor f* is right adjoint to f,
namely Hom(f,L’, L) = Hom(L’, f*L) for all sheaves L', L on X', X. For a proper
morphism f the functor Rf. (= Rf;) has a right adjoint, denoted Rf', only in the
derived category D(X) (see [?], C, D and [?], p. 310) of the category S(X) of
sheaves on X. However, when f is finite, which is the case of interest for us, the
functor f, is exact ([?], p. 72), in particular left exact, hence it has a right adjoint
functor f': S(X) — S(X’). Thus by definition we have

Hom(f.L',L) = Hom(L', f'L) (L € S(X),L' € S(X'))
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for a finite morphism f. In particular, if L’ = f'L we obtain
Hom(f.f'L, L) = Hom(f'L, f'L).

Definition 5.2. (i) Let f,h: X’ — X be finite morphisms, L. a smooth sheaf on
X, and a: h*L — f'L a sheaf morphism. Let H’(f,a,h) be the endomorphism of
the Z,-module H!(X,L) defined as the composition of

H(X,L) 2% mixt w28 mixe, f') 55 mix fL) S X L),

where t : f, f'L — L is the sheaf morphism corresponding to the identity morphism
f'L — f'L, and H!f. is an isomorphism.

(ii) Suppose that f: X’ — X is a finite flat morphism. Let a : f*L — f'L denote
the morphism obtained by adjunction from the trace map tr : f.f*L — L of [?];
Exp. XVIII, Thm 2.9 (p. 553).

(iii) In the notations of (i), given a sheaf morphism 3 : h*L — f*L we write
Hi(f,B,h) for H(f, o, h), where a = a o .

Remark 5.3. If f = h, and a : f*L — f'L is an isomorphism, and 3 : h*L — f*L is
the identity, then H!(f,id, f) is the multiplication by the degree of X’ over X (cf.
(7], XVILL p. 554).

5.1.6 Our next aim is to compare the cohomologies of geometric fibers of X and
construct the endomorphisms H'(f,a, h) in a way compatible with this fibration.

We begin by considering a morphism b : X — S of schemes and a Z-sheaf L. on
X. Let j : Sy — S be an open dense subscheme of S. For each i > 0 denote by
R'H1L|Sy the cohomology sheaf H'(_, RbL|Sy) of the restriction RbL|Sy = j*RbL
to Sp of the complex RbL of sheaves in the derived category D(X).

Lemma 5.1. For any Z;-sheaf L on X and morphism b: X — S, the sheaf R'b L
is constructible. Consequently there is an open dense subscheme j : Sy — S such
that the restriction R'bL|Sy is a smooth sheaf, for all i > 0.

Proof. The first claim is the constructibility theorem of [?], XVII, p. 364; see also
[?]; Th. finitude, Thm 1.9, p. 236. The second follows from the definition of
constructibility. (I

Let S be an irreducible scheme. Then any open dense subscheme Sy of S is also
irreducible. Let n : Spec K — S be a geometric generic point of S (geometric means
that K is a separably closed field; generic means that the image of 7 is dense in S}
we use 7 rather than the standard 77 to simplify the notations). Then 7 factorizes
through Sy — S. Let G be a sheaf on S. Denote by G, the (geometric generic)
stalk of G at 7 (see [?], p. 60). Let v : Speck — Sy be a geometric closed (namely
the image of v is closed in Sy) point, and denote by G, the stalk of G at v. The
fundamental group 7 (Sp, n) of Sy at n acts on the stalk G, and m;(So,v) acts on
G,. By the class of an isomorphism i : G,, & G, we mean the set of isomorphisms
i’ : G, = G, of the form i = ioa (a in m(Sp,n)). This is equal to the set of
isomorphisms i = S o4 (8 in m(Sp,v)). With these notations, the specialization
and cospecialization theorems of [?], p. 256/7, assert

Lemma 5.2. Let S be an irreducible scheme, So an open dense subscheme, and G a
Zy-sheaf on S whose restriction G|Sy to Sy is smooth. Then Gy, is noncanonically
isomorphic to G, for any geometric closed point v in Sy, and the class of the
isomorphism G, =G, is canonical.
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Let b: X — S be a morphism and L a sheaf as in Lemma ??7. Let n : Spec K — S
be a geometric generic point and v : Speck — Sy a geometric closed point in Sy
(Sp is defined by Lemma ?7?). Let X, = X xg Spec K be the (geometric generic)
fiber of X at n, and X, = X xg Speck the (geometric special) fiber of X at v. We
conclude

Proposition 5.3. For any Zg-sheaf L on X there is an open dense subscheme Sy
of S such that H:(X,,L|X,) and H:(X,,L|X,) are noncanonically isomorphic for
all i > 0 and any closed geometric point v in Sy; the class of this isomorphism is
canonical.

Proof. From the proper base change theorem ([?], XVII, Prop. 5.2.8, p. 358)
it follows that one has the canonical isomorphisms (R‘bL), = H(X,,L|X,) and
(R'bL), = HY(X,,L|X,). The proposition now follows from Lemmas ?? and
7. ([l

5.1.7 Let f,h: X’ — X be finite morphisms, and b: X — S a morphism where S
is irreducible. Let L. be a smooth sheaf on X, and fix a morphism «a : A*L — f'L.
Proposition ?7 asserts that there is an open dense subscheme Sy of S such that
H!(X,,L) and H!(X,,L) are isomorphic for all geometric closed points v in Sp,
where the class of the isomorphism is canonical. Let ¢ be a geometric point in Sy
(in particular v or 7 as above). Denote by X; and X] the fibers of X and X’ at ¢,
by i} : X{ — X’ and 4; : X; — X the natural morphisms, and by fi, ht : X{ — X;
the fiber morphisms of f,h: X' — X.

Definition 5.3. Let H!(f;, o, ht) be the endomorphism of H(X;,1L|X;) defined as
the following composition:

; Hihy ooy . Hioo oo
H(Xe, LIXe) == HU(Xy, hi (LI Xy)) == HUX], fi(LIX0))
Hift* 7 7
=5 HUX, fofy(LIX)) 5 HU(Xe, LIX)).
The homomorphism Hiq is obtained from the sheaf morphism « : (h*L)|X; —
(fL)XG.

The class of the Zg-module isomorphism H, = H, (where H; = H'(X;,L) with
t = n or v) is canonically determined. The functorial construction of H:(f;, «, hy)
implies then the following

Proposition 5.4. The isomorphism H, = H, can be chosen to map the endo-
morphism H'(f,,a, hy) of Hy to the endomorphism H.(fy, o, hy) of H,, uniformly
i f,h and o.

5.1.8 Let X be a scheme (as usual, X is separated of finite type over a scheme S).
Let (h, f : X’ — X) be a pair of finite flat morphisms h: X’ — X and f: X' — X.
We say that the pair (hy, f1 : X; — X) is isomorphic to (h,f : X' — X) if
there is an isomorphism F : X' — X| with hjoF = h and fioF = f. By a
correspondence T on X we mean an isomorphism class of pairs. Let R(X) be the
quotient of the free abelian group generated (over Z) by all correspondences on
X, by the relation Ty = d,T if T} is the correspondence of (hok, fok : X| — X)
and k : X{ — X’ is a finite flat morphism of degree dy. The group R(X) has
a Z-algebra structure, which is not necessarily abelian, obtained as follows. The
product PP; of the pairs P = (h,f : X' — X) and P, = (hy, f1 : X] = X)
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is the pair (hopry, fiopry : X’ xx X] — X); here pr; : X' xx X{ — X’ and
pry ¢ X' xx X{ — X/ are the natural projections. If L. is smooth, then for each
pair (h, f : X’ — X) and morphism « : h*L. — f'L we constructed in Definition
??(i) an endomorphism HE(f,a,h) of Hi(X,L|X). In particular, Hi(f,id, f) is
multiplication by the degree of f.

We shall apply the above constructions in the case of Example 4 (in (5.1.4)),
which is our main example in this work. As in (5.1.4), let X be a finite étale Galois
covering of a scheme X with Galois group 71, and let G be a topological group such
that Gxm acts on X. For any open subgroup U of G put Xy = U\X. Given g in G,
put X' =UNg Ug\X. In (5.1.4) we constructed a correspondence h : X' — Xy
(quotient by U), and f : X’ — UNgUg '\ X — Xy (the first arrow is multiplication
by g, the second is quotient by U; the finite morphism f can also be defined by
X' — g 'Ug\X — Xy, where the first arrow is the quotient by g~1Ug, and the
second is multiplication by ¢), and a sheaf morphism 8 = f(g) : h*Ly — f*Ly; here
Ly is the smooth Q-sheaf determined by the projective system of finite étale Galois
morphisms U\Y,, = Xy defined in (5.1.4). Given this data we put a(g) = ao S(g)
and construct (as in (5.1.7)) the endomorphism H!(f,a(g),h) of H{(Xy,Ly) as
the composition of

Hi(Xy,Ly) " HIX hLy) 29 Hi(X, fLy)

5 HU(Xy, fuf'Lu) & H(Xy,Ly).

It is clear that Hi(f, a(g),h) depends only on the double coset g of g in U\G/U;
hence it can be denoted by H(g). Let H(U) be the Q-algebra of U-double cosets
in G: we fix a Haar measure on G such that the volume |U] lies in Q/, identify a U-
double coset UgU with the quotient of its characteristic function by |U|, and let the
product be defined by convolution. A standard verification shows that g — H:(g)
is an algebra homomorphism H(U) — End H:(Xy,Ly), namely that H(U) acts on
H{(Xy,Ly). Proposition ?? of (5.1.7) now implies the following

Proposition 5.5. Let G, U,)?,]L be as above. Let b: X — S be a morphism where
S is irreducible. Then there exists an open dense subscheme Sy of S such that the
H(U)-algebras H:(Xy.,, Ly) (as in (5.1.6), n denotes a geometric generic point in
S) and H:(Xy,,Ly) are isomorphic for every geometric closed point v in Sp.

5.1.9 Let K be a field of characteristic p. Let K be a separable closure of K. Let
X be a scheme over K. Put X = X @ K(= X X Spec K Spec K). Then the Galois
group Gal(K/K) acts continuously on K, hence on X. Consequently the group
H{(X,L) is a Gal(K/K)-module; the action of Gal(K/K) is continuous.

If K is a finite field F, of characteristic p, the Galois group Gal(F,/F,) is topo-
logically generated by the Frobenius substitution Fr, :  — z9. The action of Fr,
on the second factor in X = X ®F, Fq is denoted by 1 xFr, and called the arithmetic
Frobenius. In addition Fr, acts on X, hence on the first factor in X=X ®F, Fq.
This action, denoted by Fry x1, is called the geometric Frobenius. Both Fr, x1 and
1 x Fr, act on H(X,L); their product is the identity endomorphism (see [?], p.
80).

Let X be a separated scheme of finite type over F,, where ¢ = p?. Let L = (L,,)
be a smooth Z,-sheaf, where L, is a locally constant sheaf associated with the finite
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étale morphism p,, : Y, — X. Let m be an integer. At each point z in the set
X (Fyim) = Hom(Spec Fyjm|, X) = X (F,)Fra D",
the inverse image p () is isomorphic to (Z/¢"Z)*, and the stalk L, = limy, pj, (x) is
isomorphic to Z}. Since (Fr, x1)™ fixes w, it acts on p},(x). Passing to the limit we
obtain an action of (Fry x1)™ on the stalk L, ~ Z}. Denote by tr((Fr, x1)™|L,)
the trace of (Fr, x1)™ on the stalk L,. Denote by (Fr, x1)™ also the endomorphism
of H!(X,LL) which is denoted in Definition ??(i) in (5.1.5) by
Hi(id, (Fr, x1)™, (Fr, x1)™),

thus f =id, o = (Fr, x1)™, h = (Fry x1)™ there.

The following form of the fixed point formula, for powers of the Frobenius acting

on a scheme over a finite field, is due to Grothendieck (see [?], Exp. III, (6.13.3),
p. 134, [?], p. 86).

q\m\v

Theorem 5.6. Grothendieck Fixed Point Formula. For a separated scheme
of finite type over Fy, any Q,-adic sheaf L on X, and every m # 0, we have

> wr((Frg x1)™ L) = > (—1) tr((Frg x1)™[HL(X,L)).

2€X (F,m ) i
q

Remark 5.4. (i) Since m is any nonzero integer, the formula holds also with the
arithmetic Frobenius 1 x Fr, instead of the geometric Fry x1. (ii) Here X is not
required to be smooth or proper. (iii) Underlying the proof is the observation
that in characteristic p > 0 one has %(x”) = 0, hence the graph of the Frobenius
is transverse to the diagonal. In particular the fixed points of the Frobenius are

isolated.

If X is proper and smooth over an algebraically closed field k, and L is a smooth
Qy-sheaf on X, then a stronger variant of the fixed point formula (which is not used
in this work) is known (see [?], p. 151, for the case of the constant L, and [?], Exp.
ITI, in general). To state this variant, let 4 : X' < X x4 X be a closed subscheme
which is transverse to the diagonal morphism A : X < X x, X. Suppose that
f = pry oi is finite and flat. Put h = pry 0i. Let L = (L,,) be a smooth Q,-sheaf over
X, and B : h*L — f*L a sheaf morphism. Put o = a o 8. Then an endomorphism
H(f,a,h) of H{(X,L) is defined in (5.1.5) (for all i). For each point 2’ of b'e
we have (h*L), = Ly by definition. If h(2') = = and f(2') = z, then the
sheaf morphism g : h*L — f*L induces a morphism £, : (h*L)y — (f*L), on
the stalks, namely 3,/ is an endomorphism of the finite dimensional Q,-space L.
Then we have

Theorem 5.7. Lefschetz Fixed Point Formula. If X is proper and smooth
over an algebraically closed field, and 1L is a smooth Q,-sheaf on X, then

> tr[Bo o] = Y (=1)" tr[HL(f, o, h) [ HI(X,L)].
{z'eX ;h(z’)=Ff(a")=x} i

However, the scheme to which we are to apply the fixed point formula in section
9 is not proper, and only the form of Theorem 7?7, where f = id and a« = h =
(Frg x1)™ is a power of the Frobenius, is available. We shall now formulate a
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variant conjectured by Deligne, of the fixed point formula, and study its applications
in sections 10, 11.

Theorem 5.8. Deligne’s Conjecture. Suppose that X is a separated scheme of
finite type over Fy; f, h : X' — X morphisms, where h is proper and f is quasi-
finite; . a smooth Qy-adic sheaf on X and o : h*L — f'L a sheaf morphism
which factorizes as the composition of a morphism B : h*L — f*IL and the natural
morphism a : f*L. — f'L. Then there exists an integer mq such that for any integer
m with |m| > mg we have

Ztr[(,@o(Frq X1)™) L]
= Z )i tr[HE(f, ao(Fry x1)™, ho(Fr, x1)™)|H(X, L))].

On the left the sum ranges over all @' in X with (ho(Fry x1)™)(2") = f(2'), and
we put x = f(z').

It suffices for us to assume that f is étale, in which case f* = f'.

This conjecture is motivated by the hope that after multiplication by a suffi-
ciently high power of the Frobenius the correspondence (f,h : X' — X) becomes
transverse to the diagonal A : X < X xp, X. The Lefschetz fixed point formula
confirms the conjecture when X is proper and smooth, and Grothendieck’s formula
deals with the case of f = h =id and a = id.

Deligne-Lusztig (Ann. of Math. 103 (1976), 103-161) noted that Deligne’s con-
jecture holds for an automorphism of finite order of the scheme X. They multiplied
the automorphism by a Frobenius, and obtained a Frobenius (with respect to an-
other structure on the scheme) for which the Grothendieck formula is again valid.

In fact Hlusie [?]; Exp.JII, Thm 4.4, gives an explicit formula in terms of local
data for the alternating sum on the cohomological (right) side of the formula, for
any quasi-finite flat correspondence (loc. cit., (4.12), p. 111), and a complex L of
sheaves in D%(X,Q,).

The problem is to compute these local terms. This was actually done in the case
of a curve X, for a correspondence multiplied by a sufficiently high power of the
Frobenius; the local data turned out to be the trace on the stalk L,, confirming
Deligne’s conjecture in the case of curves.

The usage of high powers of the Frobenius is already suggested by Drinfeld [?],
p- 166, £. 1. Additional evidence is provided by the form of the trace formula which
is proven in [?] and in section 9.4. This form is a representation theoretic analogue
of Deligne’s algebro-geometric conjecture.

Remark 5.5. After the completion of the first draft of this work in 1983, several
cases of Deligne’s conjecture were proven by Pink [?] and Shpiz [?] (in a form not
sufficiently strong as yet for our purposes: for a variety with smooth compactifica-
tion by a divisor with normal crossings). They also reduced the conjecture to the
conjectural resolution of singularities in positive characteristic.

Deligne’s conjecture was finally proven unconditionally by Fujiwara [?] and by
Varshavsky [?], by completely different techniques. We strongly recommend the
lucid statement and proof of [?]
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5.2. Congruence relations.
5.2.1 We shall now return to our case of moduli schemes of elliptic modules. Thus
let I be a nonzero ideal in A with [V(I)] > 2. Recall that V(I) is the set of
maximal ideals of A which contain I. By Theorem ?? the functor F, ;, which
associates to any affine scheme Spec B over A the set of isomorphism classes of
elliptic modules of rank r with structure of level I over B, is represented by an
affine scheme M, ; = Spec A, ; of finite type over A. Let v be a maximal ideal
of A. As usual we denote by U, the maximal compact subgroup GL(r, 4,) of
G, = GL(r, F,). Fix the Haar measure dg, on G, which assigns U, the volume 1.
For any open compact subgroup U! of U,, let H(U!) denote the convolution Q-
algebra of Q,-valued compactly supported U/ -biinvariant functions on G,. Put H,
for H(U, ). As usual let U be the congruence subgroup of g in G(Ay) with g —1 in
M (r, IA\) Then U, ; = G,NUy is equal to U, for all v prime to I. The convolution
algebra H of compactly supported Q,-valued U;-biinvariant functions on G(Ay) is
isomorphic to the restricted direct product ®,H(U, ;) of the local algebras H(U, r);
the isomorphism associates the characteristic function of U;gU; with the product
over v of the characteristic functions of U, ;g,U, r; note that U, ;g,Uy. 1 is equal to
U, for almost all v.

An action of the adele group G(Ay) on the moduli scheme M, = @IMT’[ =
@U 1\ M, is defined in Proposition ??. Section 4 concerns the construction of a

covering scheme M, of M,., with Galois group DX, such that G(Ay) acts on Mr and
the action of G(A¢) on Mr commutes with the action of the Galois group. The group
G(Ay)/F* acts on M, without fixed points, and M,. r is smooth over IF,,. Put MT,I
for UI\MT, and let p be a finite dimensional representation of my (MM/MM) =DX
with finite image. As noted in Example 4 in (5.1.4), to p one assigns a smooth
Qg-sheaf L(p) on M, , and Q-adic cohomology spaces H.; = H.(M, ,L(p))
and H, ;
M, xa F of M1, and M, 1, is the geometric closed fiber M, r,, xp, F,, where
M, v =M. xaF, and F, is an algebraic closure of F, = A/v, for any v # 0 in
Spec A. We also write M, ,, 1 for M, 1 ,.

The maps H; — End Hi,[ and H; — End Hg,v,[ of (5.1.8), which are induced by

g~ Hg’l(g) and g — H., 1(9) (g in G(Ay)), turn the Q,-spaces Hg,[ and H?

c,v_,[
into Hy-modules. In particular, if v # 0 in Spec A does not contain I, then Hy ;

= H!(M,1.,L(p)). Here M, denotes the geometric generic fiber

C

and Hz,v,I are H,-modules. Proposition 7?7 asserts that the H;-modules Hg,[ and

H_ ,  are isomorphic for almost all v # 0 in Spec A, for all i.

5.2.2 Let v be a maximal ideal in A. An irreducible G,-module 7, is called unram-
ified if it contains a nonzero U,-invariant vector, which is necessarily unique up to a
scalar multiple. It is well known that there is a bijection between the sets of equiv-
alence classes of (1) irreducible H,-modules in which the unit element acts as the
identity, and (2) irreducible unramified G,-modules: The irreducible G,-module
7, defines a (one-dimensional) H,-module 7, by 7,(f,) = trm,(f,) (f» € Hy),
where 7, (f,) is the convolution operator [ f,(g)m,(g)dg, which factorizes through
the projection on the one-dimensional subspace of U,-fixed vectors in m,. If I is a
nonzero ideal in A then there is a bijection between the sets of equivalence classes
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of (1) irreducible G(Ay)-modules 7; with a nonzero U;-fixed vector, and (2) irre-
ducible Hj;-modules in which the unit element acts as the identity. It is given by
T ﬂ')[c, where wf is the space of U;-fixed vectors in .

Let S, denote the symmetric group on r letters. It acts by permutation on
@ZT. For eachz = (2;) (1 <i<r)in @ZT denote by y, the unramified character

(bij) = 11, z?eg(b“) of the upper triangular subgroup B, (b;; = 0if¢ > j) of G,,. Let
§ denote the character §((b;;)k) = [, [bii|5~ %! of G, (here k € U, = GL(r, A,)).
Let I,(z) = Ind(6'/?x,) denote the unramified G,-module unitarily induced from

Xz- 1ts space consists of the locally constant functions f : G, — @Z with

£(bg) = (6'*x2)()f(9) (b€ Byg € Gy),

and G, acts by right translation. The image of the representation I,(z) in the
Grothendieck group, namely the equivalence class of its semisimplification, de-
pends only on the projection of z in @;r/&. This I,(z) has a unique irre-
ducible unramified constituent 7,(z) in its composition series, and (7,(2z))(f,) =
tr(I,(z))(f,) for all f, in H,. Every irreducible Q,-valued H,-module 7, is equiv-
alent to 7,(z) for a unique z in Q, ' /S,. Moreover, the Satake homomorphism
fo = fY, where f)/(z) = (7(z))(fy), is an algebra isomorphism from H, to
Q[@ZT/ST] =Q[z1,27 Y. .., 2, 2715, In particular, H, is commutative.

Remark 5.6. The commutativity of H, quickly follows from the fact that the invo-
lution of H,, induced by the transpose map on G, coincides with the identity on
H,,.

Let m denote a local uniformizer in the local ring A,, and as usual put ¢, = |x|;*.
For any j (1 < j < r) denote by g, the diagonal matrix (m,...,w,1,...,1) in G,
with j = deg(det g;). To simplify the notations choose the Haar measure on G,
which assigns U, the volume one. Let ¢; be the characteristic function of the double
coset Uyg;U, in Gy. In (5.2.4) we use the following well-known

Lemma 5.9. We have
Fo@)(0) = G0 2Y 2

the sum ranges over all j-tuples i; = (t1,...,9;) of integers with 1 < i1 <ip < -+ <
ij S T.

Proof. In the course of this proof we put K = U,, g = g;, B = upper triangular
subgroup of K. The double coset B\K/(K N gKg~!) is isomorphic to B\KgK/K
by k + kgK. Moreover, B\K/(K N gKg~!) is isomorphic (on reducing modulo
v) to B(F,)\G(F,)/P;(F,), where G = GL(r) and P; is the (lower triangular)
parabolic subgroup of type (j,r — j). We have G(F,) = U, B(F,)wP;(F,), where
the sum is disjoint and taken over W/(W N P;(F,)). Here W is the Weyl group in
G(Fy); W~ S,, WnN P;(F,) ~S; x Sy_j, and the cardinality of W/(W N P;(F,))
is (;) = r!/j}(r — j)!. This is the number of terms in the sum of the lemma.
The double coset in B\KgK/K corresponding to w = 1 is BgK, and f(bgk) =
§1/2(g)zy. . .z; for any b in B and k in K. We have 6'/2(g) = ¢}""7"/%. Since the
symmetric group S, permutes the monomials in 21, .. ., z, in the element (7,(2))(¢;)
of Q[z1, zfl, ey 2py 277 1]%7 each of the ( ) terms on the right of the formula of the

r
r J
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lemma occurs in (7, (2))(¢;). Since there are only (%) cosets in W/(W N P;(F,)),
there are only (;) monomials in (7,(z))(¢;), and the lemma follows. O

Our goal in this subsection 5.2 is to prove the following. Let I be a nonzero ideal
in A with [V(I)] > 2, MTJ a finite étale Galois covering of M, ; contained in the Ga-
lois covering of M, ; with Galois group DZ which is constructed in section 4, and p
an irreducible Q,-adic representation of the Galois group Wl(Mr’ 1/M; ). Let %f Q0o

be an irreducible composition factor of the H; x Gal(F/F)-module H:(M,. 1, L(p)),
7! the component of %ch at v, and o, the restriction of o to the decomposition

subgroup Gal(F,/F,). For all v with H} ; ~ H!  ; (as H; x Gal(F,/F,)-modules),
o, factorizes via Gal(F,/F,), and 7! is unramified. Let z = z(7,) be an r-tuple
(25;1<j<r)in @;T whose image in @;T/ST corresponds to the irreducible H,-
module 7J. Let Fr, x1 denote the geometric Frobenius morphism of Hév - We
can now state the following main

Theorem 5.10. For every i (0 < i < 2(r — 1)) and each irreducible composition
factor 7y @0 of H(M, 1, L(p)) as an H; x Gal(F /F)-module, and for every v with
H! =~ HéJ as Hy x Gal(F, /F,)-modules, we have the following. Each eigenvalue

c,v,] —
u of the (geometric) Frobenius endomorphism o, (Fr, x1) is equal to qf,ril)/sz for
some j = j(u) (1< j <1).

Corollary 5.11. The (geometric) Frobenius endomorphism o,(Fr, x1) has at most
r distinct eigenvalues; they lie in the set {ql(,r_l)mzj; 1<j<r}

Remark 5.7. (i) Using the trace formula, the purity (see [?] or [?]; sommes trig,
p. 177/8) of the action of the Frobenius on Hé,v,l’ and unitarity properties of the
components of cuspidal automorphic representations of G(A), we show in section
9 that if the D2 -module p corresponds to a cuspidal Gs.-module then each z;
(1 <j <), for every v which appears in Theorem ??, is algebraic with complex
absolute values all equal to one. Hence the absolute value of each conjugate of the
algebraic number u is ql(f*l)/ 2, independently of i.
(ii) It will be interesting to show that the dimension of the finite dimensional
representation o, is bounded by, and moreover equal to, 7.

(iii) The main geometric result of this section 5 is the intrinsic “congruence rela-
tion” of Proposition ??, which establishes an identity of correspondences on the
scheme M, ;,. Its translation in (5.2.7) to a cohomological statement is formal.
Consequently Theorem ?7 is valid also when H g ; is replaced by cohomology H*

without compact support, or any other cohomology theory.

5.2.3 The proof of Theorem ?7? will occupy the rest of this section 5. We begin
with giving an alternative definition of the correspondence T; = T, on the scheme
M, , 1 associated as in (5.1.8) with the open compact subgroup U, and the diagonal
matrix g; = (m,...,m,1,...,1) in G,, with j = deg(det g;).

Let F; be the functor from the category of rings over A to the category of sets
which associates to a ring B the set of isomorphism classes of elliptic modules ¢ of
rank r over B, structures ¢ of level I, and F,-module homomorphisms v : F) —
E,(B) with the property that the ideal ([],(z — ¢;(u));u in F?) divides the ideal
Jy = (pa(z);a in v) in Blz]. The proof of Theorem ?? shows that the functor F; is
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representable by an affine scheme M,.; ; = Spec A, 1 ;. The ring A, 1 ; is generated
over A, by generators c(u), u in FJ — {0}, subject to the relations of the proof of
Theorem ??. The group G; = GL(j,F,) of automorphisms of FJ acts on M, ;.
Denote by G;\M, 1 ; the quotient. It is equal to Spec Af}j

Let R be the morphism M, ;; — M, defined by the finite flat generically
separable (see Proposition ??) embedding A, ; — A, 1 ;; as a morphism of functors
R} maps (p,9,9;) to (¢,9). Let f; be the morphism M, 1 ; — M, defined as a
morphism of functors by mapping (¢, 1, ;) to (¢, 1); here ¢’ is the elliptic module
defined by Py, = ¢, P for all a in A, where P is the endomorphism of the additive
group with P(z) = [, (z — v;(u)) (u € FJ). Each of f] and h/ is finite, flat, and
étale outside v. Since they factorize through the quotient M, ;; — G;\M, 1 ;, the
correspondence S; defined by (f7,h; : M,.1; — M, 1) (see (5.1.8)) is the multiple
‘G]|Tj of Tj.

5.2.4 Put X for the fiber M, ,, 1 = My 1, = M, ®aF, of M, ; at v, and similarly
Xj for My 15 = My 1; ®aF,. Denote by f;,h; : X; — X the fibers at v of the
morphisms f] and h’. It is clear that f;, h; are finite and flat, but not étale. Let
(¢,1) denote the universal elliptic module of rank r with structure of level I, of
characteristic v. Then ¢, = >, b;(a)7® (b;(a) in A, ) for all @ in A. Fix ag in
v—22. Then bg(ag) = 0 since ¢ has characteristic v. Define X to be the open dense
affine subscheme of X corresponding to the ring A, , r[z]/(xbi(ap) — 1). It is clear
that the definition of X© is independent of the choice of ag in v — v2. Denote by F°
the functor represented by X°. The inverse images X i xx X 0 of X© with respect
to the two morphisms f;,h; : X; — X coincide, and are equal to the subscheme
XY of X; defined by the requirement that the coefficient by (a) of v = Y-, bi(a)7’
be invertible for all a in v — v*. Denote by F the functor represented by X7. The
restrictions f]Q7 h? : X]Q — X0 of f;, h; are finite and flat by definition of X]Q.

