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Abstract. We develop Drinfeld’s theory of elliptic modules and their moduli

schemes to establish the correspondence of irreducible continuous `-adic rank
r representations of the Weil (subgroup of the Galois) group of a function field

F (equivalently irreducible smooth `-adic sheaves on SpecF ) with irreducible

restriction to some decomposition group, and cuspidal automorphic represen-
tations of GL(r) over F which have a cuspidal local component, on realizing

it in the étale cohomology with compact supports of the geometric fiber of the

moduli scheme. The comparison is based on matching the simple trace formula
with a form of the Lefschetz fixed point formula on Q`-adic cohomology with

compact supports formulated by Deligne, and on congruence relations, which
we establish. The Ramanujan conjecture for such cuspidal representations fol-

lows, but this we deduce also from the Grothendieck fixed point formula for

powers of the Frobenius independently of Deligne’s (proven) conjecture. The
restriction of having a cuspidal local component was removed in 1997 and 2002

by L. Lafforgue on developing Drinfeld’s theory of Shtukas. But our work here

from 1983 is considerably simpler and can serve as an entrance to the subject.
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Introduction

Let F be a geometric global field, of characteristic p > 0, A its ring of adèles,
G = GL(r) and π an irreducible admissible representation of G(A), namely a G(A)-
module, over C. Then π is the restricted direct product ⊗vπv over all places v of F
of irreducible admissible Gv = G(Fv)-modules πv. For almost all v the component
πv is unramified. In this case there are nonzero complex numbers z1,v, . . . , zr,v,
uniquely determined up to order by πv and called the Hecke eigenvalues of πv, with
the following property: πv is the unique irreducible unramified subquotient π((zi,v))

of the Gv-module I(zv) = Ind(δ1/2zv;Bv, Gv) which is normalizedly induced from

the unramified character zv : (bij) 7→
∏
i z

degv(bii)
iv of the upper triangular subgroup

Bv of Gv.
The first main theme in this work concerns Congruence Relations (see below).
The second such theme concerns the following Purity Theorem for cuspidal G(A)-

modules. Let π be a complex cuspidal G(A)-module; it is an irreducible admissible
representation π of G(A) which occurs as a direct summand in the representation
of G(A) by right translation on the space of complex valued cuspidal functions on
G(F )\G(A). If π has a cuspidal component and a unitary central character, then
the absolute value of each Hecke eigenvalue ziv of almost all unramified components
πv of π is equal to one. This is Theorem 9.8. Its proof uses neither Deligne’s
conjecture nor the congruence relations. The Purity Theorem is a representation
theoretic analogue of Ramanujan’s conjecture concerning the Hecke eigenvalues (or
rather Fourier coefficients) of the cusp form ∆(z) = e2πiz

∏∞
1 (1 − e2πizn) on the

upper half plane Im(z) > 0 for the group SL(2,Z).
The third major theme in this work concerns the Higher Reciprocity Law. Let

σ be a continuous r-dimensional `-adic representation σ : W (F/F ) → GL(r,Q`)
of the Weil group of F , which is constructible, namely unramified for almost all
v. Equivalently σ is a smooth `-adic sheaf on SpecF which extends to a smooth
`-adic sheaf on an open subscheme of the smooth projective curve whose function
field is F . For such v the restriction σv of σ to the decomposition group W (F v/Fv)
at v factorizes through W (Fv/Fv) ' Z, where Fv is the residue field of Fv. The
isomorphism class of σv is determined by the eigenvalues {ui,v = ui(σv); 1 ≤ i ≤ r}
of the (geometric) Frobenius σv(Frv). Then we say that such σ and the G(A)-
module π = ⊗πv correspond if for almost all v the r-tuple (ui(σv)) is equal, up to
order, to the r-tuple (zi(πv)).