The ring Ag such that X]Q = Spec A? is generated over A° (where X° = Spec A°)
by the elements c(u) (u € FJ —{0}) subject to the relations of the proof of Theorem
??. In particular [], (x — c(u)) (u € FJ) divides ¢, () for all a in v. Since ¢(0) = 0,
the product [J(z — c(u)) over u # 0 in FJ divides ¢,(x)/x. Since ¢q(x)/z =
3oy bi(@)x% 1, we conclude that for any a in v —v? and u # 0 in FJ the generator
c(u) satisfies the relation

Z bi(a)c(u)tﬁ;—l = c(u)®? Z bi(a)c(u)qf’_q“ 0.

i>1 i>1

Let X j’ T denote the closed subscheme of XJQ defined by the equation

[[cw» =0

u#0

the product ranges over all u in F/ — {0}. The scheme X;r+ is a covering of degree
qy — 1 of the scheme X ]+ which represents Fj The functor Fj is the functor
which associates to each ring B over F, the set Fj(B) consisting of all triples
(¢,9,1;) in F(B) with the property that ; : FJ — E,(B) is not injective, that
is, [I,0 c(u) = 0. By the definition of XJQ the kernel of ¢; is a line F,, in FJ. Let
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X be the closed subscheme of X ? defined by the equations

Z bi(a)c(u)qi_q“ =0 for every u # 0 in /.

i>1
It represents the subfunctor F; of ]F? such that F; (B) consists of the (o,v,%;) in
]F(;(B) with injective 1; : F/ — E,(B). The intersection of XJTH' and X is empty.
Indeed if u # 0 has c(u)?~' =0 and Y., bi(a)c(u)qi’% =0, then b1 (a) = 0; but
by (a) is a unit in X§ (for a in v—v?). We conclude that X9 decomposes into two open
closed disjoint components X, and X ]+ T, where the later is a covering of degree
gy — 1 of X;r. Consequently the maps f;",h;|r : Xj' — X% and f7,h; 1 X7 — XO,
derived from f7,hY : X7 — X, are finite and flat, and étale. The morphisms f7,
h? and fj++, h;rJr are finite and flat, but not étale.
5.2.5 The triples (fj"',hj : X;‘ — X, (f;"',h;'*' : XJ'H' — X9), (f; by -
X=X Y) define correspondences S;-r, S;r+ and S; on the open dense subscheme
X9 of X. We have S]* = (¢, —1)S. Since f;7, h] factorize through G;\X;"
and f;, h; through G;\X ; » we obtain correspondences Tj+ and T, on X 0 with
S;Jr = |Gj|TjJr and S; = |G;|T; . Since X9 is the disjoint union of X;r+ and X
we have §; = S;"" +57 = (qu — 1)5;' + 57, and Tj = Tf +1;.

Lemma 5.12. We have an equality Fr, oT; = q%'Tj*+1 of correspondences on X°.

Proof. (i) Let X ; be the product of X~ and the set of surjective homomorphisms

FJ+1 — FJ. It represents the functor ﬁ; which associates to a ring B over [, the set
of isomorphism classes of (1) elliptic modules ¢ of rank r over B with b;(a) # 0 for
the a in v —v?, (2) structures ¥ of level I, (3) injective F,-module homomorphisms
¥; : FI — E,(B), and (4) surjective homomorphisms ~ : F/*! — FJ. The ideal
(IT,(z — ¥j(u));u € FI) divides the ideal J, = (pq(z);a € v) in Blz]. The
morphism h; : X — X0 (o, 9, 105,7) — (p,1), is finite and étale.

Define the morphism Fr,, oj?_ : )N(j_ — X% by (¢, 90,¢;,7) — (¢, 1), where the
elliptic module ¢’ is defined by the relation 7° Py, = ¢, 7°P for all a in A. Here
s = log, qs, P(z) is the polynomial [T, (z — ¢;(u)) (u in FJ), so that 7°P is the
polynomial [, (z —1;(u))%. Then Fr, ofj_ is finite and flat. Since the degree of
X ; over X is |Gj|(g) T —1)/(gu—1), the correspondence determined by the triple

(h; ,Fryof; : X; — X0) is

gt -1 A P -
ﬁ|GJ|Fr’UOS] —ﬁ|Gj| FrvoTj .

(ii) Let IE';'H be the functor which associates to the ring B over IF,, the set of
isomorphism classes of (1) elliptic modules ¢ of rank r over B with by (a) # 0 for a
in v —v?, (2) structures ¢ of level I, (3) F,-module homomorphisms 1,1 : FT! —
E,(B) which are not injective, and (4) isomorphisms « : F4 5 ;41 (Fit1). The
partial level structure ;1 is required to satisfy that ([T, (z —¢;41(uw)); u in FJ*1)
divides J, = (pq(z);a € v) in Blz]. As in the proof of Theorem ?? the functor

]F;"+1 is representable by an affine scheme X;‘H. The morphism )?;:1 - X J+ 1
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(0,41, @) = (@, 1,1 4+1) is finite and étale, of degree |G|, since G; = Aut FJ
acts on «. _ ~

The morphism h;r+1 : X;Zrl = X% (¢, 0, %j11,a) = (p,v), is finite and flat.
The morphism fj':l : )N(]Ttrl — X9 (o, ¢, 0511, a) = (¢, 1), where ¢’ is the elliptic
module determined by Py, = ¢, P, P(z) = [[,(x — ¥j+1(u)) (u € FiT1), is also
ﬁ~nite and flat. It is clear that the correspondence determined by (h;}rl, f]TH :
X, — X% is

G181 = (a0 = D)7HGHISE = (00 = DTG G| T -

(iii) The map p : (¢, %5 : F) = Ey(B),y : F'' — F)) = (o, 9,941 =
jov,1;) is a morphism from IF; to f‘jﬁl. To verify this claim, we have to show
that Qj11(z) = [[,(z — ¥j4+1(w)) (u in FIT1) divides ¢q(z) for all @ in v. Our
assumption is that Q;(z) = [[,(z —;(u)) divides p,(x) for all a in v. Since ker~y
has cardinality ¢,, we have that Q;4+1(x) = Q,(x)?. Now, since the separable
additive polynomial Q;(x) divides @q(z) = > ;5 bi(a)z% = 2% R(z), it divides
R(z); consequently there is a polynomial P in B[r] with R = PQ;. Hence ¢, =
T°R =7°PQ; = P'7°Q; = P'Q;+1, and Q,11(x) divides ¢, (z), as required. Here
we put s = log, ¢, and P/ =Y b7 if P =3 b7

(iv) The map (¢, ¢, ¢j41 : I = Boa: FL 5 40 (FL)) = (9,0, a7 Toyjia)
defines a morhism from F;F_H to F; which is inverse to the morphism p of (iv). It
is clear that E;‘_Hop = EJ_ and f;ﬁrlop = Fr, ofj_. We conclude that the correspon-
dences of the formulae displayed at the end of (i) and (ii) are equal. The lemma

follows from the formula
j—1

Gl =1 —d)
i=0
which implies that
|Gl = (6™ = D)IGjlgl.
O

Proposition 5.13. We have the following equality of correspondences on M., 1:

Z q%(]il)/2 Fr;fj OTJ = Z q%(]fl)/2 Fr:)*j Oz‘j (0 g‘] S T).

jodd jeven

Proof. Since the two morphisms f;, h; : My, 1.; — M, 1 which define T} are finite
and flat, and X° is an open dense subscheme of X = M, , 1, it suffices to prove the
displayed formula only for the restriction of the correspondences to X°, namely to
fihy e Mgv’l’j — MTO’UJ. As a correspondence on X, each T; decomposes as a
sum of TjJr and T}, so that the left side of the formula is the sum of It and I,
where

It = Z q1()2j+1)2j/2 Fr:}*?j*l OT2—§+1

0<j<r/2

and
I~ = Z qg2i+1>21'/2n;—2j—lo:r2;+1.
0<j<r/2
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Note that 77, = 0 = T, and T;" = 0. Using Lemma ?? we rewrite I~ in the
form
Zq 2j+1)25/2 2j+1 FI,T’ 2j—2 OTQ-;JFQ Zq(2]+1 (25+2)/2 F r—25—2 OT2—;+2

Hence the left side of the formula of the proposmon is equal to
Z qg(j—l)/2 Fr:,_j OTJ-+.
0<j<r
This is equal to the right side of the formula by the same argument, using Lemma
7?7, and our proposition follows. (|

5.2.7 It remains to prove theorem ?77?.

Proof. By (5.1.9) the identity of Proposition ?? correspondences on M, , ; yields
an identity of endomorphisms on the Q,-module H!(M, ;,,L(p)), as an H, x
Gal(F,/F,)-module, hence on each of its composition factors 7/ ® o,. On the
factor 7 ® o, the correspondence T} acts by 7,(¢;), where we denote by ¢; the
characteristic function of the double coset U,g;U,. By Lemma ?7? the irreducible
H,-module 7, = 7, (z), z = (2;), satisfies

Ty (95) = qq(,rij)jm Z Ziy Zig e - Ry
i
=J

the sum ranges over all j-tuples i; = (t1,...95) with 1 <43 <ip < -+ < i <.
Applying the identity of Proposition ?? of correspondences to the factor 7, ® o,
we obtain the identity

T

D (1) g%, (6)0y (Fr, x 1) = 0.

=0

This we rewrite in the form
T

0= Y (=1 ar 7 (@07 26) gl 2 (Fry 1))~
=0

_ e Z (S s | a0 20, <))

*.7
It remains to note that the characteristic polynomial p of a matrix Z whose eigen-
values are 21, ..., 2., iS

T

p(t) = det(t] — Z) = > (-1) Zz e

j=0
Hence
p(gf' %0, (Fr, x1)) = 0.
In particular, for each eigenvalue u of o, (Fr, x1) we have
paf =" u) = 0.
(1-7)/2

Hence ¢y u is equal to z; for some 4, and the theorem follows. ([
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Part 3. Trace formulae

The work of part 4 depends on a comparison of the Fixed Point Formula and
the Trace Formula. Since only automorphic G(A)-modules occur in the Selberg
Formula, the purpose of this approach is to show that the G(Af)-modules 7y which
occur in the virtual module H} = ", (—1)"H! are automorphic, in addition to
establishing the relation concerning the local Frobenius and Hecke eigenvalues. The
Grothendieck fixed point formula gives an expression for the trace of the action of
the (geometric) Frobenius Fr, x1 on the cohomology module H} by means of the
set of points in M, Lv(Fv) fixed by the action of the Frobenius, and the traces of
the resulting morphisms on the stalks of the Q,-sheaf L(p) at the fixed points.

Part 3 prepares for the comparison. Following [?], in section 6 the set M, , (F,)
is expressed as a disjoint union of isogeny classes of elliptic modules over F,, and
their types are studied. In section 7 it is shown that the elliptic modules with level
structure of a given type make a homogeneous space under the action of G(Ay), and
the stabilizer is described. Moreover, the action of the Frobenius Fr, is identified
with multiplication by a certain matrix. A type is described in group theoretic terms
as an elliptic torus in G(F'), and the cardinality of the set M, 1 ,(Fy.n) ([Fypn : Fo] =
n) is expressed in terms of orbital integrals of conjugacy classes v in G(F') which
are elliptic in G(F) and n-admissible (see subsection (7.3)) at v.

Next, in section 8, it is shown that the orbital integral at v obtained in section
7 can be expressed as an orbital integral of a spherical function f, = £ on G,
whose normalized orbital integral F'(f,,) is supported on the n-admissible set. This

spherical function is defined by the relation tr(m,(z))(fn) = qZ}(T‘”/Q S e

i=1"~1

6. ISOGENY CLASSES

The main tool which is applied in part 4 is a comparison of the “arithmetic” fixed
point formula with the “analytic” trace formula. To carry out this comparison we
need to describe the arithmetic data, which is the cardinality of the set of points on
the fiber M, ,, at v of the moduli scheme M,., over finite field extensions of F,, = A/v,
or equivalently, the set M, ,(F,) with the action of the Frobenius morphism on it,
by group theoretic data which appears in the trace formula. In this section we begin
with a description (following Drinfeld [?]) of the set of isogeny classes in M, (F,)
in terms of certain field extensions of F'; these will be interpreted as tori of GL(r)
in the trace formula.

Let d be a positive integer, and put ¢ = p?. Let B denote the ring IF,[7] generated
by the indeterminate 7 over IF, subject to the relation u?7T = 7u for all u in F,.
The ring B is a domain, and its fraction ring D = F,(7) is a division algebra of
rank d (and dimension d?) over its center L = F,(t), where t = 7¢. Then D is the
cyclic division algebra sometimes denoted by (F,(t)/Fy(t), 7,t), associated with the
field extension Fy(t)/F,(t) and the element 7 which acts as the Frobenius on Fy
and satisfies 7¢ = t. Let R be the ring F,[t] of functions in L regular in ¢.

Denote by v” the place of L where t = 0, and by oo the place where t =1 = 0. At
each place w # v", 00 of L we have that D is unramified, namely D,, = D ®p, L, is
isomorphic over L, to M(d, L,,); moreover, B,, = B ®p R,, is isomorphic over L,,
to M(d, Ry ); here R, signifies the ring of integers of the completion L,, of L at w.
At v"” and oo the division algebra D ramifies, and has the invariants 1/d at v”, —1/d
at co. Indeed, in general, if E/F is a cyclic extension of local fields and o generates
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Gal(E/F), the cyclic algebra (E/F,0,a) = (E,0;00 = o(z)x, olFF = a), where
a € F*, has invariant inv = k/[E : F] in (the Brauer group Br(F) ~) Q/Z if a is
% up to a unit in F*, where 7 is a uniformizer in F*.

Definition 6.1. An ideal, or lattice, in the division algebra D is a finitely generated
R-module. An ideal class is the set of all right (or left) multiples by elements of
D* of an ideal. An order in D is a multiplicatively closed lattice, namely an open
compact subring of D. If it is maximal then its tensor product with L over R is
D. The class number of the division algebra D is the number of right (or left) ideal
classes in any maximal order; it is independent of the choice of a maximal order.
A type in D is an orbit under conjugation by D* of a maximal order.

Proposition 6.1. If B’ is an order in D then there is x in D> with tB'x~1 C B.

Proof. The ring B is a maximal order in D. Since F, is perfect, D is Euclidean,
hence D has class number one. Consequently D has only one type, namely B is
the unique maximal order in D up to conjugation by D*, as required. O

Corollary 6.2. Let L' be a finite extension of L in D. Let R' be the ring of
functions in L' which are reqular outside co. Then there exists an x in D> with
xR'z™! C B.

Proof. The ring R’ is an order in D. O

Remark 6.1. A field extension L’ of L embeds in D if and only if [L' : L] divides d
and both L', = L' ®p, L, and L = L' ®, Lo, are fields. The centralizer Zp(L')
of L’ in D is a division algebra, central of rank d/[L’ : L] over L’. The invariants
of Zp(L') over L' are [L' : L]/d at v", —[L’ : L]/d at oo, and 0 elsewhere.

Let F' = Fy(C) be a function field as in section 1, fix a place co and denote by
A the ring of functions on C which are regular on C' — {oo}. Let v be a fixed place
in Spec A, and fix ¢ = p? as above.

Definition 6.2. (1) Let S denote the set of isogeny classes of elliptic modules ¢
of rank r and characteristic v over F,. (2) Let S’ be the set of isomorphism classes
of pairs (F’,t), where F' is a field extension of F with [F’ : F] dividing r such
that F/, = F' @ Fw is a field, and ¢ is an element of F'* with (i) F' = F(t), (ii)
t| = ¢*/", and (iii) ¢ has a zero only at one place v’ of F’ above v.

In (ii) the absolute value |-| is the extension to F_ of the absolute value on F,
such that the valuation group |FX| of FX is p”.

Theorem 6.3. The map which associates to the elliptic module ¢ of rank r and
characteristic v over F, the pair (F',t), where t (= 7%) is the Frobenius morphism
in End E (we put E for E,), and F' is the subalgebra F(t) of F@sEnd E generated
by t, yields an isomorphism from S to S’.

Proof. (i) Given a pair (F’,t) in S’, consider the maximal order B = F,[7] in the
division algebra D = F,(7), where 7 is an indeterminate subject to the relations
7¢ = t, and uPT = Tu for all u in F,. We have [t| = p¥/" by (ii). Let d”, r" be
relatively prime positive integers with d/r = d”/r”. The valuation group |F*| of
F* is p”. Since Z+d"Z/r" = Z/r", the valuation group of F'*, which is generated
by p” and |t| = pd" /" g BT a'z/r"
Hence

The valuation group of L = F,(t) is p

[F': F)J|[F': L] = [F. : Fso]/[F. : Loo)
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=Z/" 7)) Z)r" - d"7)r") =" ]d" =r/d,
and d/[F' : L] = r/[F" : F] is an integer. At the places v’, oo of F’ over the
places v/, co of L we have that F),, F/ are fields. Hence F’ embeds in the division
algebra D which ramifies precisely at v”, co, and has rank d over L. In particular
F embeds in D. Corollary 7?7 implies that after conjugating F' by some x in D*|
we may assume that the image of the ring A of functions in F' regular outside oo
lies in B = F,[7].

To verify that the resulting homomorphism ¢ : A — B is an elliptic module, note
that |@a| = |a| = p*»(® = |7|"r(4) since |7¢| = |t| = ¢*/". Hence the highest power
of 7 in ¢, is 77%»(), and ¢ is an elliptic module of rank r whose characteristic is
the restriction v of v’ from F' to F.

(ii) Let ¢ : A — B = Fy[r] be an elliptic module of rank r and characteristic
v over F,. It extends to a homomorphism F' — D = F,(7). The center of D is
L =T,(t), where t = 79. Let F’ = F(t) be the subalgebra of F ® 4 End E generated
by the endomorphism ¢ of E. Then F’ is a commutative semisimple subalgebra of
the division algebra D. Hence F” is a field. The division algebra D is ramified
precisely at the two places v”/,00 of L. The embedding of F’ in D specifies two
places v/, 00 of F’ whose restrictions to L are v”, 00, such that F), and F., are
fields. The restrictions of v/, 00 to F are the places v, 0o0. Indeed, the existence of
the extension A, — A, — D ®g R, = Fy[[7]] of ¢ : A — D = F,[r] implies that
the characteristic of ¢ is v. Proposition 77 asserts that Fi,o ® 4 End E is a division
algebra. Hence F' ®p F., is a field, and it is equal to F’_ . On the other hand
F’ @ F, is the direct sum of F), and the F,, where w’ are the places of F’ over v
other than v’. Since the only zero of ¢t in L =T, (t) is by definition at v”, and v’ is
the only place of F' = F(t) over v”, it follows that the only zero of ¢ in F’ is at v’.

Recall that v,(a),v,(a) (a in A) are defined by |a| = p»(?) = ¢¥a(). As F lies
in D we have |a] = |@,| = |77%(®)| = [t"a(@)| hence |7| = p*/" and |t| = ¢'/". This
defines the extension of the absolute value to F’. Since |t| = ¢!/" we have as in (i)
that

r/[F': F]=d/[F': L] =1k, D/[F': L].
This is an integer since F’ is a field extension of L in D. O

Remark 6.2. (i) The centralizer D’ = Zp(F') of F’ in D is a division algebra of
rank ' = r/[F’ : F|(= d/[F’ : L]) over its center F'. Its invariants are 1/r" at
v',—1/r" at oo, and 0 elsewhere. (ii) Since ¢ is defined over F, we have that End E
is an order in D. Since F' = F(t) centralizes End F, End E is an order in D'.

Let A’ be the ring of functions in F” whose only possible pole is at oo. As follows
from (ii) in the proof of Theorem ??, and Corollary ??, the map ¢ : A - B = F,[7]
extends to a monomorphism ¢’ : A’ — B, which is an elliptic A’-module of rank
r’ = r/[F’ : F] and characteristic v’. Since the class group of A’ is finite, at each
place w’ # oo of F’ we can choose 7’ in A’ whose only zero is at w’. As in Theorem

77, we define the torsion module E,..(IF,) where E’ = E,/, and the Tate module
Tw/ (Eg,/) = HOHlAf , (F;//A;)/ y th,lr/m (Fp))

At each w’ # v’ in Spec A’, the proof of Theorem ?? shows that T, (E,) is a free

Al ,-module of rank 7’ (we simply have to replace A, F,v,r by A’, F',v',r', etc.).

Proposition 6.4. At v' we have T, (E") = {0}.
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Proof. We can use t to define T,/ (E’), since t lies in A’ and the only zero of ¢ is at
v’. The torsion module EJ.. (F,) consists of the z in E'(F,) (= F, as a group) with
t™x = 0 for some m. But t is a power of the Frobenius homomorphism z — zP,
and the only solution of z?” = 0 is x = 0. Hence E}..(F,) = {0} for all m, and the

proposition follows. O

Remark 6.3. Proposition ?? completes the description of the Tate module, which
was started in Theorem 77 in the case where w is prime to the characteristic.

Let ¢ be an elliptic module of rank r and characteristic v over F,. Since 4 is
finitely generated and finite fields are perfect, ¢ is defined over F, for some g = p?
divisible by ¢, = |A/v|. The construction of the pair (F’,t) depends on the choice
of d. If d is replaced by d’ > d, then ¢ = 7¢ is replaced by ¢’ = 7% and F’ = F(t)
by F" = F(t'). We shall associate to ¢ the smallest possible F’ on considering
all possible values of d, or t, namely on replacing t by a sufficiently large power of
itself. We thus make the following

Definition 6.3. An (F,v)-type is an isomorphism class of pairs (F”,v") consisting
of (i) a field extension F’ of F such that v’ = r/[F’ : F] is an integer and F. =
F' ®F Fw is a field, (ii) a place v’ of F’ over v, such that for any ¢t in A’ with the
property that ¢ has a zero only at v’, we have F' = F ().

Theorem 77 associates a unique type to each elliptic module ¢ over Fp.

Corollary 6.5. (i) The map of Theorem ?? defines an isomorphism from the set
of isogeny classes of elliptic modules of rank v and characteristic v over F,, to the
set of (F,v)-types (F',v"). (ii) The ring of endomorphisms of an elliptic module of
type (F',v") is an order in a division algebra which is central over F' and whose
nonzero invariants are 1)1’ at o', —1/r" at co. (iii) Moreover, T,y (E') = (A',)"
for w' # " in Spec A', and T,/ (E") = {0}.

Proof. Replacing ¢ by an isogenous elliptic module ¢’ amounts to conjugating F’
by an element of D*. O

Proposition 6.6. If (F',v') is an (F,v)-type, the completion F,, of F' at v’ is F,.

Proof. We have to show that the decomposition group of F'/F at v’ is trivial,
namely that any endomorphism o of F’ over F which fixes v’ is trivial. Let ¢ be a
nonconstant element of A" whose only zeroes are at v'; its only pole is at co. Then
F' = F(t™) for any positive integer m. Since F. = F' @p Fw is a field we have
ooo = oo. Hence the only zeroes (resp. poles) of ot are at v’ (resp. o0), and they
have the same multiplicity as those of t. Thus ¢/ot has neither zeroes nor poles;
hence it is a scalar in F’. Since the field of scalars of F’ is finite, there exists a
positive integer m with ot™ = t™. As F’ is equal to F(t™), we conclude that o
fixes F”, as required. O

Let Y = Y (F’,v') denote the isogeny class of elliptic modules ¢ of rank r and
characteristic v over F,, of (F,v)-type (F’,v’), equipped with a level structure v :

(F/A)" — E(F,) of all levels. Then the set M, ,(F,) of isomorphism classes of
elliptic modules ¢ of rank r and characteristic v over IF,, with level structure 1) is
the disjoint union of the Y over all types. Proposition 77 defines an action of the

adele group G(Ay) = GL(r,Ay) on M, ,(F)).
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Proposition 6.7. (i) The group G(Ay) acts transitively on Y =Y (F',v').
(ii) The Frobenius endomorphism Fr, : x — x% of F, = A/v acts on Y.

Proof. (i) Let E = E,, E' = E, be isogenous elliptic modules. Then there is an
isogeny P : E — E’. Denote its kernel by H. Via the level structure ¢ : (F/A)" —
E(F,) we identify H with the subgroup ="' H of (F/A)". Let g be an element of

G(Ay) N M(r, A) whose kernel is H when acting on (F//A)". Then gE is E’. We
use the diagram

1 = ¢ 'H — (F/A" 5 (F/A" — 1
R vl Lgv
1 - H — EF,) % FF) — 1L
Also, given E, and g in G, then gF is isogenous to E by definition.
(ii) This follows from Proposition ?7(ii), with p/ = g, in the notations there. [

Our aim in this remainder of this section is to fix notations and embeddings,
relative to the fields F' and F’, which are used in the description of the isogeny
class Y/(F',v') in section 7 below. Denote by A’ the ring of adeles of F', by A’

the ring of adeles of F’ without the oo component, and by A’f”, the F’-adeles
without the co and v’ components. Similarly we have A, Ay and A} for F. Put
G, = GL(r, F,,) and G = GL(r,A}). Then G(Ay) = GL(r,Af) is G, x G".
Recall that 7" = r/[F" : F]. To fix an embedding of GL(r’,A%) in G(Ay), note

that the F-vector spaces F'" and F" are isomorphic. At each w in Spec A we
then have an isomorphism over F,, of @w/Fl’Uﬂ"l = (F' ®Fp Fw)rl with F; the sum
ranges over all places w’ of F’ over w. We may choose the isomorphism so that
DuAl," = (A" @4 Ay)" is mapped to A7, namely we have @ Ty (E') ~ Ty (E).
Further, we obtain an embedding of [[,, GL(r', F,) in G\, = GL(r, F,,), and we
may regard the image as lying in a standard (diagonal) Levi subgroup. At w = v
we have F' ®p F, = F), ® (P F,,), where w' ranges over the places of F’ over
v with w’ # v'. Recall that F!, ~ F, by Proposition ??. Consequently we have
an embedding of GL(r/, F),) as the group of matrices (¢?) in the standard Levi
subgroup M, of the standard (upper triangular) parabolic subgroup P, of G, of
type (', —r’). The group P, depends on F’. Denote by N, the unipotent radical
of P,, and by S, the subgroup of M, which is the image of the group of g in
GL(r', F,) whose determinant det g is a unit in F},.

Recall that D’* = Zp(F')* is the multiplicative group of a division algebra
of rank 7’ central over F’ which splits away from v’,co. Fixing an isomorphism
D!, =D ®p F, ~ M(r', F!,) at each w’' # v’, 00, we embed D'* diagonally in
GL(r', A}""), hence in G* = GL(r, AY). At v/ we have (i) that D/, = D' @ F), is
a division algebra, and (ii) an epimorphism

D!,* - 7Z~F,*/A,* ~GL(r' F)/S,,

defined by the composition of the reduced norm and the valuation. Hence we have
amap D'* — G, /S, which factorizes through M, /S,, obtained from combining all
maps D!, — G, /S, for all places w’ over v. In conclusion we obtain an embedding
of D'* in G¥ x M, /S,, hence in G/S,.
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7. COUNTING POINTS

We shall now describe each isogeny class in M, ,(F,) and the action of the
Frobenius on it. The group G(Ay) acts transitively on the isogeny class, and our
task is to find the stabilizer of an element in the class, in order to describe the
isogeny class as a homogeneous space. Recall that the isogeny class in M, ,(F,)
which corresponds to the type (F”,v’) is denoted by Y (F’,v"). Denote by Fr, the
Frobenius morphism z + 2% of F, over F, = A/v. As noted in Proposition ??
(ii), Fr, acts on Y (F',v"). We use the notations M, N,, S,, etc., introduced at

the end of section 6. We shall now prove the following

Proposition 7.1. (1) Let (p,%) be an elliptic module with level structure in the
isogeny class Y (F',v") in M, ,(F,). Then the subgroup of G(As) which fizes the
(isomorphism class of the) pair (p, 1) is equal to N,S,D'* (the embedding of D'*
in G(Ay)/S, is defined at the end of section 6). Hence Y (F',v'") is isomorphic
to (G(Ay)/SyN,)/D'* as a homogeneous space. (2) The Frobenius morphism Fr,
acts as right multiplication by an element g in G(A%}) (C G(Ay)) whose component
guw 18 1 at each w' # v’ in Spec A, and g, is an element of GL(r', F!,) whose
determinant is a uniformizer of F), ~ F,.

Proof. (i) Since (F/A)" = @y (Fy/Aw)", the level structure ¢ : (F/A)" — E(F,)
is a set {¢y : (Fuw/Aw)"” — Eyw(F,)} of level structures for all w in Spec A. As
usual, for each w we put E,, = ligE,rﬁ, where Fgm is the annihilator of w7 in F,

m
and m,, is an element of A — F, whose only zero is at w. By Theorem 77, at each

w # v the level structure vy, : (Fyy/Aw)" — Ew(F,) is an isomorphism; it defines
an isomorphism of

Al =Homa, (Fyy/Aw, (Fu/Aw)") with T, (E) = Homa,, (Fy/Aw, Ew(Fp)).

For ¢/, in G, N M (r, Ay) and a # 0 in A,,, we clearly have that g/ ¢, = ai,, if
and only if ¢/, = a, when w # v.
(ii) Recall from the end of section 6 that at v we have

P, =M,N, C G,, M,=DM.M/", M,=GL(¥,F,), M =GL(r—1,F,).

Let g be an element of G(A}) with g,v = 1 at w’ # ¢/, and g, in M, N M (r, A,). To
analyze the action of g on (¢, ), recall that T,/ (E') = {0}; E' = E,, and ¢’ is the
elliptic A’-module extending ¢ from A to A’. The level structure map is therefore
the zero map v, : (F),/A.,)" — {0}. For any nonscalar b in A" whose only zeroes
are at v' we have that ¢} (z) is equal to a nonzero scalar multiple of 2" Let n
denote the valuation of the determinant of g,s. If n = 0 then multiplication by g,
does not change the cardinality of (A, /bA!,)", hence g, 1, = . If n =1, then
the kernel of multiplication by g,» on (F’,/A.,)"" is isomorphic to 7~1A!, /A’ ;
m denotes a uniformizer in A],. Hence the element g acts on ¢ as the quotient
map P on Ga,F,, whose kernel corresponds to the ideal (z9) of F,[z]. As noted in
Proposition ?7?, this is the same as the action of Fr,. For general n, g acts as Frj;
(2) follows.

(iii) As noted at the end of section 6, at v we have T,(E) ~ A”~"". The level
structure 1, defines as in (i) a surjection A7 — A”~"" with kernel A” . The level
structure 1, is fixed by the group action (together with the elliptic module ¢) when
this map is fixed. Note that any ¢/, in P, = M/ M/'N,, can be written uniquely as
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a product m'm”n with m’ in M/, m” in M, n in N,. It follows that g] in
G, N M(r,A,) and a # 0 in A, satisfy g/, = ayp, if and only if ¢/ lies in P,
m” = a and deg(detm’) = r’ deg(a).