The case of r = 1 is class field theory: W (F/F )ab ' A×/F×, which in the local
case asserts that W (F v/Fv)ab ' F×v , normalized by mapping a geometric Frobenius
Frv to a local uniformizer πππv in F×v . Here Frv ∈ W (F v/Fv) is any element which
maps to the inverse ϕ−1 of the “arithmetic” Frobenius substitution ϕ : x 7→ xqv ,
which generates W (Fv/Fv) and is an automorphism of Fv over Fv. Let ∞ be a
fixed place of F .

The special case of the Higher Reciprocity Law which is proven in this work
asserts that the correspondence defines a bijection between the sets of (1) equiv-
alence classes of cuspidal representations π of GL(r,A) whose component π∞ is
cuspidal, and (2) equivalence classes of irreducible r-dimensional continuous `-adic
constructible representations σ of W (F/F ), or irreducible rank r smooth `-adic
sheaves on SpecF which extend to smooth sheaves on an open subscheme of the
curve underlying F , whose restriction σ∞ to W (F∞/F∞) is irreducible.
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This Reciprocity Law is reduced in sections 10, 11, to Deligne’s Conjecture (The-
orem 5.8), introduced by Deligne in the 1970’s for the purpose of this reduction.
The fixed point formula expresses a trace on `-adic cohomology with compact sup-
ports and coefficients in a smooth sheaf, in terms of traces on the stalks of the sheaf
at fixed points. Deligne’s conjecture asserts that the fixed point formula remains
valid in the context of the composition of a certain correspondence on a separated
scheme of finite type over a finite field, and a sufficiently high power, depending on
the correspondence, of the Frobenius morphism.

The present work existed as an unpublished manuscript since 1983. It is the first
openly circulated manuscript where Deligne’s conjecture appeared. Its results, first
discussed in a seminar with Kazhdan in 1982, were announced in the publication
[?]. Perhaps this work contributed a little to the interest in Deligne’s important
conjecture. This was the original purpose of this work, to motivate Deligne’s con-
jecture by means of exhibiting some of its applications. Since then this conjecture
was proven unconditionally by Fujiwara [?] in 1997 and later by Varshavsky [?] in
2007, after work by Th. Zink [?], Ed Shpiz [?] and R. Pink [?] in special cases.
This completed that part of our work which relied on Deligne’s conjecture. Our
results concern the full local correspondence (for GL(r) over a local field of positive
characteristic), as well as the global correspondence for cuspidal representations
(of GL(r,A) over a global function field) which have a cuspidal component. They
are based on Drinfeld’s theory of elliptic modules, also named Drinfeld modules by
Deligne, introduced by Drinfeld [?], [?] in 1974, 1977 to prove the reciprocity law
when r = 2.

Drinfeld later introduced a generalization, which he named Shtukas, to remove
the restriction that the global cuspidal representations have a square integrable
component. The work was carried out by L. Lafforgue [?] and [?] in 1997 and
2002, who in addition to Deligne’s (proven) conjecture used the full trace formula of
Arthur in the function field case, to obtain the reciprocity law for any global cuspidal
representation. His important work is nevertheless technically very challenging, so
on the occassion of teaching a course on the topic at OSU in winter 2012, we
updated our work to include the references to the proofs of Deligne’s conjecture
and other works that continued and extended ours. I hope it is still of interest not
only as the first work where the local correspondence and a major case of the global
correspondence were established in the general rank case, but also since our work
is considerably simpler than that of Lafforgue, as we use only a simple case of the
trace formula, and the relatively elementary theory of elliptic (= Drinfeld) modules.
In particular we were led to develop in section 12 a “simple” converse theorem for
GL(r) over a function field, “simple” meaning for cuspidal global representations
with cuspidal local components at a fixed finite set of places of the global field F .
However, note that the converse theorem is not used in the decomposition of the
cohomology (see below), not in the proof of the existence theorem (for each π there
is a σ), nor in the proof of the local correspondence. It is used only to show the
surjectivity of the map π 7→ σ.