(iv) The action of G(Ay) on the isogeny class Y (F’,v") defines for each ¢’ in G(Af)N
M (r, A) an isogeny p(g') in B = F,[7] on the elliptic module ¢ : A — B (to another
elliptic module ¢’ in Y (F’,v")); for each g in G(Ay) we obtain an element p(g) in
the quotient ring D = Fy(7). It follows from (i) and (iii) that p(g) = 1 if and only if
g lies in S, N,,. Our purpose is to determine the set of g in G(Af)/S, N, such that
p(g) is an element of D = F,(7) which commutes with ¢; in other words, ¢’ is ¢.
Namely, we have to determine the centralizer Zp(A) in D of (the image by ¢ of)
A (in D). The center of D is L, and F' = AL. Hence Zp(A) = Zp(F') = D'. We
conclude that (G(Af)/S,N,)/D'* acts transitively on the set of points in Y (F”,v’),
as required. [l

Let n be a positive integer. Let I, ,, denote the extension of degree n of F,, = A/v
in F,,. The set M, ,, ;(F,,) of F, ,-points of M,.; ,,, namely the set of isomorphism
classes of elliptic modules of rank r, characteristic v, level I, over I, ,,, is the set
M, 1(F,)F™ of the points in M, , 1(F,) fixed by Frl'. It is the union over (F’,v’)
of the sets Y, where Y = Y (F',v') and § in GL(7/, F,,)) has deg, (det §) = n.

Let us describe the homogeneous space

Y = U\(G(Af)/SuNo) /D™ = (U\Go /SNy x U\G") /D",
where U = Uy is the congruence subgroup defined by I. By the Iwasawa decompo-
sition
G,=U,P,=U,M,N,
we have
UN\Gy/Ny = U, N M,\M,,
and
UGy /SuNy = Z x (U, N M\M)),
as M/ /S, = Z. Further,
D' @p (F' @p Fy) = (D' ®@p Fly) @ (Suw M(r', F,))

(w’ ranges over the primes of F’ above v with w’ # v’), and its multiplicative group
maps onto Z x M.'; we write (v(7),~.) for the image in Z x M/ of v in D’'*; here
Yo = (7,-..,7) lies in the subgroup [],, GL(r’", F},) of M,'. The group D'* maps
diagonally into U”\G". Hence

Y = [Zx (Uy 0 M/\M,) x (U\G")]/D"*,

and § is the element (n,1,1) in Y. Note that (n,1,1) commutes with (the image
of) D'*.

Next we describe the points y in Y fixed by §. Thus y§ = y. Then y is
represented by a triple g = (z, gy, ") with z in Z, g, in M/, g* in G¥. Moreover,
there are u, in U, N M/, v’ in U?, and v in D', such that ¢§ = (u,u’)"lgy.
Then v(y) = deg,(det~y) equals n, where det denotes the reduced norm on the
multiplicative group of the division algebra D’ ® s F),. Hence the equation g§ =
(upu?)~Lgy becomes

z+n=z+0(7), 919, =u, and g°y(¢g")"" = u".
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To interprete these equations (in the next corollary), it will be convenient to
introduce the following terminology. By a parabolic subgroup P of G, we mean a
standard one, one which contains the upper triangular subgroup. Given h in G,
there is a parabolic P such that the conjugacy class of h intersects (nontrivially) P,
but not any proper parabolic subgroup of P. We call h semisimple if its conjugacy
class intersects the (standard, i.e., containing the diagonal) Levi subgroup M of
P. Note that this notion differs from the usual definition where h is required to be
diagonalizable over an algebraic closure of F,. For example, when char F, = 2 and
bis in F, — F?2, the element h(b) = (9 }) is semisimple in GL(2, F,,), but it is not
diagonalizable over F,.

An equivalent definition states: h is semisimple if the Fj-subalgebra H of the
matrix algebra M (r, F,) generated by h is a semisimple algebra over F,,, namely H
has no nonzero nilpotents. Then H is a direct sum of field extensions of F,.

In general, let R be the nilradical of H. Then H = H/R is again a sum of fields.
The problem of finding a Jordan decomposition for h is equivalent to the problem
of lifting H to H, which is possible if H is separable over F, but not in general
(e.g., consider a nonperfect field F, of characteristic 2, and take a € F, — F2. Put
H = F,[z] with 22 = a +y,y* = 0. Then H = F,[a'/?], but there is no element in
H with square a).

Every h in G, has a Jordan decomposition as a product h’h’ of commuting
semisimple and unipotent elements A’ and A" of G,.

A (necessarily semisimple) element h is called elliptic if the center of the central-
izer Z,(G,) of h in G, is compact modulo the center Z, of G,,. If h is semisimple
then Z,(G,) ~ [[, GL(r;, F;), 1 < i < t, where F; are field extensions of F, and
> 1ilF; : Fy) = r. Correspondingly, we write h = hy @ --- @ hy. Each h; is elliptic
in GL(r;[F; : F,], Fy,). In the example above, h(b) is elliptic; its centralizer is the
multiplicative group of the (inseparable) quadratic extension of F, generated by
h(b). Let N; be the norm map from F; to F,. Let n be an integer.

Definition 7.1. The semisimple element h of G, is called n-admissible if there
exists j (1<j<t) such that deg(N,h;) = n and deg(N;h;) = 0 for all i # j. An
element h of G, is called n-admissible if its semisimple part is n-admissible.

There is a natural bijection from the set of conjugacy classes ¢’ in (D' @p F,)*
to the set of elliptic conjugacy classes ¢ in M, = GL(r', F},). Here ¢’ corresponds
to ¢ if they have equal characteristic polynomials. We conclude

Corollary 7.2. The image in (D' ®p: F!,)* of the element v of D> defined above
by y in YS corresponds to an n-admissible element of G.,,. O

However, the element + is not uniquely determined by y. We have the following
Lemma 7.3. The conjugacy class of v in D' is uniquely determined by y.

Proof. Suppose that the representative g = (2, gy, %) is replaced by ¢’ = v'gd, v’
in U, 6 in D'*. Then there are v in U, v/ in D'* with «/gdF = (")~ 1-u'gd - 7.
Use g = u~1gyF ! on the left to get v/ ~1u"u'u=t = g(0y'F 16 Fy 1)g~!. Hence
v(y") = v(y), and the element 07'6~1y~! of D’* has characteristic polynomial
whose coefficients are integral at each w’ in Spec A’, and also at oo, since the
determinant of §7/6~'y~! is rational in F’* and a unit at each w’ in Spec A’.
Hence 07/~ 1471 is a scalar which is a unit in F/*. It has to be 1 since U = Uy is a
congruence subgroup and I # {0} is prime to v. Hence 7/ = § =146, as required. [
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Proposition 7.4. Let v be an element of D'* which is n-admissible over F,. Let
Z,(D'*) be the centralizer of v in D'*. The set of pointsy in Y'S which correspond
to v is isomorphic to the set of cosets g = (z,4.,9") in

[Z x (Up N MAM) x (U\G")]/Z,(D")
with g*y(g?)~1 in UV and g~ (")~ in U, N M.

Proof. We have to determine the set of g in Zx (U,NM\M]')x (U"\G") which yield
7, namely satisfy (i) u=lgy = ¢&; here and below wu,u’,u” lie in (U, N M) x U".
Replacing g by another representative ¢’ = u/gd (6 in D'*) which also yields ~,
thus v’ ~1g'y = ¢’F or (i) v/~ ~1u'gdy = g6, we conclude from (i) and (ii) that
0 = ~d, and the proposition follows. O

Remark 7.1. If v is an n-admissible element of G, then it determines /', M, =
M x M and a field extension F,(v) of F,, of degree ' and residual degree e, (y) =
[Z : deg,, (det Z,(M))))]. Here det is the determinant in M; det Z, (M) is the image
of the norm from F,(y)* to F.*. Further, deg, is the valuation on F, = F,. The
global element v of D'* determines the type (F’,v’); see part (ii) of the proof of
Proposition 7.5 below.

Definition 7.2. (i) The centralizer G’ = Z,(G) in G of a semisimple element 7 in
G(F) is defined over F. An invariant differential form w’ of maximal degree on G’
rational over F' defines a Haar measure on G, = Z,(G,,) at each place w of F, and
the product Haar measure on G'(A) = Z,(G(A)). Let Z, be the center of Gu.
The volume

1Z(G(A)/25(G) Zoo| = 121(G o)/ Zoo - | 21(G(Af)) ) 2,(G)]

is independent of the choice of the rational form. The differential form defines
also a measure on any inner form of G’. Choose the measure so that the volume
|U,NG. | is one. Similarly, for any semisimple v in M, we choose the Haar measure
on Z,(M)) with |U, N Z,(M)| = 1. In particular |U, " M}/| = 1. When v =1
we have G’ = G and the measure is denoted by w. On discrete sets we choose the
measure which assigns the value one to each point. Let dg be the product measure
on Z x M x G".

(ii) Let x¥ be the quotient by |U"| of the characteristic function of U”. For 4" in
G put

d(vY,x") = / X" (gv9~")dg.
G /2,(G?)

Let xJ/ be the characteristic function of U, N M in M. For ~)/ in M’ put

v v
(v, Xl) = / Xo (g9~ )dg.
MY /2. (M)

The measures are those of (i).

Proposition 7.5. The set M, 1(Fy ) is isomorphic to the union over all conju-
gacy classes of v in G(F') which are elliptic over Fy, and n-admissible over F,, of
the cosets
(2:94+9") € [Z x (Uy N M\M) x (U\G")]/Z,(G)
with
X" (9" v(g") Xy (a7 () ~1) # 0.
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The number of cosets corresponding to vy is
/ Xo (957 (9) X" (9”7 (9") ) dg
(ZxM!'xG")/Z~(G)

= 12:(G(A)/2,(G)] - €,(7) - 2(n), x) - D(7: X7),
where e, (y) = [Z : deg, (det Z,(M)))] is defined in Remark ?7?.

Proof. (i) The set M, , 1(F, ) is isomorphic to the union over all types (F’,v’)
of the sets Y¥, Y = Y(F',v'), § = Fr!’. Each set Y¥ is the disjoint union of
sets parametrized by conjugacy classes v in D’*, where D’ is defined by F’. The
conjugacy class v in D'* corresponds to a conjugacy class also denoted by v in
the centralizer G' = Zg(F') of F'* in G(F), hence in G(F'). This conjugacy
class is elliptic in G(F), and n-admissible in G(F). In particular the centralizer
Zy((D'®@p: Fl,)*) of vin (D' ®p F),)* is isomorphic to the centralizer Z. (M) of
in M, so that e/ () is defined (see Remark ??). Moreover the inner forms Z, (D’*)
and Z,(G") are isomorphic, and the conjugacy class ~ intersects (U, N M) x U".

(ii) Conversely, let v be an element of G(F') which is elliptic in G(Fx ), n-admissible
in G(F,) (hence v determines r’ and a Levi subgroup M, = M/} x M} of G,,
which is standard, up to conjugacy), and its conjugacy class in G(F') intersects
(U, N M) x U". Then the conjugacy class of v determines a unique type (F’,v’).
Indeed, the definition of n-admissibility determines a place v"' of F(v) over v. The
element ~y is a unit outside v”, 0o, and its only zero is at v”". Let F’ be the smallest
field of the form F'(y™), where m is a positive integer. Let v’ be the restriction of
v” to F’. Then (F’,v) is a type which is uniquely determined by the conjugacy
class of ~y, and the proposition follows. O

Our next aim is to express the factor e, (y)®(vy), xu) and the condition that
v is n-admissible, in a unified, convenient way. We define in the next section a
spherical function f, , on G, whose orbital integral ®(v, f, ) will turn out to have
the property that it is zero unless v is n-admissible in G,,, where it is equal to our
factor.
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8. SPHERICAL FUNCTIONS

In this section we compute the orbital integrals of a certain spherical function,
which is introduced in Definition ?? below. We give two methods of computation.
That of Proposition ?? is natural; it is based on representation theoretic techniques,
as presented for example in [?], [?], [?], [?], [?], [?], [?], [?]. That of Proposition
8.12 is elementary. It is due to Drinfeld. This section is independent of the rest of
the work. In particular, we work with a local field F' which is nonarchimedean but
of any characteristic.

We begin with fixing the notations. Let R be the ring of integers of F; G =
GL(r, F); K = GL(r, R); Z the center of G; A the diagonal subgroup; U the upper
triangular unipotent subgroup; B = AU; P = M N a maximal parabolic subgroup
of G of type (s, — s), with Levi subgroup M = M’ x M" (M’ = GL(s, F),M" =
GL(r — s, F')) containing A, and unipotent radical N contained in U. Write P,
M, etc. to indicate the dependence on s (1 < s < 7).

Let 7 be a local uniformizer. Put ¢ = |R/mR|, and normalize the absolute value
|-| and the valuation deg by |7| = ¢~ ! and |a| = ¢~ 9°¢(®)_ All Haar measures are
normalized here to assign the volume one to the intersection with K.

Let C.(G//K) (resp. C.(Z\G//K)) be the convolution algebra of spherical,
namely complex valued K-biinvariant compactly supported functions f, on G (resp.
G/Z). Similarly we have C.(M//M N K). The map f — f, f(z) = [, f(zx)dz,
takes C.(G//K) onto C.(Z\G//K).

Let z be a regular element of G. If the eigenvalues of x are x4, ..., z,, put
1/2
Aw) = | [Tt = 25)*/wia;
i<j

For ¢ = (2/,2") in M = M’ x M" put Ap(x) = App () App (2).
Let T be the centralizer of z in G, and 'T its split component. Put

D(z, f) = o flgzg™")dg, F(z, ) = A(z)®(z, f),

o) = [ Horg iy F(r, 1) = D)2, ).

For = in M, f on M, put ®M(z, f) = fM/T flgzg=1t)dg, etc.

For f on G put fn(z) = 6p(2)'/? [ [ f(k~'ank)dndk. Then F(z,f) =
FM(z, fn) for  in M (see, e.g., [?], section 7). For x = (x1,...,2,) in A with
m; = deg(z;) we put m = (my,...,m,) and F(m, f) = ¢"/>Zem Jo fau)du;
the sum runs through all positive roots « of A in U. For f in C.(G//K) we then
have that F(z, f) = F(m, f); namely F(z, f) depends only on the valuations of the
eigenvalues of .

For f in C.(G//K) we define the Satake transform fY of f to be the poly-
nomial f¥(z) = Y, F(m, f)z™ in z1,.. Zm 2yt 27 m runs through Z7;
z = (z1,...,2r) varies over C*" and we put 2™ = z["'...z"". The symmetric
group S, on r letters acts on C*” by permuting the indices of the entries of z. The
theory of the Satake transform asserts that the map f — f is an isomorphism from
the algebra C.(G//K) to C(C*"/S,). This isomorhism has the following alterna-
tive description. We first note that the set of unramified irreducible G-modules is
isomorphic to C*" /S, as follows. To z corresponds a unique irreducible unramified
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constituent m(z) in the G-module I(z) normalizedly induced from the character
(bij) — II, zfeg(b“) of B. The elements z1,...,z,. are called the Hecke eigenval-
ues of w(z), or I(z). Then C.(G//K) is isomorphic to the algebra C(C*"/S,) by
fY(z) = tr(w(2))(f). In particular, to define a spherical function it suffices to define
its Satake transform, or equivalently its orbital integrals on the split set of G.

Definition 8.1. Let f, = £{") be the member of Co(G//K) defined by tr(m(2))(f,)
= ¢"r=D/235°" 21 equivalently, f, is defined by F(m, f,) = ¢"""V/2 if m =

(n,O, ..,0)in Z" /Sr, and F(m, f,) = 0 otherwise.

For z in G = GL(r, F), put v(z) = deg(detz); it is an integer, in Z. For z in
PGL(r, F), define v(z) in Z/rZ to be v(z’) mod r, where 2’ is a representative of x
in G. The superscript () in (") is to emphasize that this is a function on GL(r, F).

Proposition 8.1. The normalized orbital integral F(f,) is supported on the n-
admissible (see Definition ??) set of G.

Proof. (i) Let T,, be the set of x in G with v(z) = deg(det z) equals n. Then the
integral F'(f,) is zero outside T,,. Indeed, the set T, is K-biinvariant, and the
orbital integrals of f,, multiplied by the characteristic function of T, are equal to
those of f,, on A. Consequently f,, itself is supported on T;,.

(ii) Given s we have P = P, = M N, and a characteristic function x of the set
of z = (¢/,2") in M with |detz’| < |detz”| (thus v(z’) > v(z”)). The func-
tion Xfr(;\)/ lies in C.(M//M N K). We claim that it is equal to the function
qn(T*S)/Qf,(lS)(x/)fér_s) (") in Co(M//M N K). Indeed, for any m = (m/,m”) in
Z", where m' = (mj) in Z°, m" = (m/) in Z"~*, we have

FM(m,x f00) = FM(m, f) = F(m, )

:qn(r—s)/QFM’( 7f7(ls))FM (m/, éT*S))
if >, m; <>, mj, by definition, and

FM(mxfyy) = 0= FM (!, ()M (m”, )
otherwise. This proves the claim. Since

FM (") xS i) = F((@,a), £)
on the z = (a/, ") with x(x) # 0, the proposition follows by inductionon s > 1. O

Definition 8.2. A (locally-constant compactly supported complex valued) function
f on G is called discrete if its orbital integral ®(z, f) vanishes at each regular
(distinct eigenvalues) nonelliptic element z of G.

Corollary 8.2. For every n > 1 there exists a discrete function f3¢ on G, and
a function f1°8 on G which vanishes on the elliptic set of G, such that ®(x, f,,) =
O(x, fd15¢) + ®(z, f2°8) for every x in G.

Proof. Note that all eigenvalues of an n-admissible element have the same valua-
tions if and only if the element is elliptic, and if and only if none of its eigenvalues
is a unit. Since the valuation group is discrete, and the topology on G is totally dis-
connected, it is clear that there exists an open closed subset T" of G which contains
all n-admissible « in G which are not elliptic. The corollary holds with f}° =6 fn,
where 6 is the characteristic function of T'.
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By virtue of Proposition ??, to compute ®(z, f,) it suffices to consider n-
admissible z. In this case we may assume that x = (2/,2") lies in M = M’ x M"|
where 2’ is elliptic in M’ with v(z’) = n, and 2" lies (up to conjugation in M") in
M" N K = GL(r — s, R). Note that the eigenvalues of 2" are units, but those of 2’
are not. In this case

Ay (x)/Az) = DG/M(I)71/2 = §P(3;)*1/2 — qfn(rfs)/Q
(Seev e.g., [?], PrOpOSition 7) Hence

Oz, [) = (Anr(2)/A2)@M (2, f3) = ¢ 20M (2, £(7)

n

_ qfn(rfs)/Z[qn(rfs)/Q‘I)M’ (x/7f7(LS))(I)M” ($//,f(§T_S))]

= oM (!, ()M (@, f5).

Since the second factor here is ®(z”,x”) in the notations of Proposition ??, this
reduces the computation to the case where x is elliptic; here r = s and = = ’.

Let G be a reductive p-adic group with compact center. A unitary (by which we
mean unitarizable) irreducible admissible G-module 7y is called square-integrable if
its matrix coefficients are absolutely square-integrable on G. Let my be a square-
integrable G-module.

Definition 8.3. A compactly supported locally-constant complex valued function
fo on G is called a pseudo coefficient of my if trmo(fo) = 1 and tra(fp) = 0 for
every irreducible tempered G module 7 inequivalent to .

Although the following is valid in greater generality, we state it only in our
context of G = GL(r, F).

Lemma 8.3. (1) For any square integrable mo there exists a pseudo coefficient.
(2) The orbital integral ®(z, fo) of a pseudo coefficient fqy is zero on every reqular
nonelliptic element x of G, and '®(x, fo) = X, (x) on the regular elliptic set of G;
here X, is the complex conjugate of the character x, of mo.

Proof. (1) follows from the trace Paley-Wiener theorem of [?]; (2) is Theorem K of
[?] in characteristic zero. When char F is positive, denote by G’ an anisotropic form
of G. Note that one has a correspondence of G modules with G’-modules, stated by
means of character relations; this well known correspondence can be deduced, e.g.
as in [?], using [?] from the analogous result in characteristic zero. Alternatively,
a simple proof of this correspondence, also in positive characteristic, is given in
[?]. From the corresponding standard fact for G’-modules, it then follows that the
restrictions of the characters of the square integrable G-modules to the elliptic set
make a complete orthonormal set in the usual inner product on the set of class
functions on the elliptic regular set of G. Since the character is a locally constant
function on the regular set (a well known result of Harish-Chandra), the orbital
integral of a pseudo coefficient f of 7y is related to ., as in (2). O

For each s < r, let St; be the Steinberg PGL(s, F')-module contained in Iy =
I(qts=172 qls=3)/2  ¢(1=9)/2) By [?] it is the unique square-integrable con-
stituent in I;. Let ws be an unramified character of F* primitive of order s, and
put (s = ws(m)~1. Let fs; be a pseudo coefficient of Sty ®w?; it exists by Lemma
77 above. Put u, s(z) = Y0, (M fs.i(2).



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 65

Lemma 8.4. If z is regular then '®(xz,uy s) is zero unless x is elliptic with v(zx) =
n(mod s), where it is equal to (—1)*"1s.

Proof. This follows from Lemma ?7?(2), since the character of Sts is (—1)*~! on the
elliptic set. ([

Let J be an Iwahori subgroup of G. Then we have the following.

Lemma 8.5. An irreducible G-module m has a nonzero J-fixed vector if and only
if it is a subquotient of an induced unramified G-module 1(z).

Proof. This is (4.7) in [?]. Another proof, and a generalization to the tame sub-
group, is in [?], Theorem 2.1. O

Corollary 8.6. The representation St,; has a nonzero J-fized vector.

Proposition 8.7. Let my be a square-integrable G-module which has a nonzero J-
fized vector. Then my has a pseudo coefficient fo with the property that tr w(fo) = 0
for every irreducible m which has no nonzero J-fixed vector.

Proof. If fr, is a pseudo coefficient of 7y, and 1; is the characteristic function of
J, then fo =17 * fr,. ([l

Remark 8.1. By the results of [?] and [?], the compact open subgroup J is “good”
in the following sense. The category C of algebraic G-modules decomposes as the
direct sum of the category C; of G-modules whose subquotients all have nonzero
J-fixed vectors, and the category C” of G-modules whose subquotients never have
nonzero J-fixed vectors. Let Z(C) = Z(C;) @ Z(C”) be the corresponding decom-
position of the Bernstein co-center (see [?], [?]) of this category. Let H(G) denote
the convolution algebra of compactly supported locally constant functions on G.
By [?] there exists f1 in H(G) which acts trivially on C; and as zero on C”. Let
1§ be any pseudo coefficient of my. Then fy = f{ * f1 has the properties asserted
by the proposition.

Corollary 8.8. There exists a pseudo coefficient fr.; of St, @w? with the following
property. Every irreducible m with tr7(f,;) # 0 has a nonzero J-fized vector.

The main result of this section is the following

Proposition 8.9. Suppose that x is elliptic. Then '®(x, 7(17')) isT if v(z) =n, and

0 otherwise.

Proof. To prove the proposition it suffices to show that for z elliptic, ’ CIJ(x,f,(:)) is
zero unless v(z) = n(modr), where the value is r. This will now be proven in five
steps, when z is elliptic regular. Then we will reduce the case of any elliptic = to
this special case.

(i) By induction we assume the claim for all s < r, and prove it for r. For each
s < r, let h, s be a compactly supported locally constant function on Z\G such
that for all regular x we have '®(z,h, ) = 0 unless modulo Z the element z
is n-admissible of size (s,r — s), where '®((2/,2"), hp s) = s’@(w”,féris)). The
existence of h,, s is proven in [?], 1.7, using the trace Paley-Wiener theorem of
[?]. Put h, = ZZ: hns- The induction assumption implies that h,, satisfies
®(h,) = ®(f,,) on the regular nonelliptic set. Hence ®(f,, — hy) is supported on
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the elliptic set, and tr 7(f,, — hy,) = 0 for every nonelliptic G-module 7 (a G-module
7 is called elliptic if its character is not identically zero on the regular elliptic set).
(ii) Let wp, denote the M,-module of Ns-coinvariants of a G-module 7 (see [?]).
The definition (i) of h,,, the Theorem of [?] and the Weyl integration formula, imply
that trw(hy) = >, trwp, (Ansn,). If trm(hy,) # 0 then there is s such that the
M,-module 7p, contains an irreducible 7, x 7/, where 7} is an GL(r — s, F')-module
with a nonzero GL(r — s, R)-fixed vector (since fér_s) is spherical), and 7 is an
GL(s, F)-module with a nonzero J-fixed vector (by Corollary ??). Suppose that 7
is irreducible. Then it follows from Frobenius reciprocity that = is a constituent of
some unramified induced I(z). Hence 7 has an Iwahori fixed vector by Lemma ?7?.
(iii) In particular, if 7 is an irreducible tempered PGL(r, F)-module and tr 7(f, —

hn) # 0, then  is elliptic, hence (by [?]) ramified (does not have a nonzero K-fixed

vector), and trw(h,) = trw(h, — f,,) # 0. But then 7 has (by (ii)) a nonzero
J-fixed vector, and by [?] the tempered 7 is of the form St, ®w? for some i.
(iv) Since h,, is supported on the z in G with v(z) = n(modr), we have

tr(St, @w?) (hy) = Wi(™) tr Sty (hy) = ¢ tr Sty (hy).

(v) By [?], for each maximal parabolic Ps we have (St,.)p, = 7, x 7/ where 7/, 7/
are Steinberg GL(s, F'), GL(r — s, F)-modules. In particular 7 does not have a
GL(r — s, R)-fixed vector unless r — s = 1. Hence from now on we take s =r — 1
and P = P,. We have

tr Sty (hn) = tr(Sty) p(An,n) = tr(Sty) p(hn s, ),
and
(Sty)p = (V2 @ St,_y) x v(177/2,

Here v(a) = |a| is the valuation character on F*. Note that if ®(x,h,) # 0
then v'/2(det2’) = ¢~"/2, which is the inverse of the factor relating F( 7(f)) and
F( ,(Ls))F(f(gT_s)); see the proof of Proposition ??. Hence

tr Sty (hn) = (—1)"7 1 tr Sty (un,s),
by Lemma ??. This is equal to (—1)*~! times

s—1

ZC;” tr Sts(fs,i) =tr Sts(.fs,O) =1

=0

Using (iv) we conclude that
tra(Fy = o+ (=113 ) =0
i=1

for all tempered G-modules 7. The density theorem of [?], Appendix (see also [?],
(19.2), for the special case of GL(r) which is used here; note that the proof holds
also in positive characteristic), implies that

O, =+ (=1)"Mupr) =0
for all (regular) z. Hence
'O(w, ) = —(=1)"TV (@, un) = (=1)"7V O (@, up,r)

on the regular elliptic set; there '®(z,uy ) is 0, unless v(z) = n(modr) where
r(—1)""! is obtained.
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According to Proposition ??, the function ®(z, f,,) is supported on the n-admissible
x. Hence ®(z, f,,) = 0 for any nonelliptic regular z sufficiently close to the elliptic
set. By the germ expansion of orbital integrals (which follows from the uniqueness
of the Haar measure, see [?]), '®(z, f,) extends to a continuous function on the
entire elliptic set. Since u,, , is a discrete function, the last displayed identity holds
for all elliptic =, not necessarily regular. The proposition follows. U

By the reduction argument explained following Corollary ??, we have

Corollary 8.10. The integral q)(m,f,(f)) 1s zero unless x is n-admissible, where
D(x, é”) is equal to el (x)®(x”, xl) in the notations of Proposition ?7?.

Proof. This follows from Proposition ?? and the relation
12:(G)/Z] = [0(Z:(@)) : v(2)] = € (x) /7
where Z,(G) is the centralizer of x in G, and, as usual v(X) = deg(det X). O

Denote by f = f,(f) the spherical function on G = GL(r, F') with Satake trans-
form

PY(2) =0T 4 ),

Denote by h = hgf) the Z-valued spherical function on G which takes the value 0
at g € G unless g € M(r, R) NG and v(g) = n, in which case

hg)=(1—-¢q)(1 - @) (1— qdimk(kerﬁ)—l);

here g € M(r, k), k = R/m, is the reduction of g modulo wM(r, R), and kerg is
the kernel of the endomorphism of k" defined by g.

Lemma 8.11. We have fy(f) = hS{’).

Proof. Tt suffices to show that f¥ = hY, and this follows by induction on r from
the following claim. Denote by 1y the characteristic function of H = GL(t, R) in
GL(t, F). Let P = M N be the standard parabolic subgroup of G of type (1, —1).
Then we claim that for any z = (& 9) with a € F*, b € GL(r — 1, F'), we have

(W) o (2) = "D 2R D (@) Lan o1 ry (0) + ¢/ 2RV (0)1 g (a).

Note that the unipotent radical N of P consists of the matrices u = ({ %),
w=(uy,...,u_1) € F"~1. The modular function is

(SP(.T) — qv(b)f(rfl) deg(a).
By definition of h the value of h,(zu) (and so of (h,)n(z) too) is zero unless

0 # a € R, b is a matrix in GL(r — 1, F') with entries in R, and deg(a) + v(b) = n.
In this last case

(A), () = g = (r=1) deg(@))/2 / WO @u) ] dous
Fret 1<i<r
As usual, the measures du; are normalized to assign R the volume one.
If a € R* and v(b) = n, then hg)(xu) is zero unless u € R"~!, in which case
) (xu) = hg_l)(b), and hsll)(a) = 0, so the claim follows in this case.
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If deg(a) = n and b € GL(r — 1, R), then hy) (zu) is zero unless w € T "R™ 1
in which case h'l (xu) = hgll)(a). Since hgf_l)(b) =0, and the volume of 7" R"~1
is ¢"("=1) the claim follows in this case also.

If deg(a) > 0 and v(b) > 0, then ) (zu) is zero unless u € a~'R"~!, in which
case dimy, ker(7u) is equal to dimy (kerb) — 1 if au does not lie in the span of the
rows of b, and to dimy (kerb) if @& does lie in the span of the rows of b. Hence, by
the definition of hg{'), we have

/ hg) (xu)d’u, _ (1 —q)--- (1 _ qdimk(kerg)—2>vl
Fr—1

+(1 _ (]) L (1 _ qdimk(kerb)—l)‘é.
Here
Vi =vol({u € a™*R"*;au ¢ span (rows of b)})
and
Vo =vol({u € a™*R"~*;au € span (rows of b)}).
The second volume is equal to
qu(g)-l-(?“—l)(deg(a)—l)7

hence the first volume is equal to

q(r—l) deg(a) _ quc(g)—i-(r—1)(deg(a)—1)7

where rk(b) is the rank of the matrix b. Consequently [ hy) (xu)du is zero. Since

Fr—1
h(a) = 0 and AV (b) = 0 the claim follows in this case too, and the lemma is
proven. [

Lemma ?? above as well as Proposition 8.12 below are due to Drinfeld (the
exposition is influenced by Laumon).

Let v be an elliptic element of G. Its centralizer Z(v,G) in G is isomorphic to
GL(r', F") where F' = F[y] C M(r,F) and ' = r/[F’ : F]. Denote by R’ the ring
of integers in F’, and by ¢ the cardinality of the residue field ¥’ of R’. Fix the
Haar measure dgy on Z(v,G) ~ GL(r’', F") to assign GL(r’, R) the volume one.

Proposition 8.12. The value ®(v, f) of the orbital integral of f = fff) at the
elliptic element v € G is zero unless v(7y) = n, in which case

Oy, f)=0—q) - (1—q" K : k.

Proof. The function f is supported on the set of v with v(y) = n, whence the first
assertion. Assuming that v(y) = n > 0, and denoting by deg’ : I’ — Z the discrete
valuation on F’, we have that deg’(y) > 0, hence 7 lies in the maximal ideal m’
of R’. Consequently the minimal polynomial of v lies in R[X], and its reduction
modulo the maximal ideal m = 7R of R is XF"Fl. Tt follows that there exists
g € G with g7'vg € M(r,R). Choose a set I' in {g € G';9g7'vg € M(r, R)} of
representatives for the double classes

Z(v,G)\{g € G;g~'vge M(r,R)}/K, K =GL(r,R).
Then

Oy, f) =Y _vol(Z(y,G) Ky~ "\nKn~", dg/dg)f(n~"vn).
nel’
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Identify G/K with the set of lattices (free rank r R-modules) L in F" by gK +—
gR". The subset {g € G;g7'vg € M(r,R)}/K of G/K is mapped to the set of
lattices L in F" with vL C L. The set I is then isomorphic to a set of representatives
of the Z(~, G)-orbits in the set of lattices L in F" such that vL C L. Given L = nR"
in I we have

nKn~'={g€G;gL =L}
Moreover
dimy, (ker(n=1yn)) = dimy (ker[y : L/7L — L/wL]) = dimy(L/(yL +wL));

we write d(L) for this number. Since the volume of K, and so of 71K, is one,
one obtains

(v, f)=> (1—q)-(1—q"7")/vol({g € Z(v,G); gL = L}, dgy).
Lel

Fix an isomorphism of F" with F'™ as F'-vector spaces. Each lattice L in F"
defines an R'-lattice R'L in R Since T' consists of representatives of GL(r’, F’)-
orbits, these representatives L can be chosen to satisfy R'L = R’ ™. Thus T will
consist of a set of representatives for the GL(r/, R')-orbits in the set of lattices L
in F* with L ¢ R, R'L=R'"", and vL C L.

Now the reciprocal of the volume of {g € Z(vy,G); gL = L} is the index of the
subgroup {g € GL(+', F'); gL = L} in GL(r', R"), since the volume of GL(r', R) is
taken to be one. This is also the number of elements in the GL(r’, R")-orbit of L.
Hence

(b(’% f) = Z(l - q) T (1 - qd(L)_1)7
L
where L ranges over the set of lattices in F” with L ¢ R'™, R'L = R'™, and
~vL C L.

The R-algebra R[y] C R’ is free of rank [F’ : F] as an R-module. It is local with
maximal ideal R[y]N'm' = (m,v). The residue field is R[y]/(m,v) = k.

More generally, let A C R’ be an R-algebra, free of rank [F’ : F] as an R-module,
local with maximal ideal m4 = A N'm’, whose residue field A/m4 is k. Put

D(A)=> (1-q)(1—¢*)-- (1 — gD,
L

where L ranges over the set of lattices L in F" such that L ¢ R'™, R'L = R'",
and AL C L, and where d(A, L) = dimg(L/maL). Note that ®(v, f) = ®(R[v]).
Moreover the sum over L is finite since for any sufficiently large positive integer ¢
we have m’t C A, since an ideal in a local ring contains a power of the maximal
ideal, and consequently

m'' R =m'"R'L=m""L c ALCLCR".

Let t be the least positive integer with m’t C A. We claim that
B(A) = (1—q)1—q?) - (1—¢" K : k]

for all A; the proposition follows once this is proven. The proof is by induction on
t. First assume that ¢ = 1. Then m’ C A, and m'R'™ C L C R for each L in the
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sum which defines ®(A). Writing V = L/m’L C k'’ one obtains
(I)(A) = Z(l — q)(l — q2) .. (1 _ qdimk V_1)’

v

where V' ranges over the finite set of k-vector subspaces of k'™ with &'V = k'".
This is equal to

Z (_1)r'7w'q/(Tlfw')(r/fw/fl)/2D(Wl)’

W0
where W’ ranges over the set of k’-vector subspaces in k'™, w’ = dimy W', and for
any k-vector space W # 0

DW) =Y (1-q)(1—¢*)-- (1 —qgtm™V1y;
V£0

here V ranges over the set of nonzero k-vector subspaces of W. Indeed, for any

k-vector space V
Z(_l)r’—w’q/(r/—w/)(r’—w’—l)/Z
W
is 1if K’V = k'”", and 0 otherwise, where W’ ranges over the set of k’-vector spaces
such that &'V c W' C k'
Recall that the number of v-dimensional vector spaces in a w-dimensional vector

space is
(1—g " ™A —g“ ") (1-q¥)
(I-¢)(1=¢*)--(1-q)
Consequently, if w = dimy W, the sum
- WU (1 — gvTv ) (1 — gv)

D(W)=Z(17q 7

v=1

is equal to w = dimy W. Hence

<I>(A) _ Z(_Dr’—w’w/q/(r’—w’)(r’—w’—l)/Q[k/ . kL
W/
where the sum ranges over all nonzero k’-vector subspaces W’ of k'™; note that
w' = dimg W/, hence dim; W' = w'[k’ : k]. Using again the formula for the
cardinality of the Grassmanian, we obtain

" s P N 1—qlr/_1‘)/+1)...(1_q”"l)
P(A) = 1y w w/q/(r w’)(r'—w 1)/2( i
w ,Z( ) (I1=q)---(1=q")

=(1-¢)1-¢%) - (1—¢" K K],

(k' : K]

as required.

To complete the inductive proof of the claim, if ¢ > 2 is the least integer with
m't ¢ A (but m'*"! ¢ A), put Ay = A+ m/t=t. We proceed to show that
®(A;) = P(A). Note that ®(A) is well-defined since A; C R’ is an R-subalgebra
which is free of rank [F’ : F] as an R-module, it is local with maximal ideal
ma, =ma+m''"1 = Ay Nm’, and its residue field is equal to that of A, namely
to k.

Consider the map L — L; = A{L = AL + m/*~1L, from the set of lattices L
in F" such that L ¢ R, R'L = R, and AL C L, to the set of lattices L; in
F" such that L; lies in R'™, R'Ly = R, and A;L; C L,. This map is clearly
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surjective. The fiber at L; is isomorphic, via the map L — V = L/muL, to the
set of k-vector subspaces V' in Vi = Ly/maLy, whose image under the surjection
m: Vi = Vi = Li/ma, Ly is V1, namely n(V) = V4. Consequently
PA) =) (1—q)(1—qg" Ne(r: V1 = W),
L,
where Ly ranges over the set of lattices in F" with L; ¢ R™, R'L, = R'", and
AlLl C Ll, and where

e(m: Vi —» Vi) = Z(l — g™y (1= g%
v

here V ranges over the set of k-vector subspaces of the Jl-dimensional space 171 =
Li/maL; whose image under the surjection 7 is the dj-dimensional space V; =
Ly /m4, Ly; put d for dimy, V. Then dy < d < d;.

Put Wy = kerm. Themap V—» W =W NV, f: Vi — f/l/véwl/wl nv),
from the set of k-vector subspaces V' in ‘71 with 7V = V4, to the set of pairs (W, f)

where W is a k-vector subspace of W and f : \71 — W1/W is a k-linear map whose
restriction to Wi is the natural surjection W7 — Wi /W, is a bijection. Hence the
number of such V' is the number of k-subspaces of dimensional d —d; in a space of
dimension d; — d;, times the number of elements in a k-space of dimension

(dim V; — dim W1) - (dim Vy — dim V) = (dy — (dy — dy)) - (d1 — d) = dy (dy — d),
namely B B
A—gm= ™) A —g"" ") 4G
B T B
Consequently (7 : V7 — Vp)

S (1 gy (1= o) (1 = gh—d+1)... (1 — D= -
_ Z ( q*) ( (lq_ q)).(”(1Q_ qd_dl)) ( q )qdl(dlfd)

is equal to one, and so ®(A) = ®(A;), completing the inductive proof of the claim,
and the proposition. ([

d=d,
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Part 4. Higher Reciprocity Laws

In this part we use the construction of the moduli scheme of elliptic modules,
the trace formula and various forms of the fixed point formula to obtain various
applications such as the purity theorem, or Ramanujan conjecture for the cuspidal
representations of GL(r) over a function field with a cuspidal component, and
the reciprocity law, relating such representations with irreducible r-dimensional
representations of the Weil group, as well as a local analogue.

9. PURITY THEOREM

The purpose of this section is to prove Ramanujan’s conjecture for cuspidal rep-
resentations 7 of GL(r, A) over a function field, which have a cuspidal component,
namely that all unramified components of such a 7 are tempered, namely that all
of their Hecke eigenvalues have absolute value one. This is deduced from a form
of the trace formula of Arthur, as well as the theory of elliptic modules developed
above, Deligne’s purity of the action of the Frobenius on the cohomology, standard
unitarity estimates for admissible representations, and Grothendieck’s fixed point
formula. Once we assume and use Deligne’s (proven) conjecture on the fixed point
formula, in the following sections, we no longer need the complicated full trace
formula, but the simple trace formula suffices. Thus this section is for pedagogical
purposes only, to show what can be done without Deligne’s conjecture.

Recall (section 4) that for any fixed congruences bubgroup Us of DX, uni-
formizer 7 of Fy, a and a congruence subgroup U = Uy in G(A) we have a finite étale
Galois covering MT = U\M = Spec BY of M, ; = U\M, = Spec BU with Galois
group I' = (m)U\DZ . Fix v in Spec A and put F, = A/v. Let XI Mm 1(Fp)
be the set of IFp points on the fiber Mr vl = Mr,l X gpec 4 OpecF, of Mr,l at v. The
Galois group I" and the adele group G(A[) act on the set l(in)? 7. These two actions
commute. The group F X, embedded dlagonally in the direct product I x G(Ay),
acts trivially. Moreover, X, =U \LX 7. By Corollary 77 the set X = X; decom-

poses as the disjoint union of sets Y parametrized by (F,v)-types (F’,v’), which
by Proposition 7?7 are of the form
Y = (0 x U\G(Ay)/S,N,)/D"*;
recall that D’ naturally embeds in (D' @p Fs)* = DX. The set X = X; =
M, . 1(F,) is the disjoint union over the types (F’,v’) of the sets
= (U\G(Af)/Sva)/D/X-

Let S, S be sets, h : S—San epimorphism, and I a finite group. Suppose that
I" acts simply transitively on h=!(s ) for every s in S. Let A be an automorphism
of S and A of S such that Ah = hA and gA Ag for every g in I'. Given s in S
choose 5 in h=1(s) and define g in T' by AS = ¢5. Let B(s) be the conjugacy class
of g.
Lemma 9.1. The map s — (s) is a well defined map from the set S* of A-fized
points in S, to the set X (I') of conjugacy classes in T.

Proof. Let 5 be any element of S with h(s") = s. Define ¢’ in T by A = g's’. For
some z in I’ we have § = x5. Then ¢'z5 = ¢'s’ = AS = Ax5 = A5 = xgs, and
g, ¢ define the same conjugacy class. [
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In our case we put " = 1 x Fr™. It acts on X and on X. It commutes with
the action of I'. Lemma ?? defines a map & — 7o from the set X3 of F-fixed
points in X, to the set of conjugacy classes in I". If z in Y is represented by
9= (9o, 2,9, 9¥) With goo in T’ and FZ = v, then

(goor 2 +1,9,9") = (Yocgoo¥s 2 +v(7), (1) " 1gi/y, (u¥) " g")
for some « in D'* and v = u!! x u¥ in U. Hence Yo = gooy ‘9!, and the image
x in Y of 7 is mapped to the conjugacy class of y~1 in I'. We write v(z) for 7.

Let (p,V) be an irreducible DX -module whose central character w has finite
order. Then there is a congruence subgroup Us, of DX such that p is trivial on
Us. Multiplying p by an unramified character we may assume that the value at 7
of the central character of p is one. Hence we can view p as a representation of the
finite group I'. Denote by tr p(7) the character of p at 7. The values taken by trp
are clearly algebraic.

We shall use the Grothendieck fixed point formula (Theorem ??) in the ¢-adic
cohomology of the scheme X = an,l = M, ., 1 XF, F,, where M, 1 is an affine,
hence separated scheme of finite type over the finite field F,,, and F, is an algebraic
closure of F,,. The coefficients are taken in the smooth Q,-sheaf L(p) determined
(see subsection (5.1.4)) by the f-adic representation (p,V), where V = Q,”, of
the finite Galois group I'. Thus let H) = H (v,U,Us) be the alternating sum
>, (1) Hi(X,L(p)) of the Q-adic cohomology spaces of X with compact support
and coefficients in the smooth Q,-sheaf LL(p). Both the Hecke algebra H;, which is
generated by the characteristic functions of the double cosets UgU (g in G(Ay)),
and the Frobenius 1 X Fr,, act on the cohomology H (as explained in subsection
5.1). The Galois group I' acts on V' via p, hence also on H};. Hence H}; is a virtual
(I'xH;)/F*- and (1 x Fr,)-module over Q,. As in section 5 we denote by Fr, x1 the
geometric Frobenius, which acts on the cohomology as the inverse of the arithmetic
Frobenius 1 x Fr, (see subsection (5.1.9)). We put again §* = 1 x Fr), and also

F' = " x1. The Grothendieck fixed point formula (Theorem ??) asserts

Lemma 9.2. For any integer n # 0 we have tr[§n|H;] = exe trp(y(z)™h).

Denote the center of Goo by Zo; it is isomorphic to the center of DX, and to

FZ. Recall that the central character w of the irreducible p is assumed to be of
finite order, in particular unitary. Let 7o (p) be the square-integrable Go.-module
which corresponds (see, e.g., [?], [III]) to the DX -module p. Let fo be a locally-
constant complex valued function on G, with foo (22) = w(2) 7! fao (z) for all z in
Gso, 2 In Zs,, which is compactly supported on G, modulo Z,,. We require that
at each regular x in G, the orbital integral ®(z, fo) be zero, unless x is elliptic
where '®(z, fo) = (=1)" "t trp(x~!). Then f is a pseudo coefficient (see [?] and
Definition ??) of the irreducible Go-module 7o (p). Below we take 7o (p) to be
cuspidal, in which case f,, can be taken to be a normalized matrix-coefficient of
Too(p), which is compactly supported modulo Z.

The computations of the structure of the set X3 " of fixed points of the geometric
Frobenius 3 in X yield

Proposition 9.3. For any n # 0 the trace tr[§n|H;] is equal to
(=17 Y N2 (GAf)) /25 (GF))] -3, foo)B(V, Frnw)B(7, X")
v
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= (=1 Y 1Z4(G(A))/Z4(G(F) Zoc| - @7, foo frwX")-

The sums range over all elliptic conjugacy classes v in G(F); Z(G) is the central-
izer of v in G.

Proof. The first equality follows from Lemma 77, Proposition 7?7 and Corollary 77.
The second equality follows from the relation

(7, foo) = 124(Gsc) [ 20| @ (7, [c)

for an elliptic v in G. Note that if v contributes a nonzero term to the first sum,
then it is elliptic in Goo, hence in G(F'), and n-admissible in G,. O

For use in section 10 we record here a variant. Let f* be a compactly supported
locally constant Qg-valued function on G(Ay). It defines a correspondence on X
and an automorphism of H:(X,LL(p)) as in (5.1.8), denoted here again by f°.

Proposition 9.4. There exists a positive integer ng = ng(f°°) such that for every
n > ng we have

(9.1)  wlf=-FH] = (=171 D 1Z,(G(8))/Z5(G(F) Zoo| (1, foo frio f)-

The sum ranges over the set of elliptic conjugacy classes v in G(F).

Proof. This follows from Deligne’s conjecture (Theorem ?7), Proposition ?? and
Corollary ?7. O

Remark 9.1. We fix an embeddings and an isomorphism Q — Q, ~ C and regard
the right sides of the formulae in Lemma ?7?, Proposition 7?7 and Proposition ?7 as
complex numbers.

Our next aim is to show that the sum of Proposition 7?7 appears as one of the
sides in the Selberg trace formula of Proposition 9.6 below. Let F' be a global
function field. Fix a character w of finite order of the center Z,, of G, where oo
denotes a fixed place of F'. At each place w of F' choose the Haar measure dg,,
on Gy, = G(F,) which assigns G(R,,) the volume one. Denote by dg the product
measure ®dg,, on G(A). Put (r(g9)p)(h) = ¢(hg) (h,g in G(A)) for a function
v on G(A), and (r(f,)e)(h) = va fo(g)p(hg)dg for any f, in the algebra H, of
compactly supported Q,-valued locally constant functions f, on G,.

Let L?(G) be the span of the complex valued functions ¢ on G(F)\G(A) with
o(zz) = w(z)e(x) (2 in Zoo,  in G(A)) which are absolutely square-integrable on
ZG(F)\G(A), and are eigenvectors of r(H,) for almost all v. Then r(G(A))y is
an admissible G(A)-module for each ¢ in L?(G). Each irreducible constituent of
the (G(A),r)-module L?(G) is called an automorphic G(A)-module.

A cuspidal function ¢ on G(F)\G(A) is one satisfying fN(F)\N(A) p(nx)dn =0
for every z in G(A) and every proper F-parabolic subgroup P = MN of G with
unitpotent radical N. The space Lo(G) of cusp forms (= functions) decomposes
as a direct sum with finite multiplicities of irreducible G(A)-modules, called cusp-
idal G(A)-modules. These multiplicities are equal to one by the “multiplicity one
theorem” for GL(r).

Suppose that 7o (p) is a cuspidal Go-module with central character w. Thus
for each matrix coefficient f., of mo(p), and each proper parabolic subgroup P
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of G4 over Iy we have fN foo(zny)dn = 0 for all z,y in Gw, where N denotes
the unipotent radical of P. Let L2(G) denote the subspace of L?(G) where G(A)
acts as a multiple of 7. (p). It is well known that L2(G) is a subspace of the
space of cusp forms, hence it decomposes as a direct sum of inequivalent irreducible
G(A)-modules m = @y, With Teo = Too(p)-

Let f = ®f, be a complex valued locally constant function on G(A) with the
following properties. We take fo, to be a normalized matrix-coefficient of 7 (p).
Hence f., transforms by w™! on Z, it is compactly supported modulo Z., and
for every irreducible G-module 7/ with central character w, tr 7/ (foo) is 0 unless
Tho 18 Moo (p), where trl (fso) = 1. At each w # oo the component f, is taken to
be compactly supported. At almost all places w it is taken to be the characteristic
function of G(R,,). The convolution operator 7(f) acts on L2(G); it is an integral
operator with kernel Ky(z,y) =>_ f(zyy~1). The sum ranges over all v in G(F).

The operator 7(f) is of trace class. Its trace is given by fG(A)/G(F)Z Ky(z,z)dz.

Lemma 9.5. The set of conjugacy classes v in G(F) for which there exists x in
G(A) with f(zyx~t) # 0 is finite; it depends only on the support of f.

Proof. The map sending v to the ordered set (aq, . . ., a,-) of coefficients in the charac-
teristic polynomial of v, is a bijection from the set of semisimple conjugacy classes in
G(A)/Zs to the quotient of A”~! x A* by the relation (ay,...,a,) = (a12,...,a.2")
(zin FZ). The image of G(F) is discrete. The image of the support of f is compact.
There are only finitely many conjugacy classes with the same semisimple part. [

Proposition 9.6. Put f = foo fu f"°°. Suppose that f, is the spherical function
fnw of Definition 77, and that n is sufficiently large with respect to (the support of)
foo and [ = Qutv,00 fw. Then the trace trr(f) of r(f) on L%(G) 18 equal to

S otra(f) = ey, f),

S
where

c(7) =124(G(A)) ) Z Z+(G)|.
On the left the sum ranges over all irreducible G(A)-modules T in L%(G). On the

right the sum ranges over all elliptic conjugacy classes v in G(F), such that v is
n-admissible in G, and elliptic in G.

Proof. (i) Since r(f) is a trace class operator on L2(G) = @m, and each 7 occurs
with multiplicity one in this sum, it is clear that its trace is given by the left side
of the identity of the proposition. We need to prove the identity of the proposition.
Both sides of the proposed identity depend only on the orbital integral ®(z, f,)
of f, at x. Indeed, this is clear for the right side. For the left side, suppose that
®(z, f,,) is zero for all z in G,. Then, using the uniqueness of the Haar measure
([?]), standard properties of closure of orbits (recorded, e.g., in [?], end of p. 160),
and the compactness of supp f,,, one concludes (cf. [?], Theorems 6.9/10, p. 54/55)
that there are finitely many h; in Co(G,), and g; in Gy, with f, = >, (hY" — h;)
on G,. Hence trm,(f,) vanishes if ®(z, f,) is zero for all . Consequently we may
replace f, by any other function which has the same orbital integrals.

(ii) By virtue of Corollary ?? it suffices to prove the identity of the proposition
where the component f, is replaced by (1) any discrete function on G,, and (2) a



76 YUVAL Z. FLICKER

function on G, which vanishes on the elliptic set whose orbital integrals are equal
to those of f,, , on the nonelliptic set.

(iii) To deal with the first case, suppose that f = foo f, f°°, where f, is discrete.
Denote by G’ the multiplicative group of the division algebra D’ of dimension 72
central over F', which is split at each place w # v, 0o and is defined by inv, D’ = 1/r
(and invee D' = —1/r). Then G, = G'(F,,) is isomorphic to G,, = G(F,,) for all
w # v, 0o, and G (resp. G.,) is an anisotropic inner form of G, (resp. G). To
prove the identity we use the correspondence from G’ to G; see, e.g., [?], III, when
the characteristic is zero, and note that the analogous results can be transferred to

the case of positive characteristic on using [?].

Remark 9.2. Note that the problem in establishing the identity of Proposition 77
in our case is the evaluation of the contributions parametrized by the singular ~
on the right. In characteristic zero this follows from the explicit computations of
some sequel of [A]. The proof here, in the context of GL(r) only, is valid in all
characteristics, and uses the correspondence to deduce the identity of Proposition
?? from the trace formula for the anisotropic group G'.

We first recall that there is a bijection from the set of conjugacy classes 7' in
G! (resp. G..) to the set of elliptic conjugacy classes v in G, (resp. G ): ¥' and
~ correspond if 74/ and v have the same characteristic polynomials. Also there is
a bijection, defined in the same way, from the set of conjugacy classes in G'(F) to
the set of elliptic conjugacy classes in G(F') which are elliptic at v and oo.

Next we recall the definition of transfer of functions from G,, to G.,. If w # v, 0o,
then G, ~ G,, and f,, on G,, defines a function f/, on G/, via this isomorphism. The
locally constant compactly supported function f], on G, and f, on G, are called
matching if f, is discrete (its orbital integrals vanish on the regular nonelliptic
set), and ®(v, f,) = ®(v/, f7) for every regular elliptic v in G, (7’ indicates the
corresponding class in G7)). A basic result asserts that for every f, (resp. discrete
fv) there exists a matching f, (resp. f/), and that ®(+/, /) = (=1)"*®(~, f,) for
every pair (7,7') of matching elements. Here r,(y) = dim(A,/Z,), where A, is a
maximal split torus in the centralizer Z,(G,) of v in G, (in particular r,(y) = 0 if
7y is elliptic regular). An analogous definition is introduced also for locally constant
compactly supported modulo Z, functions f/_ on G._ and f on Gu.

Finally we recall that the correspondence is a bijection from the set of equivalence
classes of irreducible G}-modules 7, to the set of equivalence classes of square-
integrable G,-modules m,. It is defined by trm,(f,) = tra,(f,) for all matching
(fv, f7). Similarly we have the correspondence 7/ — 7. Fix a GL_-module p such
that the corresponding Go.-module o (p) is cuspidal. Globally there is (see, e.g.,
[?] or [?], III) a bijection from the set of cuspidal G’(A)-modules 7’ = @/, with
7l = p, to the set of cuspidal G(A)-modules 7 = ®m,, with moo = Too(p) such that
7, 18 square-integrable. It is defined by m, ~ 7/, for all w # v, 00, and 7, — T, at
v. In particular for corresponding global functions f = ®f,, and f' = ®f/, we have

S trw(f) =) tea'(f).

The first sum ranges over all cuspidal G(A)-modules whose component at oo is
the cuspidal 7o (p) (and its component at v is necessarily square-integrable). The
second sum ranges over all cuspidal G'(A)-modules 7/ whose component at oo is p.
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We are now ready to prove the identity of the proposition for our function f.
The trace formula for the anisotropic group G’(A) and the function f’ asserts that

dotra(f) =D ()2 1),

7! %
where

c(v') =12(G'(A)/ 2y (G'(F)) Zocl-

The sum over 7’ is the same as in the identity of the proposition. The sum on
the right ranges over all conjugacy classes 7' in G'(F). Since f' = ®f/, matches
f = ®fu, the sum on the right of the trace formula is equal to the sum on the right
of the identity of the proposition. Indeed, ®(v, f) is zero unless v is elliptic and
corresponds to some 7/ in the trace formula, in which case ®(v, f) = ®(vy/, f). The
volume factors ¢(v’) and ¢(7) are equal since Z,/(G’) is an inner form of Z,(G),
hence the two groups have equal Tamagawa numbers. This completes the proof of
the identity of the proposition in the case that the component f, of f is discrete.

(iv) Tt remains to prove the identity of the proposition where f, vanishes on the
elliptic set and its orbital integral is equal to that of f,, ,, on the nonelliptic set, where
n is sufficiently large. We first note that the set S of x in G,, whose semisimple part
is m-admissible but not elliptic is open and closed in G,. Since the orbital integral
of f, is supported on S, by virtue of (i) we may replace f, by its product with the
characteristic function of S. Namely we may assume that f, is supported on S. In
particular, if f(zyz~1) # 0 for some x in G(A) then the semisimple part v of 7 is
n-admissible, but not elliptic, in G,,.

(v) Suppose that « is an element of G(F) such that f(zyz~!) # 0 for some x in
G(A). We shall show that if n is sufficiently large (depending on f, (w # v)),
then the semisimple part +" of v is elliptic in G(F'). Indeed, we have Z./ (F) =
[, GL(ri, F3), 1 < i < t, with Y, r[F; © F] = r. Write v/ = (71,...,7%) with
7vi in GL(r4, F), correspondingly. Put x;, = deg,,(Np, /rvi) for each valuation w
of F. Since the f, (w # v) are fixed, for every 4, j and w # v the difference
Ziw — Ljuw lies in a finite set (of integers). This difference is equal to zero for almost
all w (depending on ®.,, fw), and by the product formula on F' we have that
Y w(@iw — xj) = 0 for all ¢ and j. Hence x4, — xj, lies in a fixed finite set for all ¢
and j. The choice of f, in (iv) guarantees that 4’ is n-admissible, hence that there
is some ¢ for which x;, attains the value n, while x;, attains the value zero for all
j # i. Consequently, if n is sufficiently large and f(xyz~1) # 0 for some x in G(A),
then v/ is elliptic in G (i.e., t = 1).

(vi) We shall prove the identity of the proposition for f with f, as in (iv) on using
the computation of

/ Z flzyz™h)| do
G(A)/GZo | ety
in [A]. The theorems of [A] are stated only for number fields. We shall use them
in our function field case, or alternatively, complete the proof of the number field
analogue of the identity of the proposition. Our proof then depends on verifying
that the statements of [A] hold in the positive characteristic case. It seems that
this can be done on making only minor changes to the techniques of [A]. However,
this we do not do here.
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Note that our definition of a semisimple element as before Definition 77 coincides
with that of [?], top half of p. 921. In characteristic zero, a semisimple element
as defined as before Definition ?7 is necessarily diagonalizable. This is the usual
definition of semisimplicity, which is implicitly recorded in [?], end of p. 920.
However, only the properties recorded in [?], p. 921, are used in the work of [A].
They are the ones used to define semisimplicity in our case of positive characteristic,
as before Definition 77.

Other changes are: the exponential function e of [?], p. 945, should be replaced
by e(x) = 14 z; the positive definite bilinear form (.,.) by a nondegenerate bilinear
form; 1 by a nontrivial character on A/F, and the lattice Z in R (on p. 946) by
a lattice in F,,. However, as noted above, we shall use, but not prove here, the
positive characteristic analogue of [A]. As explained in the next section 10, using
Deligne’s conjecture permits us not to use the work of [A], which we use here to
establish Ramanujan’s conjecture without using Deligne’s conjecture.

Let O be the set of equivalence classes of v in G, where v and ' are said to be
equivalent if their semisimple parts are conjugate (in G). Put Jy(f) = [ kg(z, f)dz,
where ky(z, f) = Kg,9(z, x) is defined to be Y5, f(#710x), for any ¥ € O. Since
foo 18 a cusp form, [?], Theorem 7.1, p. 942, asserts the convergence of the sum
> veo J |ko(x, f)|dx (the cuspidality of f. easily implies the vanishing of the terms
Kpy(z,z), P # G, which appear in the definition of kX (z, f) in [?], p. 938, and
the independence of kX (x, f) of the auxiliary parameter T'). To compute the Jy(f)
we shall use the formal, geometric computations of [A2,3].