Thus, assuming Deligne’s conjecture (Theorem ??) we show in section 11 that
there exists a unique bijection, denoted πv 7→ σv or σv 7→ πv and called the Lo-
cal Reciprocity Correspondence, between the sets of (1) equivalence classes of ir-
reducible Gv = GL(r, Fv)-modules πv, and (2) equivalence classes of continuous
`-adic r-dimensional representations σv of W (F v/Fv), namely rank r smooth `-adic
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sheaves on SpecFv, with the following properties. It preserves L- and ε-factors of
pairs, relates cuspidal πv with irreducible σv, commutes with taking contragredient
and relates the central character of πv with the determinant of the corresponding
σv by local class field theory W (F v/Fv)ab ' F×v , which is normalized by mapping
a geometric Frobenius to a uniformizer in F×v . The local correspondence has the
property that π and σ correspond if and only if their components πv and σv corre-
spond for all v. Again, Deligne’s conjecture was used in the original version of this
work as a conjecture, but it is now proven.

To state our fourth main theme, we introduce some notations. Our work relies
on Drinfeld’s theory of elliptic modules (see [?], [?]). Their definition and basic
properties are discussed in sections 1 and 2. Denote by A the ring of elements of F
which are integral outside the fixed place∞. Let I 6= {0} be any ideal in A which is
contained in at least two maximal ideals. In section 3 we recall the construction of
the (Drinfeld) moduli schemeX = Mr,I of isomorphism classes of elliptic A-modules
of rank r with I-level structure. It is an affine scheme of finite rank over A. In
section 4 we construct a finite étale Galois covering X̃ of X, whose Galois group Γ
is a quotient of an anisotropic inner form D×∞ of G(F∞). Put X = X ×A F , where
F is a separable closure of F . Let ρ be an irreducible nontrivial representation
of Γ, and of D×∞; let π∞ be the corresponding square-integrable representation of
G(F∞). In subsection 5.1 we recall the definition of the associated smooth Q`-sheaf
L = L(ρ) on X, and of the Q`-adic cohomology spaces Hi

c(X,L) of X with compact
support and coefficients in L. Let Af be the ring of F -adèles without a component
at ∞, U = UI the congruence subgroup of G(Af ) defined by I, and HI the Hecke

algebra of Q`-valued UI -biinvariant compactly supported functions on G(Af ). An
irreducible HI -module will be regarded here as an irreducible G(Af )-module which

has a nonzero UI -fixed vector. The Galois group Gal(F/F ) acts on F , hence on X
and on Hi

c = Hi
c(X,L(ρ)); so does the Hecke algebra HI . Put H∗c =

∑
i(−1)iHi

c; it

is a virtual HI×Gal(F/F )-module. Namely it is a sum of finitely many irreducibles
π̃f ⊗ σ̃, with integral multiplicities.

Our fourth main theme is the following Explicit Reciprocity Law. It underlies
the proofs of the Purity Theorem and the Reciprocity Law. Suppose that π∞ is
cuspidal. Put ν(x) = |x| for x in A×. Then (1) Each π̃ = π̃f ⊗ π∞ is cuspidal
automorphic and each cuspidal automorphic G(A)-module π with component π∞
can be realized in H∗c for some I 6= 0. (2) The multiplicity of π̃f ⊗ σ̃ in H∗ is
one. (3) Each σ̃ in H∗c has dim σ̃ = r. (4) The component σ̃∞ is irreducible and

corresponds to π∞ ⊗ ν
−(r−1)/2
∞ by the Local Reciprocity Law. (5) Each `-adic r-

dimensional continuous constructible representation σ of Gal(F/F ) with irreducible
σ∞ such that det(σ ⊗ ν(r−1)/2) = 1 occurs as σ̃ for some I and cuspidal π∞. (6)
π̃⊗ν−(r−1)/2 ↔ σ̃ is the reciprocity correspondence if π̃f ⊗ σ̃ occurs in H∗c for some
I. This Explicit Law is reduced in section 11 to Deligne’s conjecture (= Theorem
5.8).