Denote by v9 = (71,..., %) (€ Z,,(F)) a semisimple element in ¥, in the nota-
tions of (v). If ¢ # 1, then the argument of (v) shows that for a sufficiently large
n the kernel Ky(x,x) = Kg 9(x,x) is identically zero. Thus we may assume that
v is elliptic, namely ¢ = 1. For a general ¥ the term Jy(f) is expressed in [?],
Theorem 8.1, p. 206, as a linear combination of functions Jas (7', f), v/ € 9 N M,
which are defined in [?], (6.5), p. 254, and [?], Theorem 5.2, p. 245. Here M is a
standard Levi subgroup of G; denote its center by Ajs. Fix a finite set .S of places
of F such that f,, = f2 for all w outside S. The definition of Jys(v/, f) involves a
limit over a — 1, a € Ay (Fs) = [[,es Am(Fu), of “corrected” weighted orbital
integrals (see [?], (2.1), p. 234):

Tula', )= D) | f o' )un (o)
ZooG ont (Fs)\G(Fs)
Here L is an element in the set £(M) of Levi subgroups of G which contain M ([?],
p. 228). Since a' is regular for a generic a € Ap(Fs), the argument of (v) shows
that for a large n the integral Jp(ay/, f) is zero unless M = G. Then [?], (8.2),
asserts that Jy(f) is a linear combination over the conjugacy classes v in $NG(Fs)
of the orbital integrals Jg (v, f) of f at 4'. If such 4 is not semisimple then the
orbital integral Jg (7', foo) vanishes since fo, is a cusp form. Then [?], (8.2), implies
that Jg(f) = a®(S,7)Ja(7, f), where v = v, is elliptic (semisimple) in . But [?],
(8.1), p. 206, implies that a®(S,v) = a%(S,1) = |ZocG,\G,(A)| = ¢() in our
notations, and the identity of the proposition follows. O

Remark 9.3. The “corrected” weighted orbital integrals were first introduced in [?]
in the context of GL(3) (and GL(2)), where Y, JI'(f) is explicitly computed and
related to the limit values of the corrected weighted orbital integrals on regular
classes. In (vi) above we use the generalization to GL(n) of [A2,3].
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Corollary 9.7. Suppose that F is a function field, f"°° is x", feo s a normalized
matriz-coefficient of the cuspidal moo(p), and n is large with respect to f*°° and
foo- Then

Z(—l)“”i tr[(Fr} x1)[He (X, L(p))]

=S ten(f) = Son(m U)gR 2 S i(m )

™ %
The sum over 7 is finite. It ranges over all irreducible constituents of L%(G) such

that ™° = QuwxceTw has a nonzero vector fized under the action of U = Uy.
Further, n(m,U) is the integer [, o t* 7w (fw)-

Proof. The first equality results from the expressions for tr[§n|H;] and ) _trm(f)
in terms of G(A) orbital integrals on the group G(F'). The conditions on n guar-
antee that we deal with elliptic conjugacy classes only. Since f, , is spherical
we have that m, = m,((2i(7m))) if trm,(fnw) # 0. But then tr(m,(2))(fnw) =
g r=1/2 >, zi(my)™ by the definition of f,,. Note that there are only finitely
many cuspidal G(A)-modules with fixed ramification at all places, and in particu-
lar w in L2(G) with n(m, U) # 0. The corollary follows. O

We shall now use Corollary 7?7 to prove the following purity theorem, or Ra-
manujan conjecture, for certain cusp forms of GL(r, F').

Theorem 9.8. Let m = ®@my, be an automorphic G(A)-module whose central char-
acter is unitary and whose component T, at oo is cuspidal. Then for every place v
where T, is unramified we have that each Hecke eigenvalue z; , = z;i(my) (1 <1 <7)
of m has complex absolute value equal to one.

Proof. We first tensor m with an everywhere unramified character to assure that
the central character w of 7, which we now denote by 7', is of finite order. Let U
be a sufficiently small congruence subgroup of G(Ay) (the place oo is fixed in the
statement of the theorem), with component U, = GL(r, R,) at the place v, such
that 7' has a nonzero U-fixed vector. Then 7/ appears in the set over which the
sum ) _tr7(f) of Corollary ?? is taken. Here f = f"'*° fo fun is determined by U,
Teo,n as in Corollary ??7. We rewrite this identity of Corollary 77 as follows: for
every sufficiently large n, depending on U and p (or 7l,), we have

S cul =3 dilgl V22 (n))"

J 1,y

The two sums are finite. On the right the sum ranges over all components 7,
at the fixed place v of the automorphic G(A)-modules 7 with a nonzero U-fixed
vector and component 7/ at oo (these are the 7 which appear in the identity
of Corollary ??). The coefficients d; are positive integers. On the left the u;
are the eigenvalues of the action of the Frobenius Fr, x1 on the Q,-vector spaces
Hi(X,L(p)) (0 <i<2(r—1)). Since the coefficients d; are all positive we conclude
the following

Lemma 9.9. For every Hecke eigenvalue z;(m,) of ™ at v there exists a Frobenius

eigenvalue uj, such that qq(,r_l)/Zzi (mv) = ;.



80 YUVAL Z. FLICKER

Proof. The sums of the last displayed formula are finite (since H:(X,L(p)) is finite
dimensional, and there exist only finitely many cuspidal G(A)-modules with fixed
ramification at all places), and this formula holds for all sufficiently large n; hence
the lemma follows by linear independence of characters. [

To complete the proof of the theorem we need two additional facts.

Lemma 9.10. Each eigenvalue u; of the action of the (geometric) Frobenius Fr, x1

on the space Hi(X,L(p)) (0 <i < 2(r—1)) is algebraic, and each complex absolute
. c/2 . .

value of u; is of the form q,’~, where ¢ is an integer.

Proof. This follows from Deligne’s theorem [?] on the integrality of the action of
the Frobenius on the cohomology. O

Lemma 9.11. The complex absolute value |z;(m,)| of each Hecke eigenvalue z;(m,)
of an unramified component m, of a cuspidal G(A)-module m with a unitary central
character, satisfies qu /% < |zi(my)] < e

Proof. Since w is cuspidal, each of its local components is nondegenerate. By virtue
of [?], (9.7), each such component is equal to a representation induced from the
product of a square-integrable representation of a Levi subgroup and an unramified
character. If the component 7, is unramified then it is equivalent to an irreducible
I((z)). Since the central character of the cuspidal 7 is unitary, 7 is unitary, and
each of its components is unitary. By virtue of [?] an irreducible I((2;)) is unitary
if and only if for each 4 there exists a j with Z; ' = z; and q[l/z <zl < qé/Q for
every 4. This is the required assertion of the lemma. O

The theorem is now an immediate consequence of Lemma 7?7 which compares
the integrality result of Lemma 7?7 with the estimate of Lemma ?7. O

Remark 9.4. Note that the proof of Theorem 7?7 does not show that each Frobenius
eigenvalue u; is related to a Hecke eigenvalue as in Lemma ?7, since the first sum
in Corollary ?? is alternating, and an eigenvalue of Fr, x1 on H:(X,L(p)) may
cancel an eigenvalue on HJ (X,LL(p)) if i + j is odd.

Remark 9.5. Field of Definition. As in the paragraph following Proposition 77,
denote by Lo(G) the space of cusp forms on G(A) which transform under the
center Z,, of G(Fy) according to a character w. It is well known (see [?]) that
for each compact open subgroup K of G(A) there exists a compact subset K’ of
G(A) such that each K-invariant cusp form ¢ in Ly(G) is supported on Zo, - G(F) -
K'. In particular, the space Lo(G)k of K-invariant functions ¢ in Ly(G) is finite
dimensional. Denote by Q(w) the field generated by the values of the character
w. It is clear that Lo(G) and Lo(G)k are defined over Q(w). Let V denote the
finite set of places v of F such that U, = G(R,) is not contained in K. For every
v outside V', the Hecke operators r(f,) (f, in H,) are defined over Q(w), and they
commute with each other. Hence they are simultaneously diagonalizable, and their
eigenvalues generate a finite extension of Q(w). The eigenspaces are defined over
the fields generated by the eigenvalues. Let m = @, be an irreducible G(A)-module
unramified outside V. Denote by Q(m,) the field generated by the Hecke eigenvalues
of m,, for v outside V. We conclude that if 7 is a cuspidal G(A)-module, then the
compositum Q(7) of Q(m,) (v outside V'), which we call the field of definition of
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7, is a finite extension of Q(w). It is equal to the compositum of Q(m,) for all v
outside V', where V' is any finite set containing V.

Let p be an irreducible DX -module with finite image, which corresponds to a
cuspidal Goo-module 7 (p). Let L(p) be the smooth Q,-adic sheaf on the geometric
generic fiber Mn 1 =M1 x4 F of the moduli scheme M, 1 associated with p (see
(5.1.4)). Let H} be the virtual Gal(F/F) x Hy-module Y (—=1)'H.(M, r,L(p))
associated with p (see (5.1.8)).

Corollary 9.12. Suppose that o is an irreducible {-adic representation of Gal(F /F)
which occurs in the virtual module H};. Then there exists a finite extension Q(o) of
Q such that the eigenvalues of o,(Fr,) lie in Q(o) for all v where o is unramified.

Proof. The proof of Theorem ?? implies that for almost all v, the (Frobenius)
eigenvalues of o, (Fr,) lie in the field Q(7) of definition of a cuspidal G(A)-module
7w whose component 7y, is the cuspidal G.-module 7o (p), and 7 has a nonzero
vector fixed by the action of the congruence subgroup U;. Since there are only
finitely many such 7, we may take Q(o) to be the field generated by these finitely
many number fields Q(). O
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10. EXISTENCE THEOREM

In the proof of Theorem ?? we use the Grothendieck fixed point formula of
Theorem ??, which applies to the cohomology HE(X,,LL(p)) of the geometric fiber
X, = X, Qr, F, of the special fiber X, = 1 ®4 Fy (of the moduli scheme
M, 1), which is a separated scheme of finite type over [F,,. This formula applies only
to powers of the (geometric) Frobenius endomorphism Fr, x1, and the conclusion
of Theorem ?? concerns only the (Hecke) eigenvalues of the action of the Hecke
algebra H, of U,-biinvariant functions on G,, on this cohomology; as usual we put
U, for GL(r, A,).

Our next aim is to study the irreducible constituents which occur (with nonzero
multiplicities) in the virtual Gal(F/F) x Hr-module

2(r—1)

H=Hy= Y (-1)H(X,L(p)),
=0

where X is the geometric generic fiber M1 ®a F of the moduli scheme M, 1.
Our subsequent results depend on Deligne’s conjecture (Theorem ?7?), proven by
Fujiwara and Varshavsky. These results assert that each H;-module which appears
in H is automorphic in a sense shortly to be explained, and every automorphic
G(A)-module with a nonzero U;-fixed vector and component 7 (p) at co occurs in
the space H. Moreover, if ¢ @ 7y is an irreducible constituent of H as a (virtual)
Gal(F/F)xHr-module, then it occurs with multiplicity one, and the tensor product
of 7 with v=("=1/2 (where v(x) = |z| for x in AX) corresponds to the Gal(F/F)-
module 7, in a sense again to be explained shortly.

The proof depends on the usage of Hecke correspondences in the fixed point
formula, to separate the H;-modules which appear in H. The scheme X is smooth,
but not proper. Had X been smooth and proper, the Lefschetz fixed point formula
of Theorem ?7? would apply with any Hecke correspondence. However this is not
the case, and Deligne’s conjecture (Theorem ??) asserts that although X, is not
proper, the fixed point formula would hold with an arbitrary Hecke correspondence,
provided that it is multiplied by a sufficiently high power of the Frobenius. This
theorem will be used in conjunction with the Trace Formula (Proposition ??) where
the test function f¥°° outside v and oo is arbitrary, and the spherical component
fv at v depends on a parameter m which is sufficiently large with respect to f¥*°
and fo,. Further, we use (in Lemma ?7?(1)) the congruence relations of Theorem
?7

To state the results which depend on Deligne’s conjecture (Theorem ?7), we
introduce (as in the first paragraph of 5.2.2) the following notations. Let 7 be an
irreducible G(Af)-module, and U = U; an open compact congruence subgroup of
G(Ay), defined by a nonzero proper ideal I of the ring A. We denote by 71']1c the
(finite dimensional) vector space of U-fixed vectors in my. It is naturally an Hj-
module. The map 7y 7r§ is a bijection from the set of irreducible G(Af)-modules
which have a nonzero Ur-fixed vector, to the set of irreducible H;-modules in which
the unit element of H; acts as the identity.

Remark 10.1. This bijection extends to an equivalence of categories, where “irre-
ducible” is replaced by “algebraic”.
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Definition 10.1. An H;-module 71]{ is called cuspidal if there exists a G.-module

Too Whose product 7y ® moe with the G(Ay)-module m¢ which corresponds to WJIC is
a cuspidal G(A)-module.

To relate cuspidal G(A)-modules with irreducible Galois representations, we need
additional definitions.

Definition 10.2. A continuous representation o : Gal(F/F) — GL(r,Q,) of the
Galois group of F' of dimension 7 is called constructible if for almost every place v of
F the restriction o, of o to the decomposition group Gal(F,/F,) at v is unramified,
namely trivial on the inertia subgroup.

If o, is unramified then it factorizes through the Galois group Gal(F,/F,) of
the (finite) residue field F,, of F,; the group Gal(F,/F,) is generated by the Frobe-
nius substitution ¢ : z — z%, and also by its inverse, the (geometric) Frobenius
automorphism Fr, : z — x'/% (g, is the cardinality of F,). Note that the field
F, is perfect. Suppose that o, is semisimple. Then the isomorphism class of o,
is determined by the eigenvalues (or the conjugacy class) of the matrix o, (Fr,) in
GL(r,Qy), or the characteristic polynomial P(t;c,) = det[t — o, (Fr,)] in ¢.

For any irreducible unramified G,-module 7, with Hecke eigenvalues z;(m,) (1 <
i <r), we write P(t; m,) for the product []\_; (¢—z;(m,)). In this section we consider
only representations over Q,, with £ # p.

Definition 10.3. A continuous /-adic 7-dimensional representation o of Gal(F /F')
and an admissible irreducible G(A)-module 7 = ®,m, correspond if o is con-
structible and P(t;0,) = P(t;m,) for almost all v.

As usual we put
X =M xaF, X,=M.1xaF,, H =H(X,L(p)).

Theorem 10.1. Let p be an irreducible representation of DX with finite image
which corresponds to a cuspidal G -module mo(p). Let I be a nonzero ideal of A
which is contained in at least two mazximal ideals, and U = Uy the corresponding
congruence subgroup of G(Ay). Put HY = &;H (r — 1 —i even) and H~ = &,H
(r —1—1 odd). Denote by my = m4(0 ® '7?}) (resp. m_— = m_(c ® '7%})) the
multiplicity of an irreducible constituent 5®%J{ of HT (resp. H™) as a Gal(F/F) x
H;-module, and put m =my —m_. Then (1) m(c ® %}Ic) is equal to zero or one.
(2) If m(c ® %]Ic) is one then the corresponding G(A)-module T = Ty ® Too(p) is
cuspidal (in particular automorphic), and the dimension of & is r. Put v(x) = |z
(x in AX).

(3) If m(c ® %]Ic) is one then 7 ®@ v~ ""1V/2 corresponds to .

(4) For every cuspidal G(A)-module m = Ty ® Too With Too = Too(p) and 7r]1c # {0}
there exists a Gal(F/F) x Hr-module 5®%’J{ with m(&@%’;) =1 such that 71']{ ~ %’;.

Combining (3) and (4) we deduce the following Corollary, which is used in a
crucial way to establish in section 11 the higher reciprocity law.

Corollary 10.2. For every cuspidal G(A)-module 7 = ®,m, such that m is cusp-
idal and its central character is of finite order, there exists a continuous irreducible
r-dimensional £-adic constructible representation o of Gal(F/F) which corresponds
to .
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Proof. This follows from Theorem 77 on taking p which corresponds to 7, and a
sufficiently small congruence subgroup U = U; of G(Ay) such that 7rJIc #{0}. O

Proof of Theorem. The cohomology space Hi(X,,L(p)) is a Gal(F,/F,) x Hj-
module for every maximal ideal v of A not containing I. As noted in (5.1.7),
the constructibility of the sheaf L(p) implies that for almost all places v # oo
(in F) which do not divide I, the restriction of H!(X,LL(p)) to the decomposition
group Gal(F,/F,) at v is trivial on the inertia subgroup and is isomorphic, as a
Gal(F,/F,) x H;-module, to H:(X,,L(p)). We prove the theorem on applying
Deligne’s conjecture to the Hi(X,,L(p)) for the set of these v.

For any i (0 <4 < 2(r — 1)) denote by 7; ® %i{ ¢ the irreducible constituents, re-
peated according to their multiplicities, of the Gal(F/F) x H;-module H:(X,L(p)).
The spaces H!(X,L(p)) and H!(X,,L(p)) are isomorphic as Gal(F,/F,) x H;-
modules for almost all v, and the restriction &; , of g; to the decomposition group
Gal(F,/F,) factorizes through the quotient Gal(F,/F,).

Let f> be an element of H;. It is a compactly supported U-biinvariant Q,-
valued function on G(Af). Then f> defines a correspondence on X,, and an
automorphism of H:(X,,L(p)) as in (5.1.8), which will also be denoted here by
f°°. For every such f*° and integers m and ¢ > 0, we have

(10.1) tr[(Fr) x1) - £ Ho(X,, L(p))] = D tr s ¢ (£°°) tr & 0 (Fr));

on the right the sum ranges over the irreducible constituents &;®7;  of H:(X,L(p))
as a Gal(F/F) x Hz-module.

Suppose in addition that f* = f*°°f9 where f"° is a function on G(A;i)
(where A;’c is the ring of adeles without components at v and o), and f? is the unit
element of the Hecke algebra H, with respect to U, = G(A4,).

Proposition 7?7 implies that for every f°° as above there exists an integer my
such that for every integer m > mg, the alternating sum

2(r—1)
(10.2) ST (1) (R <) - £ HE(K L)
i=0

of the left sides of equation (??), is equal to the geometric side

(10.3) D 1Zy(G(A) ) Z1(G(F) Zoo| - B(Y, foo - £+ frm)
{~}

of the trace formula. Here, as in Proposition 7?7, f., is a normalized matrix-

coefficient of the cuspidal Goo-module 7o, (p) which corresponds to the DX -module

p. As usual, fp,, denotes the spherical function on G, defined in (8.1). The sum

in Eq. (?77?) ranges over the set of conjugacy classes of the elliptic v in G = G(F).
The trace formula of Proposition ?? asserts that Eq. (??) is equal to

(10.4) Dty (fomw) 17 (F) 0 Too (foo)

for all m > mg = mo(f>fx). The sum ranges over all cuspidal G(A)-modules
T = ®qTy- Note that (i) if the component 7., satisfies tr 7o (foo) # 0, then 7 is
the cuspidal 7 (p), and tr 7 (foo) = 15 (ii) if tr m®°(f°°) # 0, then 7° = Ty
(w # o0) has a nonzero U-fixed vector. Consequently, the sum of Eq. (??) is finite
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since there are only finitely many cuspidal G(A)-modules 7 with a nonzero U-fixed
vector and the component 7 (p) at co.

Denote by u; ,(0;) the eigenvalues of the matrix o; , (Fr,). By virtue of Eq. (?77?)
the alternating sum of Eq. (??) is equal to

2(r—1)
(10.5) YN YT wmg () | D wg(@)”
=0 0i QT4 f J

Denoting as usual the Hecke eigenvalues of m, by z;.,(m,) (1 < j < r), we rewrite
Eq. (?7?) in the form

T

(10.6) Do wm®(=) (D (@l ()"

™ Jj=1

Denote by 7°° a G(A ¢)-module (up to equivalence) which contribute to Eq. (?77?).
Let o+ = 67 () be the sum of the &; over the 7°° ® &; which occur in H+, and
define 6~ = o~ () similarly, using H~. Denote the corresponding eigenvalues by
wj (01 (7)) and u; (07 (7°°)). Then Eq. (?7?) can be rewritten in the form

10.7) > wwm () (Y wn@ @) =Y uiue @)

w0 J J

Fix an element a in @ZXT/ST. Denote by (a;;1 < i < r) its multiset (set with
repetitions) of components. Since the sums Eq. (??) and Eq. (??) are finite and
equal for all m > mg(f°°), we conclude that

(10.8) Sootrre(f) =) wFO(F*);
on the left m ranges over the set of 7 in Eq. (??) such that the image of (2;.(m))
in Q,"/S, is a7 ""2a. On the right 7 ranges over a set of #° in Eq. (??) with
Uj(0* (7)) in {a;}. In Eq. (??) the function f*° is an arbitrary element of H; of
the form f*°° f9. Since the sums of Eq. (??) are finite we conclude that for every
T = 7V ® T, there is a necessarily unique automorphic 7@ = 7o ® TV ® m,
with 7% ~ 7%, Since we may vary v we conclude that 7°° ~ 7°° and that
T =7 ® Teo(p) is automorphic. Moreover, for almost all v and for all m we have
(10.9) Y i@ @)™ =Y u @ @) =Y (a5 P20 ()™
J J Jj=1

In summary, as a virtual Gal(F/F) x H;-module, H™ — H~ is the sum over all
cuspidal G(A)-modules 7 = 7 ® moo(p) with 7r]Ic # {0} of o ® 7r]Ic, where o = o(m)
is a virtual representation of Gal(F/F). Thus o = Y. m;o;, where the o; are

irreducible and the (finitely many) m; are nonzero integers. Put o* for o@vr—1/2,
where v is the character of Gal(F'/F) which corresponds to v(z) = |z| (z in A*) by
class field theory. Put P(t;0(m);) = [[; P(t;05(m);)™ . We conclude the following
intermediate result.

Lemma 10.3. There is a finite set V' of places of F, including oo and the divisors
of I, such that the o; = oj(m) are unramified at each v outside V and P(t;o(m)}) =
P(t;my,) for all v outside V' and for all .
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To complete the proof of the theorem we need to show that each o is irreducible,
namely that mg =1 and m; = 0 for j > 0.

Lemma 10.4. (1) Let o ® %]Ic be an irreducible constituent of the Gal(F/F) x H;-
module H' for some i (0 < i < 2(r —1)). Then for almost all v, each Frobenius
eigenvalue ;. (c*) of o* is equal to some Hecke eigenvalue zi,(7¢) (k = k(j))
of T¢. (2) The complex absolute value of each conjugate of the algebraic number
2k (Tp) s one.

Proof. (1) is Theorem ?? (congruence relations); (2) is Theorem ?? (Hecke purity).
(I

Combining the two parts of Lemma 7?7 we obtain the following Frobenius purity
result.

Lemma 10.5. For each v outside V' and o; as in Lemma 77, each conjugate of
each Frobenius eigenvalue u; ,(07) of o has complex absolute value one.

Consequently the Q,-adic sheaf S(05) on the curve C' (F = Fy(C)), which is as-
sociated (see [?], section 10) to the constructible irreducible Q,-adic representation
o of Gal(F/F), is (smooth on an open dense subscheme C(o%) of C and) pure of
weight zero in the terminology of Deligne [?] (see also [?]; Sommes trig., pp. 177/8).

To prove the irreducibility of o we use basic properties of L-functions. For any

virtual representation o of Gal(F/F) which is unramified outside V' put
L(s,0,) = H(l — gy *ui(oy)) ! and L(s,V,o) = H L(s,0y).
% vgV
The absolute convergence of the product L(s, V, o7;) in the right half plane Re(s) > 1
follows from Lemma ??. Then

L|s,V, <Z miai> ® Z mo; = H L(s,V,0; ® Ué)mimé.
i J )
Now Grothendieck proved that the product L(s, V, o) is a rational function in ¢* on
identifying it (see [?], section 10) with an L-function L(s,S(o,V)/X) of a smooth
Q-adic sheaf S(o, V) over the scheme X = Spec A — V. If S is a smooth sheaf on
a scheme X, of dimension d over F, then the L-function is a product

Ls,8/Xa)= [[ Pils,8/Xa)"0"",
0<j<2d
where P;(s, S/Xg4) are polynomials associated with H?(X4 xg, Fq, S). The results
of Deligne [?] assert that if S = S, is pure of weight ¢ then the zeroes of P;(s, S;/Xq)
occur for half-integral Res < (i + j)/2.

In our case the sheaf Sy = S(07, V) associated with any o7 as in Lemma ?7? is

pure of weight zero, over a curve X; = C(07}), thus d = 1. Hence we conclude

Lemma 10.6. For every o; as in Lemma 77, the rational function L(s,V,07) has
no pole in Res > 1 and no zero in Res > %

On the other hand we introduce the functions

Ls,mo@m) = [[(1 - 4 *zi(m)z;(xl)) Y, Lis,Vir@x') = [[ Lis.m @),
] vgV
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for any cuspidal G(A)-modules 7, 7’ which are unramified outside V. It is easy to
see that the infinite product converges in some right half plane (Res > ¢(> 1)). By
virtue of [?], Proposition ??, we further have

Lemma 10.7. The product L(s,V,m & ©') is a rational function in q° which is
regular in Res > 1. It has a pole at s = 1, which is necessarily simple, if and only
if ™ is the contragredient ©V of .

Note also that if o is the trivial representation of Gal(F/F) then L(s,V, o) has
a pole at s = 1. If ¢ is irreducible and its contragredient is denoted by ¢V, then
o ® oV contains a copy of the trivial representation, hence L(s,V,0 ® o) has a
pole at s = 1.

Now suppose that ¢ ® 71'JIc occurs in Lemma 7?7, where o = Zj m;o;, the o; are
irreducible and the m; are integral. Then

Lo Voron') = L(s.V, (S mios ) @ (S moy”)) = [T 206 Vit oy .
J J ij

The order of the pole of the left side at s = 1 is one, while the order of pole of
the right side at s = 1 is at least ), m7, since L(s,V, 0 ® 0/*) does not vanish at
s = 1 for all 4,5, by Lemma ??. We conclude that m; = 0 for i > 0 and m3 = 1
(on rearranging indices). But then it is clear that my = 1, for example from the
Eq. (??). This completes the reduction of the theorem to Deligne’s conjecture
(Theorem ?7).
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11. REPRESENTATIONS OF A WEIL GROUP

Let F' = Fy(C) be the field of functions on a smooth projective absolutely ir-
reducible curve C over F,, A its ring of adeles, F' a separable algebraic closure of
F, G = GL(r), and oo a fixed place of F, as in section 1. This section concerns
the higher reciprocity law, which parametrizes the cuspidal G(A)-modules whose
component at oo is cuspidal, by irreducible continuous constructible r-dimensional
(-adic (¢ # p) representations of the Weil group W (F/F), or irreducible rank r
smooth f-adic sheaves on Spec F' which extend to smooth sheaves on an open sub-
scheme of the smooth projective curve whose function field is F', whose restriction
to the local Weil group W (F,/Fs) at oo is irreducible. This law is reduced to
Theorem 10.1, which depends on Deligne’s conjecture (Theorem ??). This reduc-
tion uses the converse theorem 7?7, and properties of e-factors attached to Galois
representations due to Deligne [?] and Laumon [?]. We explain the result twice.
A preliminary exposition in the classical language of representations of the Weil
group, then in the equivalent language of smooth f-adic sheaves, used e.g. in [?].
Note that in this section we denote a Galois representation by p, as ¢ is used to
denote an element of a Galois group.

11.1 Weil groups. Let F be a local nonarchimedean field withring R of integers,
residue field TF, separable closure F. Let F denote the residue field of the integral
closure R of R in F. Then F is an algebraic closure of the finite field F. The
kernel I of the natural epimorphism Gal(F/F) — Gal(F/F) is called the inertia
subgroup of Gal(F/F). The Galois group Gal(F/F) is isomorphic to the profinite
completion 7 = liinnZ/n of Z. It is topologically generated by the arithmetic

Frobenius automorphism ¢ : x +— 29 of F, where ¢ is the cardinality of F. Since
¢ is bijective, we can and do introduce also the (geometric) Frobenius morphism
Fr = ¢~ 1. The Weil group W (F/F) is the group of g in Gal(F/F) whose image in
Gal(F/F) is an integral power of Fr. Let W (F/F) denote the group (Fr";n in Z) ~ Z.
Then there is an exact sequence

1—1—W(F/F)— W(F/F)~7Z—0.

The Galois group Gal(F/F) is a topological group, in the topology where a
system of neighborhoods of the identity is given by Gal(F/F’), where F’ ranges
through the set of finite extensions of F in F. Then Gal(F/F) = lim Gal(F’/F) is

—

a profinite group, hence compact. The Weil group W (F/F) is given the topology
where a fundamental system of neighborhoods of the identity is the same as in
I. The group Gal(F/F) is the profinite completion of W (F/F). The subgroup of
W (F/F) corresponding to the finite extension F’ of F is identified with W (F/F").
Let deg : F' — Z denote the normalized additive valuation.

Local class field theory implies that there is a commutative diagram of topological
groups:

1 — I — W(EF/F) — W(EF/F) — 1
\J A 1

1 — R* — F* I Z — 0,
eg

such that the reciprocity homomorphism W(F/lf ) — F* is surjective, and its
kernel consists of the commutator subgroup of W (F'/F'). It is normalized so that the
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(geometric) Frobenius is mapped to a uniformizer in R. Consequently the quotient
W (F/F)ap is isomorphic to F*, and there is a natural bijection between the sets
of continuous one-dimensional representations of W (F/F), and of GL(1,F). An
unramified representation of W (F/F) is one which is trivial on the inertia subgroup
I. An unramified character of W (F/F) corresponds to an unramified character of
Fx.

Let F' be a function field in one variable over F,, and I = [, its subfield of
constants (= algebraic closure of F, in F). Let F be a separable closure of F,
F the algebraic closure of F in F, and Gal(F/F)q the kernel of the restriction
homomorphism from Gal(F/F) to Gal(F/F). The global Weil group W (F/F) is
defined by the diagram

1 — Ga(F/F)y — W(F/F) — W(FE/F)~Z — 0
1l ! !
1 — Gal(F/F)y, — Gal(F/F) — Gal(F/F)~Z — 0.

Global class field theory yields an isomorphism of W (F/F),;, with the idele class
group A*/F*, and in particular a natural isomorphism from the set of continuous
one-dimensional representations of W (F/F), to the set of automorphic represen-
tations of GL(1,A). Let v be a place of F, and ¥ a place of F over v. The
(decomposition) subgroup Dy of W (F/F), consisting of all w with w v = o, is
isomorphic to the local Weil group W (F5/F,), where the completion F of F at ¥
is a separable closure of F,,. The quotient of W (F4/F,) by the inertia subgroup I
is isomorphic to the subgroup W (F5/F,) ~ Z of Gal(F5/F,) ~ 7, generated by the
Frobenius. The quotient F,, = R, /v is the residue field of F,,. The local and global
Weil groups are related by the diagram

1 — Iy — W(Fs/F,) — WEs/F,)~Z — 0
\J 3 1
1 — Gal(F/F)y — W(EF/F) — W(F/F)~Z — 0.

The vertical arrow on the right is multiplication by [F, : F]. The local and global
class field theories are related by the commutative diagram

W(Fﬁ/Fv)ab — W(F/F)ab
L n
FX —  AX/Fx.

11.2 /(-adic representations. Let £ # p be a rational prime, E) a finite field
extension of Qp, and V) an r-dimensional vector space over E). The topology on
the group AutVy ~ GL(r, E)) is induced by that of End V) ~ EKQ. A \-adic
representation of F is a continuous homomorphism p : W(F/F) — AutVy. The
restriction to W (F/F) of a A\-adic representation p : Gal(F/F) — AutVy of the
Galois group Gal(F/F) is a A-adic representation. But not every representation of
W (F/F) extends to a representation of Gal(F/F). Since W(F/F) is topologically
finitely generated over the profinite (and consequently compact) group Gal(F/F)o,
every continuous /-adic representation p : W (F/F) — GL(r,Q,) factorizes through
GL(r, Ey) for some finite extension Ej of Q in Q,. Indeed, this follows from
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Lemma 11.1. For every compact subgroup K of H = GL(r,Zy) there is a finite
extension Ey of Qqp in Q, such that K lies in GL(r, E).

Proof. Here Z; is the ring of integers in Q,, and by M, we denote the ring of r x r
matrices. The congruence subgroup H; = I+ (*M,.(Z,) (i > 1) is an open (normal)
subgroup of H. Hence K; = K N H; is an open subgroup of K, and so the quotient
K/K; is discrete and compact, and finite. If K; is contained in GL(r, E) for some
finite extension E of Qp, then K lies in GL(r, E'), where E’ is generated over E
by the coefficients of a set of coset representatives in K for K/K;; since K/K; is
finite, so is [E’ : Qg]. Suppose that K is not contained in GL(r, E) for any finite
E over Qy, then K; is not contained in GL(r, E) for any finite £/Q, and any 1.
There exists a sequence n; < ng < ... of positive integers, and elements g¢; in K,
satisfying

(1) if o(gi) # gi then o(g;) # gi mod £"+1, for any ¢ in Gal(Q,/Qy);

(2) the field generated over Q; by the entries in the matrix g; has degree > i over
Qe

Indeed, g1 can be chosen arbitrarily; once g1, ..., g:—1 (and ni,...,n;_1) are chosen,
since g;—1 has only finitely many conjugates, n; (> n;—1) can be chosen to satisfy
(1) and g; can be chosen in K, to satisfy (2).

Put h = g1g2 - - - ; the product converges to an element h in K since n; — oco. For
an automorphism o of Q, over Q; which fixes h one has gi1go--+ = o(g1)o(ga) - .
Denote by j the least ¢ > 1 with o(g;) # g; (it is clear from (2) that there is such
Jj < 00). Then g;gj41--- = 0(gj)o(gj+1)--- . Hence o(g;) = g; mod £+, but
o(g;j) # g;; this is a contradiction to (1) which proves the lemma. O

Definition 11.1. A A-adic representation p of F' is called unramified at the place
v of F if p(I5) = {1} for some, hence for every, place T of F which extends v.

In this case the restriction of p to Dy = W (F5/F,) factorizes through Dy/I; ~
(Frz), and the image p(Frz) of the (geometric) Frobenius is well-defined. The
conjugacy class of p(Fry) in GL(r, E)) is independent of the choice of 7; it is denoted
by p(Fr,). For any v over v let V)\p(Iﬁ) be the space of p(Iy)-fixed vectors in V.
The characteristic polynomial

Pv,p(t) = det[l —t- p(Frﬁ) | V;(IF)}
is independent of the choice of ©.

Definition 11.2. A M-adic representation of F' is called constructible if it is un-
ramified at almost all v.

It would be interesting to show that every semisimple, in particular irreducible,
A-adic representation of F' is constructible. However this is not yet known, and
from now on by a A-adic representation p of F' we mean one which is constructible,
namely one such that p, is unramified for almost all v.

Example 11.1. There does exist a two-dimensional indecomposable reducible non-
semisimple ¢-adic representation p which is ramified at each place of F'. To see this,
denote the distinct monic irreducible polynomials on the curve C' defining F' =
F,(C) by po, p1,.... Put x, for a root of the equation z*" = pop§ ---p! -- -pf::f,
and fix a primitive ¢"-th root ¢, of 1 for all n, say with ¢! = ¢,_1. For each
o in Gal(F/F), where F is a separable closure of F, define x/(0) and ay(o) in
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Zy by ¢, = XD and oz, = (g med 0 (for all n > 0). Then
p:Gal(F/F) — GL(2,Z¢), p: 0+ (X’fé") (”1(") ), has the required properties when
¢ # p. Of course, Xy is the cyclotomic character of Gal(F/F), and the construction
holds also in characteristic 0: if F' = Q take pg, pi1, ... to be the rational primes.
The semisimplification of p is the direct sum 1 ® xy; it is nowhere ramified.

Let p : W(F/F) — Aut V) be a A-adic representation of the function field F;
then p, = p|W (F,/F,) is unramified for almost all v. Put L(t, p,) = P, ,(t V)1,
where degv = log,, q, is the degree of the residue field of F;, over F,,. This L(t, p,,)
is a power series in E[[t]], and so is the Euler product L(t, p) =[], L(t, pv). Note
that L(t, p,) and L(t, p) lie in Ry[[t] if p is a representation of Gal(F/F), since
then the image of p lies in a conjugate of GL(n, Ry).

Proposition 11.2. (i) L(t, p) is a rational function in t; (i) it is a polynomial in
t if p has no mnonzero Gal(F/F)o-fived vector; (iii) there exists a monomial £(t, p)
in t such that L(t,p) satisfies the functional equation L(t,p) = e(t, p)L(1/qt, p"),
where p" is the contragredient (p¥(w) = tp(w)™1) of p. The local and global L-
functions satisfy (iv) L(t,p) = L(t,p )L(t,p") if 0 = V' -V — V" — 0 is
an exact sequence of representations, and (v) L(t,pr) = L(t, pr) if K is a finite
extension of F in F, px : W(F/K) — AutVy is a A-adic representation of K,
and pr is the induced pr = Ind(p; W(F/F),W(F/K)) representation of F. (vi)
There exists a ¢ = c(p) > 0 such that the Euler product L(t, p) converges absolutely
in |t| <ec.

Proof. This is a theorem of Grothendieck (cf. [?], p. 574). Our (i) follows from the
cohomological interpretation

)i+1

L(t,p) = [ det[t — ¢ - Fr | Hz(C x Fy, p))

where Fr is the geometric Frobenius on the curve C' which defines F' = F,(C), and
F, is an algebraic closure of F,. (ii) implies the Artin conjecture for function fields,
and (iii) results from the Poincaré duality. For (iv),(v) see [?], p. 530. (vi) follows
from the interpretation of L(t, p) as an L-function of a smooth Q,-sheaf over some
scheme; see [?], section 10, or the paragraph preceding Lemma ?? in the proof of
Theorem ?? above, and [?], Theorem 1. O

Remark 11.1. If p, is one-dimensional, namely a character, then L(¢, p,) = 1 if p,
is ramified, and L(t,p,) = (1 —t - py(Fr,))~ ! if p, is unramified. Then L(t, p,)
coincides with the Hecke-Tate local factor for the character of F,* corresponding
to py, as Fr, is mapped to the uniformizer m, by the reciprocity epimorphism of
class field theory. If p is a character of W(F/F) then L(t,p) coincides with the
Hecke-Tate Euler product for the corresponding character of the idele class group
A*/F*.

11.3 e-factors. To compare A-adic representations p of a global field F' with
automorphic representations we need to express the global e-factor as a product of
local e-factors. The local e-factor is defined by Theorem 4.1 (and 6.5) in [?], which
we now recall.

Proposition 11.3. There exists a unique E5 -valued function e, associating a num-
ber £(p, v, dx) to the triple consisting of (i) a A-adic representation p: W(F/F) —
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Aut Vy of the local field F; (ii) a nontrivial ES -valued additive character ¢ of F;
(#i1) Ex-valued (see [?], p. 554) Haar measure dx on F, satisfying the following
properties.

(1) e(p,p,dx) = e(p', 9, dx)e(p”, ¥, dx) for any exact sequence 0 — Vi — Vy —
Vi’ — 0 of representations. In particular, (p,,dx) depends only on the class of
(p, Va) in the Grothendieck group Ry, (W (F/F)) of A-adic representations of F.
(2) e(p,,adr) = a¥i™Pe(p, v, dx); in particular, £(p,v,dx) is independent of dx
and is denoted by e(p, ) for a virtual representation p of dimension zero. Note
that dim and det naturally extend to homomorphisms from the Grothendieck group
Rp, (W(F/F)) to Z, and to Hom(W (E/E), EY).

(3) If K is a finite extension of F in F, px a virtual A\-adic representation of
W(F/K) of dimension zero, and pr = Ind(pr; W(F/F),W(F/K)) the induced
representation of W(F/F), then e(pp,) = e(pr, 1 o trg/r), where trg p is the
trace map.

(4) If p is a character of W(F/F) corresponding to the character x of F* by
local classfield theory, then e(p, v, dx) = e(x, v, dx) is the Hecke-Tate local e-factor
associated to x (and 1, dz).

For a given A-adic representation p of a local field F', the e-factor e(p ® x, ¥, dx)
depends on p only via its dimension and determinant, for a sufficiently ramified .
More precisely, by [?], we have the following

Proposition 11.4. For any character x of F* whose conductor a(x) is sufficiently
large (depending on p and 1)), there exists y in F* with x(1+ a) = ¢(a/y) for all
a in F* with deg(a) > a(x)/2, and we have

e(p @ X, 9, dw) = e(x, v, da) ™7 - (det p)(y).

Corollary 11.5. If dimp = r and x1,..., X, are characters of W(F/F)a, ~ F*
whose product is det p, for a sufficiently ramified x we have

e(p® x, ¥, dx) = [ e, v, da)xi(y) = [ [ eOoxir ¢, d).

i=1 i=1
Let F' be a function field, dz = [], dz, a Haar measure on A which assigns
A mod F the volume one, and v a nontrivial additive character of Amod F. The
restriction of 9 to F, is denoted by v,,. Put d, for the degree over I, of the residue
field of F,, and define the unramified character v, of W(F,/F,) by v, (Fr,) = tdv.
Put
L(t,py) = L(py @ v1p) and  e(t, py, Yy, dxy) = €(po @ Vi, Yo, dy).

For any M-adic (constructible) representation p of W (F/F), for almost all v the
factors e(t, py, 1y, dx,) are equal to one, and the product

€11 (t’ p) = H 5(t7 Pus Yo, dzv)

is independent of the choice of 1) and decomposition dz =[], dz, into local mea-
sures.

Proposition 11.6. For every irreducible A-adic representation p we have the equal-
ity e(t, p) = ery(t, p)-

Proof. This is a main result of [?]. O
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Remark 11.2. The case where p has finite image, or it belongs to an infinite compat-
ible system of A-adic representations, is due to [?], Theorem 9.3; for more historical
comments see [?].

Definition 11.3. Put
L(t, Pv)
t,pu)L(1/qt, py)

F(t,pv) = E(

and L(t.p)
t,p
I'(t,p) = .
t.0) erp(t, p)L(1/qt, pV)
Note that I'(¢, p,) = T'(¢, py, ¥y, dz,) depends on v, and dzx,,.

Remark 11.3. In view of Proposition ?7?, the Grothendieck functional equation of
Proposition ??(iii) asserts that I'(¢, p) = 1 for every A-adic p.

11.4 Review of product L-functions of generic representations of GL(n).
Here is a brief review of well-known results, underlying the converse theorem, and
used in applications. Let n > m > 0 be integers. Put k = n—m—1. For v € |X]|, let
7, and 7, be admissible representations of G,, = GL(n, F},) and G,, = GL(m, F,)
which are parabolically induced from irreducible generic representations. Denote

by W (my,,) and W (n,,1,) their Whittaker models. For W, in W (m,,,) and

W/ in W(nl,,), define

U(t, Wy, W) = / W, ((51.0.))) Wi(z) (g™ =" t)teat) dee@) gy
N’m\Gm
and \AI;(tﬂ W’LH Wf?’))

= (3 ) Wi e gy
N \Gom M(kxm,Fy) 001

where M(k x m, F,,) is the space of k X m matrices. Recall that |a,|, = ¢» deg"’(a”),

qo = ¢33 We write t = ¢=* (s € C) for comparison with the characteristic 0
case. Then the factor |detz|, 2 becomes (¢" 2 t)de8(¥)deg,(#) where deg, ()
means deg, (det x).

Denote antidiagonal(1,...,1) by w or w,. Put W(g) = W(wtg™1). Put wy, ,, =
diag (L, Wyn—m). The following, and the analogue for n = m, is due to [?], [?].

Proposition 11.7. (1) The integrals U(t, Wy, W!) and ¥(t, 7 (wn,m)WN/v, W) con-
verge absolutely in some domain |t| < c¢ to rational functions in tdes(®)  Ag W,
and W/ range over W (m,,1,) and W (x!,v,) these integrals span fractional ideals
C[t,t7Y|L(t, 7, x 7)) and C[t,t | L(t, 7Y x 7'V in the ring C[t,t~1]. The L-factor
L(t,m, x m) is the reciprocal of a polynomial in t with constant term 1.

(2) There exists a unique function (t,m, X 7,4,) of the form at™ (where a =
a(my, mh ) in C*, m! = m/(my, 7, 1by) € Z) such that for all W, € W (my,1y),
W! € W(r!,,) we have

U (t, W,, W/)

U1 qt, 7 (W) We, W)
L(t,m, x 7)) )

t, Ty /a v )WVl -n" =
o X T o)eom, (U™ = T 6 gty )

(3) There exists an integer m(my, 7, y) > 0 such that for any characters x., X,
of EX so that x,X,, has conductor at least m(m,, ), 1,) we have:
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(i) the functions W(t, W, @ Xo, W@ x,) and U(t, Wy ® Xo, Wé ®X5,) are polynomial
int and t=1; (i1) L(t,m, ® xo X 7 @ X)) = 1;

(4i1) if x; (1 <@ < nk) are characters of F* whose product is equal to w
wy denotes the central character of m and w, of T, then

k, n
~wl, where

nk
e(s,mrex,y) = [[e(s xxi ),
i=1
where (8, x, V) is the e-factor in the Hecke-Tate functional equation;
m

(i) e(t, T @ Xo X T, @ Xy 1) = (t, XXt Yo) "™ e(t, XoXowi Wi s ).
(4) If my, m, and ¢, are unramified of the form m, = I(z;(m,)), m, = I(z;(7])) then
e(t,my X mh b)) =1 and

Lt mo ) = [T =tza(m) 25 (m) L Lty sy = T[(1=t/z0(m) 25 (ml) .
1,] ]

Given also unramified characters x, and X, then (3;iv) holds.

If in addition W,,, W are the K,- and K] -right invariant vectors whose value
at e is 1 then U(t, Wy, W!) = L(t,my x ) and W(t, W,, W!) = L(t, 7Y x 7).

If 7, is also unitarizable then gy /% < |z (my)| < @!* for alli.
(5) Suppose that m,, T, are irreducible and T, is a cuspidal G.-module. Then
L(s,my, 7)) has a pole at s = 0 if and only if there is a GL(n — n’, F,)-module T,
such that 7, is a subquotient of I. Here I is the Gy,-module I(7, x 7)) normalizedly
induced from the representation T, X 1), of the parabolic subgroup P of type (n',n—n’)
which is trivial on the unipotent radical of P and is naturally defined by 7, and 7.

Let us fix a place v € | X|. Denote by v, the character v,(x) = |z|, = gu deg, (z)

where ¢, = ¢%°&(), If ¢ € R, the unramified character vy has Hecke eigenvalue ¢, °.
Write p(a) = p ® v if p is an admissible representation of GL(n, F}). A segment
is a set A = {p,p(1),...,p(a — 1)} of cuspidal (in particular irreducible) repre-
sentations of GL(n, F,), where a € Zso. The normalizedly parabolically induced
representation p X p(1) x -+ x pla—1)=I(p@p(1) ® - -- ® p(a — 1)) has a unique
irreducible quotient denoted L(A).

Two segments A and A’ are called linked [?] if A is not a subset of A’; A’ is not
a subset of A, and AUA’ is a segment. The segment A = {p, ...} is said to precede
A" = {p',...} if they are linked and there is an integer b > 1 with p’ = p(b). The
Bernstein-Zelevinski classification [?] for GL(n, F,) asserts:

Theorem 11.8. (1) Suppose Aq,..., Ay are segments, and for all it < j, A; does
not precede Aj;. Then the induced representation L(A1) X ---x L(Ag) has a unique
irreducible quotient denoted L(Aq, ..., Ag).

(2) The representations L(Aq,...,Ag) and L(A},...,A})) are equivalent iff the
sequences A1, ..., Ay and A, ... A}, are equal up to order.

(3) Every admissible irreducible representation of GL(n, F,) has the form

L(Aq, ..., Ap).

The L-factors are computed in [?], sections 8 and 9:

Theorem 11.9. (1) Let m, = L(Aq,...,Ay) and 7w, = L(AY,...,A},) be irre-
ducible representations of GL(n, F,,) and GL(n', F,). Then

Lt,m, x 7)) = 11 L(t, L(A;) x L(AL)),
1<i<k, 1</ <k’
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L(t,my x V) = 11 L(t, L(A;)Y x L(AL)Y).
1<i<k,1<i/ <k’
(2) Let A ={p,...,pla— 1)}, A ={p/,....p/(a' = 1)} be segments with o’ < a.
Then

L(t, L(A) x L(A)) =TT L(t.pla=1) x (i),

Lt LAY < D)) =TT Lltopla = 1)¥ x p/(=)).

(3) Let p, p' be cuspidal representations of GL(n, F,) and GL(n', F,)). Then

L(t,px p) = [J(1 = 271457 Lt p¥ x pY) = [ ] (1 — ztdest))

z z

where z ranges over the numbers for which p ® 2% is equivalent to p’V (and
deg, (h) = deg,(det h)).

Let 7, be an admissible representation of GL(n, F},) with central character w.,.
Denote by |7, | the unique unramified character of GL(n, F,) into RZ, such that the
central character of m,®|m,| ! is unitary. Thus |m,| = |wx, |*/™. If p is cuspidal then
p® |p|~! is unitarizable. For a segment A = {p,...,p(a—1)}, put |A| = |p (251) |.
Then |A| = |L(A)|, and L(A) ® |A|7! is unitarizable and square integrable. The
representation L(Aq,...,Ag) is tempered when |A;] =1 (1 <4 < k). It is then
equal to L(Aq) x -+ x L(Ay), which is irreducible, and unitarizable. An extension
of the last theorem for unitarizable 7, by Tadic asserts:

Theorem 11.10. Let m, = L(Aq,...,Ag) be an irreducible unitarizable generic
representation of GL(n, F,). Then the Hecke eigenvalues z(|A;|) = |A;|(wy) of the

unramified character |A;| satisfy @ '? < z(|A]) < qql,/2 (1<i<k).

Corollary 11.11. Let m,, m, be admissible irreducible generic representations of

GL(n, F,,) and GL(n/, F,).

(1) If both are tempered, then the poles of L(t,m, x m,) and L(t,m) x w.V) are in
t| > 1.

(2) If one is tempered and the other is unitarizable then these poles are in |t| >
—-1/2

q .

Other well-known results of [?], [?], [?] include

Theorem 11.12. Let 7 = ®,7,, © = Q7 be irreducible automorphic represen-
tations of GL(n,A) and GL(n',A). Then (1) The global e-factor e(t,m x ©’') =
IL, eo(t,my x @), 1by) is independent of 1.

(2) The power series L(t, mxn") =[], L(t, m, x7,) (and consequently L(t, 7" xx'"))
converge to a rational function in t in some domain.

(3) These rational functions satisfy the functional equation

Lt,m x7') =¢e(t,m x 7')L(1/qt, 7" x 7'V).

(4) If w is cuspidal and n' < n then the rational functions L(t,m x 7') and L(t, 7 x
7'V are polynomials.

From [?], II, (3.7) we have
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Theorem 11.13. Let m1 = ®,m,, ' = Q7 be cuspidal (unitary, irreducible)
representations of GL(n,A) and GL(n/,A). Let S be a finite subset of |X| such
that m,, 7 are unramified at each v ¢ S. Then on |t| < q~! the partial L-function
L3(t,mx7'V) has no zeroes, and its poles are all simple. The poles z in |z| < ¢~ ' are

the numbers z with |z| = ¢~ such that (n = n' and) 7 is equivalent to 7' ® (qz)38().
There is a unique way to complete a partial L-function to an L-function.

Proposition 11.14. Suppose for each place v € |X| and each pair X, X, of
characters of finite order of F* we have two triples

L't Xos Xo)y LYVt Xus Xo)s €' (t Xus X o) (1 =1,2)

such that

(1) for some finite S C |X| the triples are independent of i = 1,2 for allv ¢ S (and
all Xy, X)), and

(2) for allv € S the same holds provided x,X., is sufficiently ramified. Suppose
(3) for each pair x = QuXv, X' = ®uX, of characters of finite order of A*/F* the
formal products

L't x) =Lt xext), LVxX) =[[ LVt xe X)) (i=1,2)
v v
define rational functions, the products '(t,x,X") = [1, € (t; Xvs X}s t0) are finite
(almost all factors are 1), and the functional equations

Lt x, X) =€t x, X)LV (1/at, x. X')

hold. Then (t, Xu, Xby Vo)LV (t, X, X0)/LE(t, Xu, X)) is independent of i for every
v. Moreover, if the rational functions L(t, xu,X,), LV (t, Xv, X)) do not have a
common pole (i = 1,2), then L' (t, X, X,), LVt X0, Xs) and &' (t, Xu, X)), y) are
independent of i.

Proof. It suffices to show the claim for v € S, by (1). Fix characters of finite order
Xvs Xo- At each u # v in S fix characters x, x,, of finite order with x,, Y/, sufficiently
ramified for (2) to hold. Let x, x’ be characters of A*/F* whose components at
v and u € S are those fixed. Then claim then follows from (3). The “Moreover”
follows from the form of the L and «. O

Proposition ?? applies in particular when 7 = ®,m,, 7 = ®, 7, are automorphic
irreducible representations of GL(n,A) and GL(n', A), and

LYt X0, X0) = Lt xomo X Xym,), LY X0y X0) = Lt x5 my) > ™' Y)
and e1(t, xu, X4) = &(t, XoTw X X, ,1,). The assumptions (1), (2), (3) follow
from Proposition ??(4), 7?(3), and Theorem ??. The assumption of “Moreover” is
satisfied by Corollary ?? when 7,, 7, are generic and both are tempered or one is
tempered and the other unitary.

11.5 Correspondence. Section 11.4 completes our summary of the theory of
A-adic representations p of the Weil group W(F/F) of a local or global field of
characteristic p. These p will be related now to cuspidal representations of G =
GL(r). As usual, A denotes the ring of adeles of a function field F' of characteristic
p, and each irreducible G(A)-module 7 is the restricted product ®,,m, of irreducible
G, = G(F,)-modules 7, which are almost all unramified. Denote now by C' the
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field C or Q, (¢ # p). Suppose that m and 7, are realizable in a vector space over
C.

If 7, is an irreducible unramified G,-module in a space over the field C, where
G, is GL(r, F,), then there exists an r-tuple z(m,) = (z;) of nonzero elements
z; of C such that m, is the unique irreducible unramified subquotient of the G,-
module I(z(m,); Gy, B,) = Ind(6"/?2(m,); G, B,) normalizedly induced from the
unramified character z(m,) : (b;;) — [, z?eg“(b“) of the upper triangular subgroup
B,. Here deg, is the normalized (integral valued) additive valuation on F*, and

B((big)) = [ aioss 064072 T gl 10/2

Recall that |z|, = gu dego(*) and g, is the cardinality of the residual field of F,.
The polynomial P, -(t) = [[,(1 — tz;) is uniquely determined by 7, and P, (t) #
P, (t) if m,, ), are irreducible unramified inequivalent G,-modules.

Denote by Z the center of G = GL(r). Let w be a unitary character of Z(A)/Z.
Here we write Z for Z(F). Let L(G), be the space of C-valued functions ¢ on
G(A) such that there is an open subgroup U = U, of G(A) with ¢(zygu) =
w(z)p(g) for all z in Z(A), v in G, g in G(A), and u in U,. Let L*(G), be
the subspace of ¢ with fZ(A)G\G(A) lo(9)|?dg < co. Let Lo(G)., be the subspace
of cuspidal functions ¢ in L(G),, those with pr\Np(A) w(ng)dn = 0 for every
proper parabolic subgroup P of G; here Np denotes the unipotent radical of P.
Then Lo(G),, is contained in L?*(G),. In fact, by a theorem of Harder, cuspidal
¢ are compactly supported modulo Z(A). An admissible G(A)-module 7 = ®,m,
with central character w is called cuspidal if it is a constituent, necessarily a direct
summand, of the representation of G(A) on Lo(G),, by right translation. It is called
here automorphic if it is a constituent of L(G),,.

Definition 11.4. Let F' be a function field, p a finite dimensional representation
of W(F/F) over E), and m an admissible irreducible G(A)-module over E\. Then
7 and p are called corresponding if P, ,(t) = P, »(t) for almost all v.

Remark 11.4. (1) If p corresponds to m write m = w(p) and p = p(w). By definition
such p has dimension r and it is constructible. Moreover, the central character w
of m corresponds to the determinant det p of p under the isomorphism A* /F* ~
W(F/F)ap.

(2) If p; corresponds to m; (1 < i < j) then @;p; corresponds to any irreducible
constituent of the G(A)-module I = I(®;7;) normalizedly induced from the P(A)-
module ®;m; which is trivial on the unipotent radical N of P(A); here P is the
standard parabolic subgroup with Levi subgroup [[, GL(r;) if dim p; = r;. Note
that this definition is compatible with that of the local correspondence given below
in terms of local L and e-factors, only when I is irreducible.

(3) If p corresponds to 7 and x is a character of W (F/F )., ~ AX/F*, then p®x
corresponds to 1@y, and p" corresponds to ¥ where pV, 7V are the representations
contragredient to p and .

(4) We defined the correspondence using the geometric Frobenius, as is usually
done. Defining it using the arithmetic Frobenius, the representation p would be
replaced by its contragredient.
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Proposition 11.15. Let p be an irreducible r-dimensional A-adic representation
of W(F/F) whose determinant det p is of finite order. Then p extends to a repre-
sentation of Gal(F'/F).

Proof. (cf. [?], section 4.10). Let pg denote an irreducible constituent in the restric-
tion of p to Gal(F/F)q. Let Wy denote the group of w in W (F/F) with p¥ =~ po;
here we put p¥(g) = po(wtgw). Then py extends to a representation of Wy, and
p = Ind(po; W(F/F),W,). Since p has a finite dimension 7, the index m of Wy
in W(F/F) is finite. Let Fr denote an element of W (F/F) whose image in Z is
1. Then Fr™ lies in Wy, and p(Fr™) is a scalar, since p is irreducible. Suppose
that det p has order k. Then 1 = det p(Fr™)% = p(Fr™"*). Since the image of
Gal(F/F)o under p is profinite, so is the image of W (F/F), being a finite exten-
sion of p(Gal(F'/F)o). But Gal(F/F) is the profinite completion of W(F/F), hence
p extends to a representation of Gal(F/F), as required. O

Corollary 11.16. If p is an irreducible \-adic representation of W (F/F) then
there exists a character x of W(F/F) such that p ® x extends to a representation
of Gal(F/F).

Proof. Given a character y of W(F/F) there exists a character X' of W(F/F)
which is trivial on Gal(F/F)y such that yx’ is of finite order. Indeed, x can be
viewed as a character of AX/F* by class field theory. Moreover, x’ can be taken
to factorize via the volume character = — |z| of A*, since the restriction of x to
the group A° of ideles of volume 1 has finite order. O

Let oo be a fixed place of F. Let E) be a finite extension of Q, where ¢ # p is
a rational prime. We recall Corollary 77 as

Theorem 11.17. For any irreducible cuspidal \-adic representation m = R,
of G(A) whose component oo s cuspi'dal, there exists a unique irreducible \-adic
r-dimensional representation p of W(F /F) which corresponds to .

Our subsequent results in sections 11.5-6 depend on this Theorem, which relies
on Deligne’s conjecture (Theorem ??). The main application is the following global
Higher Reciprocity Law relating cuspidal and irreducible A-adic representations.

Theorem 11.18. The correspondence defines a bijection between the sets of equiva-
lence classes of irreducible (1) cuspidal G(A)-modules m whose component T at 0o
is cuspidal, and (2) r-dimensional continuous £-adic constructible representations p
of W(F/F) whose restriction ps to W (F s /Fs) is irreducible. The determinant
det p of p corresponds by class field theory to the central character of w.

Remark 11.5. By virtue of the Chebotarev density theorem (see, e.g., [?]), the
irreducible p is uniquely determined by its restriction to W (F5/F,) for almost all
v. The rigidity theorem (aka strong multiplicity one theorem, see [?]) for GL(r)
asserts that the cuspidal 7 is uniquely determined by the set of its components 7,
for almost all v. Hence the uniqueness assertion of the Reciprocity Law is clear;
the existence is to be proven.

This global Reciprocity Law will be accompanied by its local analogue, the Local
Reciprocity Law for representations of G, and W (F5/F,). We put t = ¢—*.
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Theorem 11.19. For every local field F,, of characteristic p > 0, and for every
r > 1 there is a unique bijection m, <> p, between the sets of equivalence classes
of irreducible (1) cuspidal G,-modules m,, and (2) continuous £-adic r-dimensional
representations p, of W(Fy/F,), with the following properties. (i) If m, < po
then (1) T, ® Xu < puv ® Xo for every character x, of FX ~ W(Fz/F,)ab; (2)
the central character of m, corresponds to det p, by local class field theory; (3) the
contragredient of m, corresponds to the contragredient of p,. (i) If the GL(n, F,)-

module m(,n) corresponds to pq(,"), and the GL(m, F,)-module m(,m) corresponds to

pS,’") , then

L(t, 7™, m{") = T(t, p{™ @ pi)

for all ¥y, dz,. Moreover, this bijection has the property that ™ and p correspond
by Theorem 77 if and only if m, and p, correspond for all v.

Remark 11.6. By virtue of [?], section 10, there is a unique natural extension of this
local correspondence to relate the sets of equivalence classes of (A) irreducible G-
modules 7,, (B) continuous f-adic r-dimensional representations p, of W(F,/F,),
which satisfies (i), commutes with induction, and bijects square-integrable 7, with
indecomposable p,,.

Lemma 11.20. (1) Every local cuspidal representation is a component of a global
cuspidal representation. (2) Fvery irreducible local A-adic representation with finite
image 1is the restriction of a global \-adic representation.