Moreover we conjecture that (7) Hi(X,L(ρ)) = Hi
c(X,L(ρ)) for all i. This

implies that Hi vanishes unless i = r − 1.
The first step in the proof is to decompose the cohomology Hecke×Galois module

H∗c and to show that each irreducible constituent πf×σ has that πf⊗π∞ is cuspidal
(automorphic), and each cuspidal representation with the cuspidal component π∞
occurs, thus establishing the existence of the map π 7→ σ. This is the heart of the
work. It uses the construction of the moduli scheme of elliptic modules and their
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covering schemes. In the proof of this existence theorem (for each such cuspidal
π there exists a corresponding σ) in section 10, we use (in Lemma ??(1)) the
congruence relations of Theorem ??, in addition to the simple trace formula and
the Lefschetz fixed point formula.

The second step is to deduce from this existence theorem π 7→ σ the local
correspondence, and its compatibility with the global correspondence. Only in the
third and final step, asserting that the map π 7→ σ is surjective, is the converse
theorem used.

The first major theme in this work, developed in section 5.2, is the Congruence
Relations approach initiated by Eichler-Shimura and Ihara in the case of GL(2,Q).
It involves an intrinsic geometric relation concerning Hecke correspondences and
powers of the Frobenius. We shall describe here only an application thereof (Theo-
rem ??) to the study of eigenvalues. Thus let π̃f⊗ σ̃ be an irreducible constituent of

Hi as an HI ×Gal(F/F )-module, for any i (0 ≤ i ≤ 2(r− 1)). For almost all v the
component π̃v is unramified, and we put pπ̃v (t) =

∏r
i=1(t−zi(π̃v)); the zi(π̃v) are the

r Hecke eigenvalues of π̃v. Also, for almost all v the restriction σ̃v = σ̃|Gal(F v/Fv)
is unramified. Let Frv, or 1×Frv, denote any element of Gal(F/F ) whose image in
Gal(F v/Fv) is the “arithmetic” Frobenius substitution, and Fr−1

v or Frv ×1 denotes
the geometric Frobenius. Then the conjugacy class of σ̃(Frv) is well-defined. Theo-

rem ?? asserts that pπ̃v (q
−(r−1)/2
v σ̃(Fr−1

v )) = 0. We conclude that: each eigenvalue

u of the geometric Frobenius endomorphism σ̃(Fr−1
v ) is of the form q

(r−1)/2
v z(π̃v)

for some Hecke eigenvalue z(π̃v) (depending on u). Consequently σ̃(Fr−1
v ) has at

most r distinct eigenvalues.
This relates the (geometric) Frobenius and Hecke eigenvalues of σ̃ and π̃f which

occur together as an irreducible constituent π̃f ⊗ σ̃ in the composition series of Hi
c,

independently of Deligne’s conjecture. When combined with the Purity Theorem,
this result asserts that each conjugate of each (geometric) Frobenius eigenvalue (for

almost all v) has complex absolute value q
(r−1)/2
v . This fact is used in the reduction

of the existence part (for all π there exists a σ, Theorem ??) of the Reciprocity
Law to Deligne’s conjecture.

Note that the technique of Congruence Relations applies with any irreducible
D×∞-module ρ, equivalently any square-integrable π∞. Its applications hold in both
cases of cohomology with, and without, compact supports. Also note that the
statement dim σ̃ = r for all σ̃ can be shown to imply the Reciprocity Law. In [?]
this is proven in the case of r = 2 by means of a different technique.