Proof. (1) Given a local field F,, there exists a global field F' whose completion is
F,. Given a cuspidal G\,-module 70 there exists a cuspidal G(A)-module 7 whose
component at w is 7). This is easily seen by means of the trace formula with a test
function f whose component at w is a matrix coefficient f,, of 7, which is nonzero
on a single G(A)-orbit of an elliptic regular conjugacy class in G(F); see, e.g., [?],
II1. In fact, for each place u # w and square-integrable GG,,-modules ng (1<i<m
v; # u,w), 7 can be taken to have the components 7j , in addition to 7y, and its
components m, for v # u,w,v; can be taken to be unramified. Moreover, m can be
taken to be 0.

(2) If E,,/F,, is a finite Galois extension of local fields then there exists a finite
Galois extension E/F of global fields such that F, is the completion of F' at a place
w and E,, = E ®p F,, and Gal(E/F) ~ Gal(E,/F,). Consequently if p,, is an
irreducible representation of Gal(E,,/F,), then there exists a representation p of
Gal(E/F) whose restriction to the decomposition subgroup Gal(E,,/Fy,) is py. O

11.6 Smooth sheaves. We continue with a more detailed description of the
correspondence, in the equivalent language of f-adic sheaves. As usual ¢ denotes a
rational prime number prime to the cardinality ¢ of the base field F,. Let C be a
curve over [Fy, or more generally, a scheme of finite type.

Denote by S¢(C) the set of isomorphism classes of smooth ¢-adic sheaves on C.
If C is connected and 7 is a geometric point of C, then Sy(C') is isomorphic to the
set of isomorphism classes of continuous finite dimensional representations of the
fundamental group 71 (C,?) over a finite extension E) of Qy, see [?].

In particular each smooth f-adic sheaf on C has constant rank equal to the
dimension of the corresponding representation of m1(C, 7). Denote by S7(C) the
subset of isomorphism classes of smooth f-adic sheaves on C' of rank 7.
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There is a canonical continuous surjective homomorphism 1 (C,v) — Gal(F,/F,)
~ Z, where the Galois group of F, is generated by the Frobenius substitution
¢ : x — z9. The inverse image of Z is the Weil group W(C,v). It is a dense sub-
group of 71 (C, 7). Every f-adic representation of 71 (C,¥) is uniquely determined
by its restriction to W(C,v). Denote the geometric Frobenius automorphism by
Fr=¢ L

Let |C| denote the set of closed points of C. Let p € S¢(C) be a smooth f-adic
sheaf of rank r on C. The fiber p, of p at a closed point v in |C| can be viewed
as an r-dimensional vector space over E) with an action of the Frobenius Fr, =
Frdee(®) Denote by 21(py), - - ., zr(py) the eigenvalues of the (arithmetic) Frobenius
substitution, and by wu;(p,) = 2i(p,) "' those of the (geometric) Frobenius.

Define the local L-factor of p at v to be

L(t, py) = det(I — t3&®) Fr, |p,) ! = H (1 — zi(py) " Ldes()) =1,
1<i<r
Define the global L-function of p to be L(t, p,C) = [[,¢\c| L(t; pu). 1t is a formal
power series in t with coefficients in F).
More generally one defines L(t, p,) and L(t, p,C) in the same way when p is a
constructibe f-adic sheaf on C. The definition can be made also when C' denotes

any connected scheme of finite type over F,.
Recall Grothendieck’s

Theorem 11.21. Let p be a constructible (in particular smooth) (-adic sheaf on
a scheme C of finite type over F,. Let Hi(p) (0 < i < 2dimC) be the étale
cohomology spaces with compact support of p over SpeclFy. Then the power series
L(t, p, C) is equal to the rational function in t

[I (et — ¢ Fr|Ei ()
0<i<2dim C

Fix as usual an isomorphism of Q, with C.

A smooth sheaf p € S,(C) is called pure of weight n if for all v € |C| the
eigenvalues of the geometric Frobenius Fr, in the fiber p, have absolute value
qndeg(v)/Z.

We say that p is mized of weight < n if it has a filtration whose successive
quotients are pure of weights < n. Recall Deligne’s

Theorem 11.22. If p is mized of weight < n then H:(p) is mized of weight < n+i,
forall i > 1. If C' is smooth and proper over F,, and p is pure of weight n, then
Hi(p) is pure of weight n + i, for all i > 1.

Suppose s € C is such that ¢° € C ~ Q, is an f-adic unit. Then it defines a
smooth ¢-adic sheaf Qg(s) of rank one over SpecF,, and by pullback, on any scheme
C of finite type over F,. If p € S,(C) then p(s) = p ®q, Q¢(s) lies in S¢(C). For
any s € C we have that p(s) is a smooth (-adic sheaf on C' @, F, with an action
of Fr, that is a representation of the Weil group W (C, ) at any geometric point &
of C.

In view of Theorems ?? and ??, the following follows from the fact that H24m ¢ (p®
"V @ Qu(dim C + s)) is the dual of Hom(p'(—s), p).

Corollary 11.23. Let C be a scheme of finite type and geometrically connected
over Fy. Let p € S¢(C) be a mized (-adic sheaf of weight < n and p' € S¢(C) an
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irreducible pure {-adic sheaf of weight < m. Then L(t,p ® p’¥,C) has no zero in
[t] < q%(m_"“)_degc. It has poles precisely at the points of the form g~ 4mC—s
with Re s = 3(n —m) such that p'(—s) is a subsheaf of p. The order of such a pole
is equal to the multiplicity of p'(—s) in p.

To deal with the ramified places, we now take C' to be a smooth projective
geometrically connected curve over Fy. As usual, F' denotes its function field, F,
the completion at a closed point v € |C|, O, the ring of integers in F,, F, the
residue field. A smooth ¢-adic sheaf p, on Spec F,, can be viewed as an f-adic
representation of the Galois group Gal(F,/F,) of F,. Its direct image under the
open immersion Spec F,, < Spec O, is a constructible ¢-adic sheaf. Denote by p,
its fiber at the closed point v. It can be viewed as a vector space over E) with
action of Gal(F,/F,), that is, with an action of the Frobenius Fr, = Fri®¢(*), The
local L-factor of p, is

L(t, py) = det[I — ti&®) . Fr |5,]7".

We say that p, is unramified if it extends to a smooth f-adic sheaf on Spec O,. An
{-adic sheaf x, on Spec F), is invertible if it is a character of the Galois group of F,.
From the definition of L(t, p,) we obtain

Lemma 11.24. Let p, be a smooth (-adic sheaf over Spec F,,. Let x, be an invert-
ible £-adic sheaf on Spec F,. If p, and x, are unramified then

L(t, py ® Xo) = det[T — 1980 . Fr, |p, @ x,] 7L

If py is unramified but x, is ramified, and more generally if x, is sufficiently ram-
ified with respect to py, then L(t, p, ® xu) = 1.

Denote now by Sy(F') the set of isomorphism classes of smooth ¢-adic sheaves p
on Spec F' which extend to a smooth sheaf on an open subscheme of the curve C.
This is the set of isomorphism classes of smooth ¢-adic sheaves p on Spec F' whose
direct image under Spec F' — C' is a constructible sheaf on C' which is smooth on
a nonempty open subset. Such a p defines a smooth sheaf on Spec F,,. The fiber of
the constructible sheaf p at each closed point v € |C] is equal to p,. We obtain the
local L-factors L(t, p,) at all closed points v € |C|. Theorems ?? and ?? imply

Proposition 11.25. Let p € Sy(F) be an ¢-adic sheaf which is smooth and pure
of weight n € Z on a nonempty open subset of the curve C'. Then at each closed
point v € |C| each pole of the rational function L(t,p,) has absolute value of the
form q*%(”’m) for some integer m > 0.

Given p in S¢(F) we now have the global L-function L(t, p) = [],¢|c L(t, pv)
on the entire curve C. It is a power series in ¢, which is a rational function by
Grothendieck’s theorem ??. Denote by p¥ the dual in S;(F) of p. The functional
equation of Grothendieck, derived from Poincaré duality, relates their L-functions
(cf. [?], Théoreme VI.6, pp. 155-156).

Theorem 11.26. We have L(t,p) = e(t, p)L(1/qt, p") for all L-adic sheaves p in
Se(F), where e(t, p) = [[g<;i<o det[—t - Fr |Hi(p)] D" is the product of a nonzero
constant and a power of t.

There is a product formula for (¢, p), due to Langlands, Deligne, and Laumon,
recorded already in Proposition 77, which we repeat in Theorem ?7.
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Let 1 be a nontrivial additive character of A mod F', where A denotes the ring
of adeles of F'. Its restriction to F,, — A (v € |C]) is a nontrivial additive character
of F,,. The choice of 1 amounts to a choice of a nontrivial meromorphic differential
form on the curve C. As in [?] and [?], 3.1.5, there is a local factor (¢, py, 1,,) for
each closed point v of C' and a smooth ¢-adic sheaf p, on Spec F,,. It is a product
of a nonzero constant and a power of t. In some simple cases it is given by

Lemma 11.27. Let p, be a smooth {-adic sheaf of rank r and x, an invertible
L-adic sheaf on SpecF,, v € |C|. If p, is unramified then e(t,p, ® Xv,Vy) =
e(t, Xus Vo) " te(t, det(py) @ X v, y). It is equal to 1 if x,, and 1), are also unramified.
The same equality holds for any p, provided X, is sufficiently ramified as a function

of py.
Then for p € Sy(F), the local e-factors e(t, py,1,) are 1 for all v € |C| except

for finitely many v, so their product is well defined. As a consequence of his theory
of Fourier transform, Laumon [?] proved

Theorem 11.28. We have £(t, p) = Hve|0\ e(t, pv,y) for all L-adic sheaves p in
Se(F).

Let co denote a fixed closed point of C. Denote by A" (F, 00) the set of irreducible
cuspidal representations 7 of G(A) whose component 7, at oo is cuspidal. Denote
by Sj (F,00) the set of equivalence classes of irreducible smooth ¢-adic sheaves p on
Spec F', whose direct image under the morphism Spec F' — C is a constructible sheaf
on C which is smooth on an open subset V' of the curve C, whose rank (dimension
of the associated representation of 1 (V7)) is r, and the deduced smooth ¢-adic
sheaf on Spec F,, (representation of Gal(F /Fs)) is irreducible.

We next conclude from Theorem ?? (or ??) the following local

Theorem 11.29. Given 1 € A”(F,00) and n' € A™ (F,00), let p € Sy (F,00) and
p e Sgl (F,00) be the corresponding (-adic sheaves. Then for each v € |C| we have

L(t, 7y, x m,) = L(t, py X pl,), e(t, my X Ty, 1hy) = €(t, po X Py, Py).

Proof. Let S denote the set of places v € |C| where m, or 7, hence also p, or p,,
are ramified. It follows from Theorem 7?7 and Lemmas ?? and ??, that for any
characters x, x" of AX/F* ~ W(F/F),p of finite order, at each place v ¢ S we
have

L(t, xomo X X,m,) = L(t, po ® pl, ® XoX3,)s
Lt xy 'my < xy ~myY) = Lt p @ 0, @ xg ' x0T,
et XoTo X Xy o) = £(t; pu @ Py @ XoXos Yo)-
By the same references, these equalities hold at each place v € S as long as x, X,

is sufficiently ramified.
The products of these local factors satisfy the functional equations

L(t,xm x x'7") = e(t, xm x X'7')L(1/qt,x """ x x' "o’
and

Lt,pp @xx)=clt,p@p @xx)L(1/qt,p" @ p'¥ @ x X' 7).
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Proposition ?? then implies that at each place v € |C| we have

L(t,m, x 7)) L(t, py ® pl)

e(t,my X 7w, by)L(1/qt, my x w,V)  e(t, pu ® pl,,u)L(1/qt, pY X V)’

By Proposition 77, the poles of L(t, p, ®p,) and L(1/qt, p) x pl,¥') occur at different
places, and their absolute values are powers of ¢'/2.

Let v be a place where 7, is ramified. Let 7 be a cuspidal representation of a
standard Levi subgroup M (F,) of GL(r, F,) with central character of finite order,
such that m, is a constituent of the representation of GL(r, F},) normalizedly induced
from 7 on the associated standard parabolic subgroup P(F,). By Lemma ?? there
is a cuspidal representation 7’ of M(A) with central character of finite order and
cuspidal component at oo, with 7, = 7¥. As m, is unitarizable and generic, and 7/,
is tempered, Corollary ?? asserts that L(¢,m, X m,) and L(1/qt, 7)) x 7,") do not
share a pole. Hence

L(t,my x 7)) = L(t, py @ pl,)

and the poles of L(t,m, x 7’) = L(t, 7, x V) have absolute values powers of ¢*/2.

By Theorems ?? and 7?7 we conclude that , is tempered.

If n’ € A’“,(F7 oo) and r’ < 7, we have that 7/ is also tempered. By Corollary ??
L(t,m, x 7!) and L(1/qt,m x 7V) do not share a pole. Hence for each v € |C] we
obtain the equalities of L and ¢ factors asserted in the theorem. (]

11.7 Local and global correspondence. The local correspondence will now be
deduced from Theorem ?? (or ?7?), which asserts the existence of the correspondence
7w +— p. This local correspondence will be used to state in detail and prove the global
correspondence of Theorem 77.

Let F, be a local field of characteristic p > 0. Fix a prime ¢ # p. Recall that
we fix an isomorphism Q, ~ C. Let S} (F,)" denote the set of isomorphism classes
of f-adic sheaves of rank r on Spec F,, whose determinant is of finite order. Let
S (F,) be the subset of irreducible such sheaves. We use the notations S} (F,)"
and Sj(F,) also for the sets of isomorphism classes of the representations o of
Gal(F,/F,) associated (see [?], 1.1(c)) with the sheaves p. Write o for the
Frob-semisimple ([?], section 8) representation attached to the representation o.

Lemma 11.30. (1) Let p, be a nonzero {-adic sheaf on Spec F,. It is irreducible
iff the local L-function L(t, p, ® py) has poles only on |[t| =1 and has a simple pole
att=1.

(2) Let p, and pl, be two irreducible (-adic sheaves on Spec F,. They are isomorphic
iff L(t, pl, ® py) has a simple pole at t = 1.

Proof. Let 0°(St,.) be the unique ([?]) Frob-semisimple indecomposable ¢-adic rep-
resentation of Gal(F,/F,) such that gré”ao(Str) is Qu(—(j+r—1)/2)if j—r—1is
even and |j| <7 — 1, and 0 otherwise. The Tate twist Sp,.(1) = ¢°(St,.)((r — 1)/2)
is called the special representation of dimension r of Gal(F, /F,). It is indecompos-
able, and a successive extension of one-dimensional representations

Q(1=7)/2), Q(1=7)/2+1), ..., Q(r—1)/2),

with Q,((r — 1)/2) as the unique irreducible submodule, and with Q,((1 —7)/2) as
the unique irreducible quotient module.
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The Frob-semisimplification 0¥ of any f-adic representation o of dimension r
of Gal(F',/F,) whose determinant is of finite order can be written as a direct sum

Enz1 Br<rr<r Dy () (SPa(1) © 7))

for some uniquely determined integers m(n,7’) > 0 ([?], (3.1.3)(ii)), which are
almost all 0. Its L-function is

Lito)=Lit.o™) =] I II <Lsp.()er)mm

n>11<r'<r g5y’ (F,)

—_ H H H L(tq(nfl)/2,7_/)m(n,‘r').

n>11<r'<r /EST (Fy)

If 7/ € Sy’ (F,) then L(t,7') is 1 unless 7/ = 1 and 7/ is an unramified character
x of finite order, in which case L(t,x) has no zeroes, its poles are on the circle
|t| = 1, and there is a poles at t = 1 iff x = 1. Applying the last displayed formula
to 0 = 01 ® 09 it follows that for o; € S;*(F,), i =1, 2, we have that L(t,01 ® 02)
is not identically 1 iff 7; = 7o and there is an unramlﬁed character y of finite order
with o9 ~ 0y - x.

By [?], (1.6.11.2), we have

Sp,(1) ® Spy(1) = Bo<j<min(a,b) SPatb—1-2;(1)-

Hence for 01, 09 € Sy (F,) with o}, 655 decomposing as above, we have

L(t,01 ® 09) H H H H

ni,n2>11<r) rh<r €S, l(F )”Tzesrz( )0<7<m1n(n1,n2)

L(tq(n1+n2)/2717j ,7_/ ® T/)m1(7l177'{)m2(n2,7£)

H H H HHL (n1+n2)/2—1— j )ml(n177/)m2(n27r’vx)

ny,ne>11<r' <r - EST (F,) X

where y ranges over the set of unramified characters of F; of finite order. Since
Sp,(1)¥ ~ Sp, (1) ([?], (1.6.11.3)), for o € S;(F,) we obtain that L(t,c ® o)
equals

L(t (n1+4ns2)/2—1—j5 m1(n1,7’/)m2(n2,7/v).
I I I II I L X)

ni,na>1 1§r'§r7/652'(Fu) X 0<j<min(ni,n2)

Write o’ for 0¥, Then o’ ®c’" is the Frob-semisimple representation associated
with c @ ¢V and L(t,0 ® 0V) equals L(t,0’ @ ¢’V). If this L-function has a simple
pole at t = 1 then we deduce from the last displayed formula that ¢’ is irreducible,
hence o is irreducible, as required. Indeed, if ¢’ is irreducible, then its restriction —
and so also that of o — to the inertia subgroup of Gal(F,/F,), factors via a finite
quotient. In this case ¢’ is the semisimplification of 0. Thus when ¢’ is irreducible,
so is o, and ¢/ = 0. Conversely, if ¢ is irreducible then it factors via a finite
quotient, hence it is Frob-semisimple. O

Denote by A"(F,) the set of equivalence classes of cuspidal (by which we mean
irreducible admissible such) representations of GL(r, F},). Fix a nontrivial character

Yy : Fy — Q, . We have
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of bijections
p(mY) = p(m,)V;
loc al class field
p(mw)Xw; (4) for
(t,my X 7)) and

Theorem 11.31. There exists a unique series, indexed by r > 1
A" (Fy,) — S}(Fy), my — p(my), satisfying, for all m, in A™(F,), (1)
(2) det p(m,) corresponds to the central character wy, of m, by
theory; ( ) for any character x, of F)¢ of finite order, p(myXy) =
every ' > 1 and 7, in A” (F,) we have L(t, p(m,) ® p(n))) = L(t
e(t, p(my) @ p(mh)y1hy) = (b, my X 7 10y).

Proof. By induction on r, suppose m, — p(m,), satisfying (1)-(3) and (4) for ' <,
has been constructed in ranks < r, where r > 2. We define it for r. For that, we
view F), as the completion of a function field F' of a smooth projective absolutely
irreducible curve C, at a place v € |C|]. Given a cuspidal representation m, of
GL(r, F,,) with central character of finite order, there exists — by Lemma ?? — a
cuspidal representation m € Aj(F,00) of GL(r, A), with central character of finite
order, whose component at v is our m,. By Theorem ?? our 7 corresponds to an
(-adic sheaf p(7) € S} (F,00). By Theorem ?? L(t, p(m), ® p(m)y) = L(t, 7, X m)).
By Lemma ?? (1) above, p(7), is irreducible. If 7’ € A"(F, 00) is another cuspidal
representation whose component at v is 7, = m,, then L(t, p(7"), ® p(7)Y) =
L(t,w, x 7). By Lemma ?? (2), p(7'), is equivalent to p(7),. We thus defined a
map 7, — p(m,) = p(m), of AT(F,) into S} (F,).

Given m, € A”(F,) and 7/, € A” (F,) with v’ < r, we can view them as compo-
nents of m € A™(F,o0) and 7’ € A (F,00). By Theorem ?? we have

L(t, p(my,) @ p(7l) = L(t, m, x ), e(t, p(my) @ p(ml,1hy) = (t, my X o), 2by).
In particular we have L(t, p(7})®p(m,)Y) = L(t, 7, x7,/). So Lemma ?7 (2) implies
that the map A"(F,) — S} (Fy), m — p(my), is injective. Clearly it satisfies (1)-(3).

The map 7, — p(m,) is bijective, due to a counting argument recorded as The-
orem 15.17 in [?]. The map with these properties (1)-(4) is unique by [?]. O

We now repeat Theorem ?7.

Theorem 11.32. For every positive integer r, the correspondence defines a bijec-
tion A" (F,00) = S} (F,00), ™ — pr. Moreover, m € A"(F,00) and the correspond-
ing p € Sj(F,00) are ramified at the same places.

Proof. The case of r = 1 is class field theory, so we assume r > 2. In particular
we can identify characters of F*\A* of finite order with f-adic sheaves of rank
1 and finite order. This identification respects L and e factors at all places. By
Chebotarev density theorem, to 7 corresponds at most one p. By rigidity theorem
for GL(r) there is at most one cuspidal 7 corresponding to a given p. We may
consider only m whose central character is of finite order, and p whose determinant
is of finite order (thus (det p)®™ ~ Q, for some integer m > 0).

The map A"(F,00) — Sj(F,00), T + px, has already been constructed using
the moduli scheme of elliptic modules, its étale f-adic cohomology with compact
support and coefficients in a sheaf, Deligne’s conjecture and the trace formula. In
particular we have the Ramanujan conjecture too: each unramified component of
m € A"(F,00) is tempered. What remains to be seen is that the map 7 — p, is
surjective.

Let p € S} (F,0) be an irreducible ¢-adic sheaf. Denote by S the finite set of
places v € |C|, v # oo, where p is ramified. At each v ¢ S, v # 0o, denote by z(p,)
the r-tuple of its Frobenius eigenvalues (z1(py), -, 2r(pv)), where the z;(p,) are
viewed as complex numbers ordered to satisfy |z;(p,)| > |zix1(pw)| (1 < i < 71). The
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corresponding G,-module 7, = I(z(p,)), normalizedly induced from the unramified
character (of the upper triangular Borel subgroup) defined by z(p,), is unramified,
and possibly reducible (if z;(p,) = quzit1(py) for some i (1 <i < r)).

Lemma 11.33. The G,-module m, = I(2(p,)) is nondegenerate.

Proof. Let wg be a nonzero GL(r, R,)-fixed vector in the space of m, (wp is unique
up to a scalar). Let Wy denote the Whittaker function associated to m, and v,
(which is taken to be unramified) in [?]. Putting F(m,(g)wo) = Wo(g), we obtain
a nonzero morphism F of G,-modules from 7, to the space Ind(¢,; N,,G,) of
Whittaker functions. To show that m, is nondegenerate, we need to show that
F is injective. But this follows from a result of [?], which asserts that m, has
a unique irreducible nondegenerate subquotient 70, which is in fact the unique
subrepresentation of m,. Namely the irreducible nondegenerate subrepresentation
70 of 7, is a subrepresentation of any subrepresentation of m,. Now if F : 7, —
Ind()y; Ny, G,,) had a nontrivial kernel K, it would contain 7, and there results
an embedding of the degenerate G,-module 7,/K in the space Ind(¢y; Ny, Gy)
of Whittaker functions. This is a contradiction to the assumption that F' is not
injective, and the lemma follows. [

Remark 11.7. Had we arranged the eigenvalues so that |z;(py)| < |zit1(po)|, then
7, would have the nondegenerate constituent 7¥ as a unique quotient. In this case
the embedding of 7¥ in W, = Ind(+,; N,,G,) extends to a morphism of 7, into
W,, whose kernel is the subrepresentation K, of 7, with m, /K, = 7. In particular
the resulting morphism m, — W, is not injective if 7, is reducible.

Now given p € Sj(F,00), we defined an unramified generic representation ,
of GL(r, F,)) for each v € |C|, v # o0, v ¢ S, where p is unramified. At oo, let
Too be the cuspidal representation of GL(r, Fiy,) associated with the restriction pso
to Spec F, by the local correspondence. At each place v € S choose a generic
irreducible representation m, of GL(r, F},) whose central character w,, corresponds
to det(p,). Then m = ®,m, (v € |C|) is an admissible irreducible generic represen-
tation of GL(r, A) whose central character w, = ®,wy, corresponds to det p and
its component 7., is cuspidal.

Let x = ®yXx» (v € |C]) be a character of A*/F* of finite order which is highly
ramified at the places v € S. We aim to show for any cuspidal representation
T = Qye||T, in A" (F,00), 7' < r, such that 7/, (v € S) are unramified, that the
formal power series L(t, xm x ) and L(t,x 7" x ©'V) are polynomials satisfying
the functional equation L(t,xm x ') = (¢, x7 x ') L(t,x " '7" x 7’V). Theorem ??
would then apply to imply the existence of a cuspidal # € A"(F, 00) corresponding
to p, proving the theorem.

By induction the theorem holds for 7/, thus 7’ corresponds to an f-adic sheaf
p = pr € Sgl (F,00), and 7"x corresponds to p’ ® x, and their L and ¢ factors are
equal at all places.

At the places v ¢ S U {oo}, the factor m, is unramified. Hence by definition of
T, We have

L(t,xomy X ) = L(t, po @ xo ® ), L(t,x,'m) xmY) = L(t,plx, ' @ p,,"),

e(t, XoTw X Ty, ) = (t, po @ Xo @ pyy, V).
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At the places v € S the factor 7, is unramified. Choosing x, sufficiently ramified
with respect to m, and p,, we have

L(t7Xv7TvX7T:;) =1= L(tan®Xv®PL)7 L(taxglﬂ-:;/Xﬂ-;zv) =1= L(t,pXX;1®p;V),
€(t, XvTy X W;vz/)’u) = E(taX'ua wv)rr _1E(ta Xvw;vwz;ngv)

= 5(ta Xvs Z[}v)rr,ils(tv Xv det(pu)rl det(ﬂ;,)r7 d)v) = 5(t7 Pv & Xo & P:;a 'll)v)
The same holds at co as m and 7/ are cuspidal, by the local correspondence and
the choice of po, and pl.
We deduce that L(t,xm x ') = L(t,p @ x ® p'),

L(t,x 'Y x o) = Lt p" @ x ' @ p'Y),

and using the product formula for the local factors that (¢, 7 x7') = e(t, p@x®p’).
Transferring from p, p’ to 7, 7’ we see that L(t,xm x 7’) and L(t,p ® x ® p’) are
rational functions which satisfy L(t,xm x 7') = e(t, xm x ') L(1/qt, x " *7V x 7'V).

It remains to see that they are polynomials. This follows from Grothendieck’s

cohomological interpretation of the L function:

Litpex®p)= [] detll —t-Fe|Hi(pox e )"0,
0<i<2
L(tapV ®X*1 ® plv) - H det[I —t - Fr |Hé(pv ® X71 ® p/v)](il)%l»l.
0<i<2

Indeed, since p and p’ are irreducible of ranks r # 7/, the H!(p ® x ® p') and
Hi(p¥ ® x ' ® p'V) vanish for i = 0, 2. Theorem 12.1 now implies that there is
an automorphic representation whose components outside S are the same as those
of xm, hence up to changing the factors of m at v € S, this n is automorphic,
corresponding to p. Its component at oo is cuspidal, so 7 is cuspidal. (Il

Let us verify that the local and global correspondences are compatible.

Proposition 11.34. Let p € Sj(F,00) be an irreducible ¢-adic sheaf on Spec F'
of rank r > 2 whose restriction to Spec Fy, is irreducible. Let m € A"(F,00) be
the corresponding cuspidal representation of GL(r, A). Its component woo al oo is
cuspidal. Then the local factor m, of ™ at v € |C| is the unique generic irreducible
admissible representation of GL(r, Fy,) whose central character wy,, corresponds to
det p, by local class field theory, and such that for any integer v’ < r and any
7' € A” (F,0), denoting by p' € SZ/ (F,00) the corresponding £-adic sheaf, we have

L(tvﬁv X le) =1= L(t’pv ® P;), L(t,ﬂl\)/ X W;v) = L(t,p\v/ ® p;\/)7
8(15,7‘% X 7'(-1/),1,[)@) = 5(tapv & PL,%)-

Proof. By Theorem ?7 we already know that the component m, of 7 at v satis-
fies these properties. We need to show the uniqueness of m,. Thus suppose the
irreducible admissible generic representation ./ of GL(r, F,) satisfies these prop-
erties. Denote by 7'" the irreducible admissible representation of GL(r, A) whose
local component at v is 7}/ and its other components are the same as those of .

The representation 7’/ has the same central character as . The Euler product
which defines its L-function is the same as that of 7, hence it converges absolutely
at some disc, and for every cuspidal representation 7/ € A" (F,00) of GL(r’, A) we
have L(t,n" x 7') = L(t,m x «'),

Lt, 7" x7'V) = Lt, 7" x '), e(t, " x ') =e(t,m x 7).
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Hence L(t, 7" x ') and L(t, 7"’V x 7’'V) are polynomials which satisfy the functional
equation

Lt, 7" x ') =¢e(t,n"" x 7" )L(1/qt,n""Y x 7'V).
By the simple converse Theorem 7?7 we see that «'/ is a cuspidal representation
of GL(r,A). Tt coincides with 7 at all places except possibly at v. Hence by the
rigidity theorem for cuspidal representations of GL(r, A) we deduce that 7}’ = 7,
and the required uniqueness follows. O

Using the similarity of the construction of smooth ¢-adic sheaves of rank r on
Spec F,, and the classification of admissible representations of GL(r, F,) by [?], one
can extend the local correspondence from the case of irreducible and cuspidal case
to that of maps, indexed by r > 1, from the set of isomorphism classes of f-adic
sheaves of rank r on Spec F,, (whose determinant is of finite order), to the set of
equivalence classes of irreducible admissible representations of GL(r, F,) (whose
central character is of finite order). These maps preserve the local L and e factors
of pairs, are compatible with taking contragredient, twisting with characters of
finite order, and local class field theory. These maps are surjective and two f-adic
sheaves of the same rank on Spec F,, have the same image iff they have the same
F-semisimplifications ([?], section 8).

From the last proposition we then conclude

Corollary 11.35. Let p € Sj(F,00) be an irreducible {-adic sheaf on Spec F' of
rank r > 2 whose restriction to Spec F is @rreducible. Let m € A" (F,00) be the
corresponding cuspidal representation of GL(r,A). Then the component m, of m at
v is the image of p, under the local correspondence for F,.

We could have approached the construction of the 7 corresponding to p differ-
ently, namely define 7 to be ®,m, where each m, is defined by the local correspon-
dence from p,, also when p, is not unramified or irreducible. For this we would
need to expand the paragraph preceding the last corollary.

Let oo be a fixed place of F'.