The work of part 4 depends on a comparison of the Fixed Point Formula and
the Trace Formula. Since only automorphic G(A)-modules occur in the Selberg
Formula, the purpose of this approach is to show that the G(Af )-modules π̃f which
occur in the virtual module H∗c =

∑
i(−1)iHi

c are automorphic, in addition to
establishing the relation concerning the local Frobenius and Hecke eigenvalues. The
Grothendieck fixed point formula gives an expression for the trace of the action of
the (geometric) Frobenius Frv ×1 on the cohomology module H∗c by means of the
set of points in Mr,I,v(Fv) fixed by the action of the Frobenius, and the traces of

the resulting morphisms on the stalks of the Q`-sheaf L(ρ) at the fixed points.
In part 3 we prepare what is needed for this approach. Following [?], in section

6 the set Mr,I,v(Fv) is expressed as a disjoint union of isogeny classes of elliptic

modules over Fv, and their types are studied. In section 7 it is shown that the
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elliptic modules with level structure of a given type make a homogeneous space
under the action of G(Af ), and the stabilizer is described. Moreover, the action of
the Frobenius Frv is identified with multiplication by a certain matrix. A type is
described in group theoretic terms as an elliptic torus in G(F ), and the cardinality
of the set Mr,I,v(Fv,n) ([Fv,n : Fv] = n) is expressed in terms of orbital integrals
of conjugacy classes γ in G(F ) which are elliptic in G(F∞) and n-admissible (see
subsection (7.3)) at v.

Next, in section 8, it is shown that the orbital integral at v obtained in section

7 can be expressed as an orbital integral of a spherical function fn = f
(r)
n on Gv

whose normalized orbital integral F (fn) is supported on the n-admissible set. This

spherical function is defined by the relation tr(πv(z))(fn) = q
n(r−1)/2
v

∑r
i=1 z

n
i . The

work of section 8 is independent of the rest of the work. Two different computations
of the orbital integrals of fn are given. The first is representation theoretic, the
second (due to a letter of Drinfeld dated March 15, 1976) is elementary.

In section 9 we develop a new form of the Trace Formula, for a test function

f = ⊗fw with a cuspidal component f∞ and with component f
(r)
n,v as above at a

place v, where n is sufficiently large compared to the other components fw (w 6= v)
of f . It relates the sum of the traces trπ(f) of the cuspidal G(A)-modules π whose
component π∞ is cuspidal, with a sum of orbital integrals of f at the elliptic γ
which are elliptic in G(F∞) and n-admissible in G(Fv). The group theoretic side
is then the same as that obtained from the stalk side of the Fixed Point Formula,
and we are in a position to derive our theorems. This trace formula is suggested
by Deligne’s conjecture. For applications of this trace formula in representation
theory see [?], [?], [?].

Now the scheme Mr,I is not proper. The Fixed Point Formula (of Grothendieck)
is known in this case only for the powers of the Frobenius (see Theorem 5.6).
Hence the components fw (w 6= v,∞) of the test function f are taken to be the
characteristic function of UI ∩Gw. We conclude that each Hecke eigenvalue of the
component π̃v of π̃f which occurs in the virtual module H∗c is equal to the product

by q
−(r−1)/2
v of a Frobenius eigenvalue of σ̃v(Frv ×1) for some σ̃ which occurs in the

same H∗c . However π̃f and σ̃ are not shown to appear together as an irreducible
constituent π̃f ⊗ σ̃ of some Hi

c. This establishes the Purity Theorem, since the

Frobenius eigenvalues have complex absolute values of the form q
c/2
v where c is

an integer, by the Frobenius Integrality Theorem of Deligne [?], while the Hecke

eigenvalues zi of the unitarizable cuspidal π̃ satisfy q
−1/2
v < |zi| < q

1/2
v for all i.

The same techniques suggest a proof of the Reciprocity Law as well. Assuming
Deligne’s Conjecture (Theorem ??) we have the Hecke algebra, at the places w 6= v,
at our disposal. The Hecke algebra separates the finitely many G(Af )-modules
which occur in the formulae, and we conclude in section 10 that for each π̃f in H∗

there is a cuspidal π = ⊗πv with π∞ = π∞(ρ) (cuspidal) and π̃v ' πv for all v.
Moreover, the Hecke eigenvalues of πv and the Frobenius eigenvalues of σv(Frv ×1)
are related for almost all v. This implies (using Theorem ??) a weak form of the
Explicit Reciprocity Law, namely the existence theorem: for each cuspidal π there
is a corresponding σ. We also use (in Lemma ??(1)) the congruence relations of
Theorem ??.

In section 11 we reduce the Explicit Reciprocity Law (bijection of π and σ) to
its weak form (for each π there is a σ), on using (1) properties of local L and
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ε-factors, due to Deligne [?]; (2) the Grothendieck functional equation for `-adic
representations σ; (3) Laumon’s formula [?], expressing ε(σ) as a product of the
local ε-factors of σ; and (4) the simple converse theorem ?? where only cuspidal
GL(r − 1)-modules with a cuspidal component are used.

As noted above the theory of elliptic modules was introduced by Drinfeld in [?],
[?] in 1974 and 1977 in order to prove the reciprocity law over function fields, in
analogy with the theory of Shimura varieties which had been used by Deligne in
1971 to prove cases of the reciprocity law over number fields. While the theory of
Shimura varieties is more amenable to the study of automorphic representations of
symplectic, unitary and orthogonal groups, groups with rather complicated repre-
sentation theories, Drinfeld discovery of elliptic modules introduced in the function
field case a theory where the prominant group is GL(n), a group whose represen-
tation theory is relatively simple, as it has no nontrivial packets. Drinfeld used
his theory to prove the reciprocity law for GL(2) over a function field, for cuspidal
representations with a square integrable component, and our work is simply an
extention to the case of GL(r), r ≥ 2. Drinfeld introduced other methods. One is
that of Shtukas, developed by L. Lafforgue [?], [?] in 1997 and 2002, whose aim is
to remove the restriction that at least one component be square integrable. An-
other, in Amer. J. Math. 1983, dealt with unramified representations, and initiated
Drinfeld’s geometric Langlands program.

Deligne lectured in 1975 on Drinfeld’s theory of elliptic modules, and the notes
appeared in [?], 1987. Deligne coined the term Drinfeld modules. The idea, in
both the number field case of Shimura varieties, and the function field case of Drin-
feld moduli schemes, is to realize the reciprocity law in suitable cohomology of
the moduli scheme, which is a Galois × adèle - bimodule. To determine the con-
situents one uses a comparison of the automorphic trace formula with the geometric
fixed point formula. Since these moduli schemes, Shimura’s for elliptic curves and
more generally for abelian varieties, and Drinfeld’s for elliptic modules, are not
proper, that is, not compact, the Lefschetz fixed point formula does not apply, and
Grothendieck’s fixed point formula for powers of the Frobenius does not provide
sufficient information. Deligne then proposed that the Lefschetz formula holds for a
correspondence on a variety over a finite field, provided it is twisted by a sufficiently
high – depending on the correspondence – power of the Frobenius.

Of this fundamental conjecture I learned from Kazhdan who proposed holding a
seminar at Harvard in 1982 to study Drinfeld’s original papers. The present work
stems from that seminar, and a course given by Kazhdan the following semester. It
existed as an unpublished manuscript since 1983, summarized in [?] in 1987. The
current version was updated during a course I gave at OSU in winter 2012, mainly
to add references to literature following [?], translate TeX to LaTeX, and restate
the reciprocity law in terms of smooth `-adic sheaves in the later part of section
11. Since this work was written at different times, there are some repetitions in it,
and other expository shortcomings, which I preferred not to eliminate in order to
reduce the risk of introducing other lacunae.

Our work concerns cuspidal representations with a cuspidal local component.
This permits us to use the simple trace formula, as we developed in purely rep-
resentation theoretic context in [?], [?], [?], [?], motivated by the present work.
That is, much of the complicated trace formula developed by Arthur is not used.
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More precisely, without Deligne’s conjecture we obtain Ramanujan’s conjecture us-
ing very little of Arthur’s work, and using Deligne’s conjecture we obtain all our
results on the reciprocity law using only the simple trace formula as in [?].