Corollary 11.36. Let p be a A-adic irreducible constructible representation of
W(F/F) with determinant of finite order. Suppose that the restriction pec =

pIW(F «/Fx) is irreducible. Then for all v where p, is unramified, the roots of
P, ,(t) (namely the eigenvalues of the Frobenius) have complex absolute value one.

Proof. The GL(r, A)-module 7 corresponding to p is cuspidal with a cuspidal com-
ponent at co. Hence 7 satisfies the Purity Theorem 7?7, namely the Hecke eigen-
values of 7, are units, as required. ([l

Let ¢ be a rational prime, and p : W(F/F) — GL(r,Q,) an irreducible (-adic
representation of the Weil group of F. As noted in Lemma ?7, there is a finite
extension E) of Qg such that p factorizes through GL(r, E\). Replacing p by
p ® x for some nowhere ramified character x of W(F/F), we may assume that

det p has finite order, and consequently that p extends to an /(-adic representation
p: Gal(F'/F) — GL(r, E)) of the Galois group. Fix a place co of F.

Corollary 11.37. Let p : Gal(F/F) — GL(r, Ex/) be an irreducible constructible
X -adic representation of F, whose restriction to Gal(Fu/Fs) is irreducible, with
determinant of finite order. Then there exists a finite extension Q(p) of Q such
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that each of the eigenvalues of p,(Fr,) lies in Q(p) for every place v of F such
that p, = p| Gal(F,/F,) is unramified. Moreover, there exists a finite set V(p)
of rational primes excluding the residual characteristic £’ of Ex/, and a compatible
(see [?] or [?]) family {p; : Gal(F/F) — GL(r,Q(p)¢); £ & V(p)}, where Q(m), is
any completion of Q(w) over Qp, with p = pp (in particular Ey is an extension of
Q(m)er), and such that peco is irreducible for all £.

Proof. Let 7 be the cuspidal G(A)-module which corresponds to p. Put Q(p) =
Q(m), where Q(r) is the field of definition of 7 which is introduced at the end of
section 9. Then Q(m,) = Q(tr p,(Fr})"); m < 1) lies in Q(p) for all v where p,
is unramified. The field Q(7) is a finite extension of Q since Q(det p) is a finite
extension of Q by assumption. This proves the first assertion; the second follows
at once from Theorem ?77. d
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12. SIMPLE CONVERSE THEOREM

We prove a simple form of the converse theorem for GL(n) over a function
field F', “simple” referring to a cuspidal component. Thus a generic admissible
irreducible representation 7 of the adele group GL(n, A) with cuspidal components
at a finite nonempty set S of places of F whose product L-function L(t, 7 x ') is
a polynomial in ¢ and has a functional equation for each cuspidal representation 7’
of GL(n — 1,A) whose components at S are cuspidal, is automorphic, necessarily
cuspidal. The usual form of the converse theorem deals with the case where S is
empty. But our simple form is sufficient for applications of the simple trace formula.

12.1 Introduction.

Theorem 12.1. Let X be a smooth projective absolutely irreducible curve over a
finite field Fy. Let F' be its function field, A the ring of adéles, n > 2 an integer,
S1 # 0 and Sy disjoint finite sets of places of F. Let m = ®,m, (v ranges over
the set |X| of places of F) be a unitarizable irreducible admissible (in particular
my 18 unramified for almost all v) locally generic (thus m, is generic for all v)
representation of GL(n,A) whose central character is trivial on F* and whose
components m,, v € S1, are cuspidal. Suppose that for each cuspidal (by which
we mean in particular irreducible and automorphic) representation @ of GL(n —
1,A) whose component 7, at v € Sy is cuspidal and at v € Sy is unramified, the
formal series L(t,mx7') and L(t,7 x7'V) are polynomials satisfying the functional
equation L(t,m x 7') = e(t,m x #')L(1/qt, 7" x ©'V). Then there exists a cuspidal
representation ' of GL(n, A) with ) ~ m, for all v ¢ Ss.

Extending work of Weil and others, Piatetski-Shapiro discussed in an unpub-
lished manuscript of 1976 a variant of the statement above, named the converse
theorem since when 7 is cuspidal L(¢, 7 X 7’) satisfies the functional equation. This
converse theorem can be used to prove by induction automorphy of a product ®,,,
of representations 7, of GL(n, F,). Sometimes the induction assumption is satisfied
only for representations 7’ which are cuspidal at the places v € S;. Such a situation
has acquired the label “simple”, as in such a case the trace formula simplifies con-
siderably; see, e.g., [?]. Thus we name Theorem ?? a simple converse theorem. We
discussed it — following Piatetski-Shapiro’s exposition of 1976 — in the unpublished
manuscript of 1983 which dealt mainly with applications underlying the present
work. An extension to include the number field case appeared in [?] of 1994. The
function field case of that appeared in an appendix to [?] of 2002. It was used in
[?] to prove the reciprocity law between irreducible n-dimensional representations
of the Galois group of F, and cuspidal representations of GL(n,A). However, a
treatment of the simple converse theorem for GL(n) has not yet appeared. It is
needed to obtain by relatively simple means a large part of the reciprocity law for
GL(n) over function fields, a worthy aim in view of the intense technical difficulty
of [?]. This section is then written to address this lacuna. The number field case
follows by combining our arguments with those of [?]. But we currently know of
applications only in the function field case.

12.2 Generic representations. Let X be a projective smooth absolutely ir-
reducible curve over a finite field Fy, of cardinality ¢ and characteristic p. Let
F =TF4(X) denote the function field of X over Fy. The set |X| of closed points of
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X is naturally isomorphic to the set of places v (isomorphism classes of absolute
values |.|,) of F. For each v in |X| denote by F, the completion of F' by [.|,, by
R, its ring of integers, by 7, a generator of the maximal ideal in the local ring R,,.

Let ¢, be the cardinality of the residue field k, = R,,/(m,). Normalize the absolute

value by |m,|, = ¢;'. Define the valuation deg, : F* — Z by |z|, = qv deg, (@)

Thus deg, (m,) = 1.

The ring A of adeéles of F is the restricted product [[, F, of the F,, (v € |X|) with
respect to the compact subrings R,,. If S is a finite subset of | X| put Fs =[], cg Fo-
Then A =g Fs - [1,¢5 Ro- Put A% =T[5 F,. Then A = F - AS. The group of
ideles of Fis A* =[], F, the restricted product of the multiplicative groups F*
of F, with respect to the compact groups R. Thus A* = |Jg FJ Jlogs RS- Tt is
the multiplicative group of A, and A* = F§ - ASX,

Let B denote the upper triangular subgroup of G = GL(n), N its unipotent
radical, A the diagonal subgroup, P’ the standard (containing B) parabolic sub-
group of type (n — 1,1), P its (mirabolic) subgroup of matrices with bottom row
0,...,0,1), P=tP C P = 'P' the opposite mirabolic and parabolic subgroups
with last column (0,...,0,1) and ¥(0,...,0,%). The center of G is denoted by Z.
The index n is used to emphasize if needed. Thus we view G,,_1 as the subgroup
P,N P, of G, and consequently e.g. N,_1 C Po_1 C Gp_1 C P, C Gy.

Let ¢, : F,, = C* (v € | X]|) be a character # 1. It defines a character, denoted
again by v, of N(F,), by ¥, ((ui ;) = VoD 1<;cpn tiiv1). We recall some local
definitions and results from [?] (see also [?]), thus we omit the index v.

An admissible representation (7w, V) of G = GL(n, F') (over C) is called generic
if there exists a nonzero linear form ¢ on V satisfying ¢(7(u)€) = ¢ (u)f(€) for all
u € N(F) and £ € V. By [?], Theorem C, if 7 is irreducible and ¢ exists, then ¢
is unique up to a scalar. By Theorem D, the space W (w,v) of We(g) = £(m(9)§),
¢ € 7, makes under right translation a G-submodule of the induced representation
Ind(G, N,v), such that 7 — W(m, ), & — W, is an isomorphism of G-modules.
Theorem B asserts that every cuspidal representation of G is generic (by cuspidal
representation we mean an irreducible one). By Schur’s lemma ([?]), an irreducible
7 has a central character. Denote it by w. Then in fact W(m,¢) C Ind(G, ZN,w)),
where wt) is the natural character on ZN.

Consider the restriction map W(mr,¢) < Ind(P,N,v), W — W|P. Theorem
E of [?] asserts that if 7 is cuspidal then this map factorizes via ind(P, N,v¢) —
Ind(P, N,%), and the deduced map W(m,¢) — ind(P, N,1) is an isomorphism
of P-modules. Here ind indicates compact induction. Thus ind(P, N, ) consists
of functions f : P — C such that there exists an open subgroup U; C P with
flupk’) = Y(u)f(p) (v € N, k' € Uy) and a compact subset Sy of N\P with
f(p) # 0 (p € P) implying Np € Sy. Theorem F implies that if 7 is not cuspidal
then {W|P; W € W(m, )} strictly contains ind(P, N, ).

Lemma 12.2. Let m be an irreducible generic representation of G. Denote by
w the central character of w. Then W (m, 1) (C Ind(G, ZN,wy))) is contained in
ind(G, ZN,wv) if and only if 7 is cuspidal.

Proof. We use the decomposition G = ZPK, where K = GL(n, R). Then supp W
C supp(W|P) - ZK. If 7 is cuspidal then supp(W|P) is compact in Pmod N
for any W in W (m, 1), hence supp W is compact in Gmod ZN. Conversely, if 7
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is not cuspidal then the image of W(mr,v) under W — W|P properly contains
ind(P, N, ), hence W (m, ) is not contained in ind(G, ZN,w)). O

Lemma 12.3. Let m, be an irreducible representation of G, = GL(n,F). The
image of the restriction map W — W|Gp—1, W(mp, ¥n) = Ind(Gp—1, Np—1,¥n-1),
contains ind(Gp—1, Np—1,%n-1). The image is ind(Gp—1, Np—1,¥n—1) iff 7, is
cuspidal.

Proof. The restriction map W +— W|P,,, W(r,, ¥,) < Ind(P,, Ny, ¥,) has image
ind(P,,, Ny, ¥y) if 7, is cuspidal. The image strictly contains ind otherwise. The
restriction map W +— W|G,—1, ind(P,, Ny, ¥pn) — ind(Gp—1, Np—1,¥n_1), is an
isomorphism of GG,,_1-modules, and so is the map with ind replaced by Ind. (Il

Let w be a character of F'*, hence also of Z,,_1 ~ F*. The map
Aw : ind(anl, anl, ’1/17171) — ind(Gn,l, ananfl, wwnfl),

b @, dlg) = on_1 #(z9)w(2)~tdz, is onto. The same applies with ind replaced
by Ind. We conclude:

Lemma 12.4. Let w, be an irreducible representation of G,. The image of the
map W — A,(W|Gp-1), W(mn,¥n) = Ind(Gp-1, Zn-1Nn—1,wtn_1) contains
ind(Gp—1, Zn-1Np_1,wthn_1), with equality iff 7, is cuspidal. In particular, when
T 18 cuspidal, the image of W (my,, ¥y,) under W — A, (W|Gp—1) is cuspidal. O

12.3 The global functions U and V. For the global theory we fix a character
¥ # 1 of Amod F. Tt defines a character, denoted again by ¢, of N(A)/N(F), as
in the local case, and for each v € | X]|, a restriction 1, to F, and N(F,). We shall
often write G for G(F) and G, for G(F,) (and for other algebraic groups). An
admissible irreducible representation 7 of G(A) (over C) is the restricted product
®,,7, of irreducible admissible representations m, of G, = G(F,) which are almost
all unramified (m, is called unramified if its space contains a nonzero K, = G(R,)-
fixed vector, which is necessarily unique up to a scalar). Namely the space of 7
is spanned by ®,&,, & € m, for all v and &, is a fixed K,-fixed vector £J # 0
for almost all v. If 7, is irreducible, unramified and generic, the vector &9 can
be chosen so that W = Weo € W(m,,1,) satisfies W (e) = 1. The Whittaker
model of a locally generic irreducible admissible 7 is W (w, 1) C Ind(G(A), N(A), ),
the space spanned by W = ®,W, (which takes g = (g,) to [, Wu(gv)), where
W, € W(my,1,) for all v and W, = W2 for almost all v. Then each W is smooth
(right invariant under an open subgroup of G(A)) and satisfies W (ug) = 9 (u)W (g)
(9 € G(A), u e N\N(A)). If w = ®,w, is the central character of m then W(zg) =
w(2)W(g) (= € Z(A)).

Lemma 12.5. (1) Let W be a Whittaker function on G(A) (right smooth with
W(ug) = v(w)W(g) (u € N(A), g € G(A)). Then there exists a sequence (m, €
Z; v € |X|) with m, = 0 for almost all v such that if W(g) # 0 for g = bk with
b= (bi;) in B(A) and k in K =[], K, then for all v and i (1 < i < n) we have
1bii/bit1,i41]e < g™

(2) The sum
Ulg)= > Wpo= > Wipg)
peEN\P PENL_1\Grn_1
converges absolutely and uniformly on compact sets in G(A).
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Proof. (1) If not then there are v and ¢ and big enough m,, such that |b; ;/bi+1.i+1lv
> ¢™v, and there is u, € N(F,) with 9, (u,) # 1 such that g; lu,g, lies in an
open subgroup of finite index in K, under which W, is right invariant. Then
Vo (U)W (90) = Woy(uugn) = Wolgu (g, tiugn)) = Wi(gy) implies W, (g,) = 0 and
Wi(g) =0.
(2) Tt follows from (1) that if Y is a compact subset of G(A), and g ranges over
Y the function h — W ((29)g) is compactly supported on the space of h €
~1(A\Gn-1(A), | det(h)| = 1. Since N,,_1\G,—_1 is discrete in this set, the sum
U(g) is finite. O

Lemma 12.6. For any m € Z, the restriction of U"(h) = U ((%9)) to the set of
h € Gp-1\Gn-1(A), |deth| = ¢™, is compactly supported. It is 0 if m is large
enough.

O:“

Proof. By reduction theory for G,_1(A) there is a sequence (m!, € Z;v € |X]|)
with m/, = 0 for almost all v, and a compact subset Q@ C N,,_1(A) such that
Gn-1(A) = Gp_1 - 6((m)),N), where the Siegel set S((ml), ) consists of the
h = uak in G,—1(A) with v € Q, k € K = [[, K,, and a = diag(a1,...,an-1),
a; € A%, with |a;/ait1ly = ¢™ (1 <i < n—1). It suffices to show that U"’(h)
is compactly supported on &,,((m)),Q) = {h € &((m)),Q); |[deth| = ¢™}. It
suffices to show that for h in &, with U"(h) # 0, |a1| is bounded. If U"(h) # 0
there is p € Gp,—1 with W ((ph O)) # 0. Suppose p,—1,1 # 0. Consider ph = puak.
The (n —1,1) entry of pua is pp—1101. If pua = bk, k' € K and b € B,,_1(A),
then |pn_171a1|v < |bn—1,n-1lv, and this is bounded by ¢ by (1) of Lemma ?7?,
for all v. Put m' = > m,. Then |a1| = |pp—1,101] = [], [Pn—1,101]v is bounded
by [[,¢™ = qm/. If p,—1,1 = 0 we use the largest ¢ with p;; # 0 to obtain
Ipiiai]y < |bislo for all v. But W((pho)) # 0 implies that b; ;|, < gme (=)
hence |a1| is bounded by ¢™ (»=%). In particular, if U”(h) # 0, |deth| = [], |az\
(1 <i < n) is bounded independently of m. O

Write Ue for U = U of Lemma ??(2) if 71 5 £ — We € W(m, 1).

Lemma 12.7. For any g € GL(n,A) with W(g) # 0 there exists u € N(A) with
U(ug) #0. Hence Us 0 if € # 0.

Proof. The y-Fourier coefficient of U(g)

/ w)du = / Z W (pug)y
N\N(A) N\N(4) v p

—/N\N( S WA ug) Blu)du

A) he Ny \Gn1

Let N”' be the unipotent radical of P (nonzero nondiagonal entries only in the last
column). This N”' is normal in N. We may and do integrate over N\ N"'(A) first
to get the sum over h € N,,_1\G, 1 of

/ [ W) ) Bl D)
Ny 1 \Np_1(A) I N/\N (&)
As G,,_1 normalizes N, putting b’ for diag(h, 1), we have

W (R ug) = (v~ YW (h'ug),
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and fN,,\N,,(A) Y(h'u" b~/ ~Ydu" is 1if h € P,_1 and 0 if not. So the sum ranges
only over N,,_1\P,,—1. Continuing by induction on n we get fN\N(A) U(ug)y(u)du =

W (g). The first claim follows. For the second, since the map 7 3 { — W is injec-
tive, U‘f 7_é 0. (I

Note that by construction U is left invariant under the parabolic P/ = ZP of
type (n — 1,1), and right invariant under an open subgroup of G(A), since W is.

Write w,, for antidiag(1,...,1) in Gpn. Let ay be wy, ("7 M) =(r2,0) If
W = We lies in the Whittaker model of 7, then W(g) = W(w,tg~?) lies in the

Whittaker model of the contragredient representation 7V of 7 (see [?]). Put

J= (DT (), €= (e
Define
Veg)= >, Wel(59)9)
PEN,—1\Gn-1
For each g € GL(n,A) this sum is finite. For each m € Z the h € G,,_1\G,—1(A)

with Ve (B 9)) # 0 and |det h| = ¢™ make a compact set, which is empty if m is
small enough, by Lemma ??. Note that if N’ = N/ = o, !N,a,, then

Ve(g) = D Welampg) = > Wel(an(39)9).

peEN/\P PeN,_1\Gn-1

Thus V¢ is left invariant under the parabolic P =tp opposite to P’, and right
invariant under an open subgroup of GL(n, A).

Remark 12.1. The idea of the proof of the converse theorem is to recover the fol-
lowing direct result: U(g) = U(yg) = V(g) for all v € G, and g € G,,(A), if U and

V are constructed from the Whittaker function W(g) = an\Nn(A) ©(ug)v(u)du
associated with a cusp form ¢ on G,\Gy(A). The equality U(g) = V(g) would
produce a function left invariant under P, and P,, hence under G,,, that is, au-
tomorphic. The direct result follows from Fourier expansion inductively along the
unipotent radicals of P, using the assumption that ¢ is cuspidal: Put d[v,,] =

diag(Vm, In—m). Then

p(g) = S D Y Wd- - dlmilg)

Yn-1€Pn_1\Gn_1 Ym E€Pm\Gm v1€G1

= ). Wl(dhlg) =Ulg), and ¢(g) =Y  W(diag(1,7)ang) = V(g).
YEN,_1\Grn_1 Y

12.4 The integrals I and ¥. Recall that for an idéle @ = (a,) we put deg((a,)) =
-3, deg(v) deg,(a,), where g, = ¢4°8(*) defines deg(v) and |a,|, = qu degy (av)
Then |a| = ¢3°¢(®). We also write t = ¢~* for s € C, for comparison with the
number field case. Then |det h|5’%, the factor which appears over number fields,
becomes ¢~ 2 dea(h)¢—des(h) where deg(h) means deg(det(h)).

Let ¢ be an automorphic function on GL(n — 1,A). Put

It & p) = / P(Ue ((49)) g2 desMidee®ap,
G 1\Gn_1(A)
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T(t.6,0) = / (M) Ve (1 9)) g~ % dosh) = dest) g,
n l\Gn I(A)

These are well-defined formal Laurent series in ¢ and ¢!, by Lemma ??.
Using the definition of Us and Vg as series in W, and the property We(ug) =
Y(u)We(g) (9 € GL(n,A), u € N(A)), one computes

Lemma 12.8. For h in G,_1(A) put W,(h) = an—l\Nn—l(A) o(uh)yp(u)du, Wy(h)
= Wy(wyp—1th™1), and

\If(t,W,W’):/ W (R)W (1 9)) g2 deahy— des(h) g,
Nyt (NG (h)

Then I(t, &, @) = W(t, We, W,,) and 1(t,&,) = U(1/qt, We, W,,). 0

Lemma 12.9. Let 7 = ®,m, be a unitarizable irreducible admissible locally generic
representation of GL(n,A) whose central character is trivial on F'*. Let Sz be a
finite set of places of F. Suppose 7' is an irreducible cuspidal representation of
GL(n — 1,A) whose components 7., (v € S2) are unramified and such that the
formal series L(t,m x ©') and L(t,7" x ©'V) are polynomials in t satisfying the
functional equation

Lt,m x7') =¢e(t,m x ©')L(1/qt, 7" x 7'V).

Then for any vector & =[], & in m = ®ym, and form ¢ in the space of 7', we have
I(t7£a<10) = I(ta§7@)

Proof. By Lemma ?7, it suffices to show that W (¢, W, W,,) = ¥(1/qt, W@ »)- The
vector ¢ in the abstract space 7 = ®,m, can be taken to be a product, ®,&,, hence
Wg((gv)) =[], We,(9v). The Whittaker function W, lies in the Whittaker model
of 7" = ®,7!, which is the restricted product of the Whittaker models W (x/,,)
of the components 7. Hence we may assume that W, has the form W’ =[], W,
(as W, is a finite linear combination of such functions). For such factorizable W
and W' we have

(t, We, W H\IJ t,We,, W), W(t,We, W H\If (t, We,, W,

Taking the product over v of the local functional equations
Wt We,, W) (1/qt, We,, W)
L(t,m, x ) L(1/qt,my x )

and using the functional equation L(¢,m x ') = (¢, 7 X «')L(1/qt, 7" x 7'V), the
lemma follows. O

5(t,7rv X Wéywv)wﬂ(,(fl)nil =

Proposition 12.10. Let S be a finite set of places of F', disjoint from Ss. Suppose
 is as in Lemma 7?7 and its components w, are cuspidal atv € S1. Let £ = ®,&, be
a vector in @,m, such that for each v € Sy the component &, is K|, = GL(n—1, R,)-
invariant (and G,_1 embeds in G, as usual). Suppose ' is as in Lemma 7?7 but
its components ., (v € S1) are cuspidal. Then for any character w of F*\A* we
have Ug¢(e) = Ve(e).

Proof. We have the equality I(¢,£,p) = IN(t,f,go) for any ¢ in any 7’ which is
unramified at v € Sy and cuspidal at v € S;. The restriction at v € S means that
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the ¢ that we have consist of all those which are right invariant under a G,,_1(Fs, )-
conjugate of [[, K}, (v € Sz). So that I and I be nonzero we then need to take
¢ = ®,&, whose component &, (v € S3) is K/ -invariant (or a G,,_1(Fs,)-translate
of it).

L?et w be a character of F*\A* | hence also of Z,,_1\Z,,—1(A). Suppose ¢ satisfies
o(zg) = w(z)e(g) (9 € Gn-1(A), z € Z,_1(A)). For z € F*\A* put wi(z) =
W(z)(q—%t—l)(n—l)deg(z)7 and

(AU (500 = [ Ue (3 9)er(2)d

Zn-1\Zn-1(A)

It satisfies (A, Ue) (70 9)) = wi(2) 1 (Aw,Ue) (2 9)), and
I(t,€,¢) = / o(h) (A, Ue) (19)) (g~ 2t~ )%ee™ dp,
Gt Zn1(B\Go_1(A)

The map § — Ug is G, (A)-equivariant: 7(g)§ = Ur(g)e and Ur(gye(h) = Ue(hg). In
particular (A, Ue|Gp—1(A)) is an automorphic function on G,,—1(A), and its restric-
tion to G,,—1(Fy,), v € Sy, lies in the space ind(Gp—1,v, Zn-1,0Nn—1,0;Wt,o¥n—1,0)
by Corollary ??, since m, is cuspidal for v € S;. Consequently (A, Us|Gr—1(A)) lies
in the space of cusp forms belonging to those cuspidal representations of G,,—1(A)
whose central character is w; ! their components at v € S are cuspidal, and their
components at v € Sy are unramified. Since I(t,&,p) = ~(t, &, ) for any automor-
phic function ¢ on G,,_1(A) which is cuspidal as a function on G,,_1,, (v € S1),
unramified as a function on G,,_1 , (v € Sz), with central character w, we conclude
that

/ U ((39)) = Ve (3§ lwr(2)dz = 0.
Zn—1\Zn-1(A)

This is a power series in ¢, hence we conclude its coefficients are zero. Thus
/ U (5 9)) = Ve (3 §)lw()dz = 0
Zn-1\Z2_,(A)
where Z°_;(A) is the subgroup of z in Z,,_1(A) with deg(z) = 0. Now w ranges over

the space of characters of the compact group Z,_1\Z3_,(A). Hence Ue ((29)) =
Ve ((B9)) for all b in G,,—1(A), and in particular Ug(e) = Ve(e). O

12.5 Proof of the simple converse theorem. Recall that K, denotes the
maximal open subgroup GL(n,R,) of GL(n, F,), v € |X|, and K = [[, K,, a
maximal compact subgroup of GL(n, A). For an integer m,, > 0 denote by K1, (m,)
the subgroup of g, in K, whose bottom row is (0,...,0,1)mod«}*. In particular
K1,(0) is K,. Put K((my)) = [[, K1v(my) where m, > 0 are integers for all v
and m, = 0 for almost all v.

Proposition 12.11. (1) The parabolic subgroup P, (F) of type (n —1,1) and its
opposite parabolic P;L(F) = 'P/(F) generate the discrete subgroup GL(n,F) in
GL(n,A). (2) If my, > 0 for some v then the subgroups P, (F) N Ki((m,)) and
?;(F) N K1((my)) generate the subgroup GL(n, F) N K1((m,)) of GL(n, F).

Proof. See Proposition 9.1 of [?], pp. 194-195. O
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To prove the simple converse theorem we consider first the case where Sy is
empty. Then for every vector { = ®,§, in T = ®,m, we have U¢(e) = Ve(e) by
Proposition 12.4.3, hence for every g in GL(n,A) we have Ug(g9) = Ur(g)e(e) =
Vr(ge(e) = Ve(g), and so Ug = V. This function is left invariant under P} (F') and
ﬁ;(F), hence by the group GL(n, F), by Proposition 12.5.1(1). It is right invariant
under an open subgroup of GL(n, A), and it is cuspidal. The map & + Uy is nonzero
by Lemma ??. It is equivariant and defines a realization of the admissible irreducible
representation m = ®,m, of GL(n, A) in the space of automorphic cuspidal functions
on GL(n, F)\ GL(n, A).

When S5 is not empty, we choose the vector &, in the component m, of 7 such
that We, (e) =1 (v € S), and such that &, is fixed by K,(m,), smallest m, > 0.
Such a vector &, exists and is unique up to a scalar [?]. In particular such &,
is fixed under the subgroup GL(n — 1, R,) of Ky,(m,) C K, = GL(n.R,). Put
552 = ®v€$'2£v~

By Proposition ?? for every vector £%2 = Rpg sy &v N @ygg, Ty, if & = €52 ® &g,
then U is equal to V¢ at e, hence on the subgroup GL(n, A%?)- K1 ((my; v € S2)) of
GL(n, A). Moreover this function is left invariant under both P/ (F)NK;((m,; v €
S2)) and P;L(F)ﬂKl((mv; v € S3)), hence under the group GL(n, F)NK;((my; v €
S5)) = GL(n, F) N GL(n, A%?) - K1 ((m,; v € S3)) by Proposition ??.

There exists a vector €52 such that £ = £ ® &g, satisfies We(e) # 0, since
§ — Wy is injective and Wi (g)e(h) = We(hg). For such €52, the restriction of U to
K1((my; v € S2)) GL(n, A%2) is nonzero. Indeed, U is left invariant under P/ (F),
hence under N, (F'). By strong approximation theorem

N, (F) - [Nny(A) N GL(n, AS?) - K1 ((my; v € Sy))]

is dense in N,,(A) (since F - AS2 . [l,es, ™o Ry is dense in A). By Lemma ?7,
Ue(e) # 0, hence Ug| GL(n, AS2) K1 ((m,; v € S2)) is nonzero.

Define Ugs, on GL(n,A) by Uss,(g9) = Ue(¢°) (€ = €52 ® €g,) if g has the
form v¢° with v € GL(n,F) and ¢° € GL(n,A%)K;((my; v € S3)) (this defi-
nition is independent of the choice of v and ¢° since Ug is left invariant under
GL(n, F) N GL(n, A%)K1((my; v € S2))), and Ugs, (9) = 0 otherwise. The map
%2 Ugs, is a nonzero equivariant homomorphism of the admissible irreducible
representation ®,¢g,m, of GL(n, A%?) into the space of right-smooth functions on
GL(n, F)\ GL(n, A) which transform under the center Z, (A) according to the char-
acter wy of 7. The representation of GL(n, A) on the space generated by these Uys,
is admissible since it is so for each v ¢ Sy. It has an irreducible subrepresentation
7'" which is necessarily automorphic, its components at each v ¢ Sy are in the given
Ty, in particular 7’/ is cuspidal. |

Let F, be a local field of positive characteristic. Put G, = GL(n, F,) and
Gl =GL(n -1, F,). For any G,-module 7, and G/-module 7, we put
L(S77TU7T1,L)

L(s, Tu, Tu) = = :
5(577Tu,7—u)L(1 -5, '/Tua'ru)

Corollary 12.12. Let w, be a G, -module such that there is a global field F' whose
completion at some place u is our F,, and a unitary irreducible cuspidal G(A)-
module ™ whose component at u is our m,. Let wl, be an irreducible non-degenerate
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G -module such that for some set V' of places of F' not including u we have
(s, Ty, ) = (s, 7, Tw)

for every Gl-module T, which is the u-component of a unitary cuspidal G"” -module
T with a cuspidal component at the places of S1. Then 7, is equivalent to .

Proof. Put m = m, @ 7 and 7’ = 7, ® 7. Since 7 is unitary cuspidal, L(s, 7, T)
is entire and satisfies the functional equation I'(s,7m,7) = 1 of Theorem ?? for all
unitary cuspidal 7. Our assumption on 7, implies that

F(S7 Tr/’ T) = F(S7 ﬂ-’ T)

for all 7 in ®. Hence Theorem ?7? implies that there exists an automorphic G(A)-
module 7”7 = @] with «, ~ «, and 7 ~ m, for all v # u outside V. The rigidity
theory for GL(n) (see [?]) implies that 7" ~ 7 since 7 is cuspidal, and in particular
Ty = m,, as required. O

Remark 12.2. Corollary 7?7 applies to any square-integrable GG,,-module 7,. Indeed,
given F,, there is a global F' whose completion at some place u is F,,, and given
m, and a cuspidal 7, for some other place w # u of F, it is easy to construct a
cuspidal unitary G(A)-module 7 with these components m,, m, at u,w by means
of the trace formula.
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