To extend our work from the context of cuspidal representations of GL(r) with
a cuspidal component, to that of those with a Steinberg component, one needs
Arthur’s work. This is discussed in [?], 1996, which uses an alternative method of
Kottwitz to count the points on the moduli scheme by means of twisted orbital in-
tegrals, and then proves a “fundamental lemma”, relating these to standard orbital
integrals. We follow Drinfeld, describing the points directly by orbital integrals.

Another approach was given in [?], 1993, to consider instead of GL(r) an inner
form thereof. But that meant automorphic representations of the multiplicative
group of a division algebra, whose transfer to GL(r) amounts to cuspidal represen-
tations with at least two places where the components are square integrable. Here
the local reciprocity law could be obtained without using Deligne’s conjecture.

To obtain the global reciprocity law, in our work we use Deligne’s conjecture, and
a simple form of the converse theorem, for global representations whose components
at a finite nonempty set are cuspidal. In the present draft this simple converse
theorem, motivated by our work but of independent interest and techniques far
from those of sections 1-11, is delegated to section 12.

Work on Deligne’s conjecture was done by Th. Zink [?], 1990, who dealt with
surfaces, and in Ed Shpiz Harvard thesis [?] of 1990 and R. Pink [?], 1992, both
dealing with the case where the variety in question has compactification by a divisor
with normal crossings. The Drinfeld moduli scheme is most likely of this type but
this has not been shown as yet. In 1997 appeared Fujiwara’s proof [?], using rigid
analytic techniques, and in 2007 Varshavsky’s [?] lucid proof. This made our work
hold unconditionally. As noted above L. Lafforgue developed Drinfeld’s theory of
Shtukas in [?] and [?] of 1997 and 2002 and used [?] to prove the reciprocity law (and
Ramanujan conjecture) for all cuspidal representations of GL(r,A), removing the
restriction that we put, that at least one component be cuspidal. This important
work was used in [?]. However, in view of the length and depth of [?] and [?] it
seems that there is still merit in our original work, beyond its historical value as
the first work where the local and many cases of the global reciprocity law over a
function field and in arbitrary rank were proven. Moreover the theory of elliptic,
or Drinfeld, modules, is of interest in its own right, as evidenced from the wealth
of literature on it, and so is our simple converse theorem ??.

Within each section, Theorems, Propositions, Lemmas are numbered consecu-
tively, and so are – separately –Definitions, Remarks, Examples.

I wish to express my very deep gratitude to David Kazhdan for teaching me the
theory of Drinfeld modules, first in a seminar which we had on Drinfeld’s papers
[?], [?], then in a course he gave, and also in numerous conversations relating to
these notes. The results and some of the techniques of this work are exposed in our
joint note [?].

I wish to thank the referees for useful comments.
Recent support by the Humboldt Stiftung at Berlin’s HU, by MPIM-Bonn, SFB

at Bielefeld, Lady Davis Foundation at the Hebrew University, Newton Institute at
Cambridge, IHES, and the Fulbright Foundation, is warmly acknowledged.
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Part 1. Elliptic moduli

1. Elliptic modules-analytic definition

Let p be a prime number; d a positive integer; q = pd; Fq a field of q elements; C
an absolutely irreducible smooth projective curve defined over Fq; F the function
field Fq(C) of C over Fq, that is, the field of rational functions on C over Fq. At
each place v of F , namely a closed point of C, let Fv be the completion of F at v,
and Av the ring of integers in Fv. Fix a place ∞ of F . Let C∞ be the completion
of an algebraic closure F∞ of F∞.

Let A = H0 (C − {∞},OC) be the ring of regular functions on C−{∞}, namely
the ring of functions in F whose only possible poles are at ∞. For each v in
SpecA = C − {∞}, the quotient field Fv = A/v is finite. Denote its cardinality by
qv. Note that Av is the completion of A at v. For any a in A let (a) = aA be the
ideal in A generated by a. Let |.| = |.|∞ be the absolute value on A which assigns
to a 6= 0 in A the cardinality of the quotient ring A/(a). It extends uniquely to
F, F∞, F∞ and C∞. Let πππ∞ be a generator of the maximal ideal of A∞. Let q∞
be the cardinality |A∞/πππ∞| of the finite field A∞/πππ∞. If a ∈ A has a pole of order
n at ∞, then |a|∞ = |πππ−n∞ | = qn∞.

A function f from C∞ to C∞ is called entire if it is equal to an everywhere
convergent power series. Thus f =

∑∞
0 anx

n (an ∈ C∞), where |an|1/n → 0.

Lemma 1.1. Let f be a nonconstant entire function on C∞. Then f attains each
value of C∞.

Proof. This is the same as the proof in the case of characteristic zero; see [?], Ex.
13, section IV.4 (p. 108), where the lemma is proven with C∞ replaced by the
completion Ω of the algebraic closure Qp of Qp. �

A quotient f = h/g of two entire functions h, g on C∞, with g 6≡ 0, is called a
meromorphic function on C∞. The divisor Div f of a meromorphic function f on
C∞, with zeroes ai and poles bj of multiplicities ni and mj (respectively), is the
formal sum

∑
i ni(ai)−

∑
jmj(bj).

Corollary 1.2. Let f, g be entire functions on C∞ with Div f = Div g. Then there
is c 6= 0 in C∞ with f = cg.

Proof. If g 6≡ 0 then f/g is entire, as its Taylor expansion at 0 converges everywhere.
But f/g has no zeroes; hence it is constant by Lemma ??. �

A set L in C∞ is called discrete if for each positive number c the set {x in
L; |x| ≤ c} is finite. Since C∞ is a nonarchimedean field, then for each discrete set
L there is an entire function eL with Div eL = L. If L contains zero then there is
a unique eL normalized so that e′L(0) = 1. It is given by the product

eL(x) = x
∏
a

(1− x/a) (a 6= 0 in L).

Proposition 1.3. Let L be an additive discrete subgroup of C∞. Then eL defines
an isomorphism from C∞/L to C∞ as additive groups.

Proof. (i) From Lemma ?? it follows that eL defines a set theoretic surjection from
C∞/L to C∞. (ii) To show that eL is a group homomorphism, we first consider the
case where L is finite. It is clear from the definition of eL that eL(x+ y)− eL(x)−
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eL(y) = 0 if x or y lie in L. Hence the polynomial eL(x)eL(y) whose degree in x
is |L|, divides the polynomial eL(x + y)− eL(x)− eL(y), whose degree in x is less
than |L|. We conclude that eL(x+ y) = eL(x) + eL(y). In general we can write L
as a union of finite subgroups Ln. Then eL = limn eLn , and (ii) follows. (iii) Since
the kernel of eL is L, the proposition follows from (i) and (ii). �

Definition 1.1. A lattice L is a discrete, finitely generated A-submodule of C∞.

Lemma 1.4. A finitely generated module over a Dedekind domain (an integral
domain in which every nonzero proper ideal factors into a product of prime ideals)
is projective if and only if it is torsion free.

Proof. See [?], VII, section 4.10, Prop. 22 (p. 543). �

Since C∞ is a field, the lattice L is a torsion free A-module. Since A is a Dedekind
domain, L is projective. Denote by r = rankL the rank of the lattice L. We have

Lemma 1.5. For any a 6= 0 in A there is an isomorphism from L/aL to (A/aA)r.

The isomorphism eL : C∞/L → C∞ and the A-module structure on C∞/L
define an A-module structure on C∞ by ax = ϕa,L(x) = eL

(
a
(
e−1
L (x)

))
(a in A, x

in C∞).

Lemma 1.6. For each a in A the function ϕa,L is a polynomial of degree |a|r over
C∞.

Proof. Put ψa,L(x) = eL(ax). The kernel of ψa,L is a−1L. Hence there is some
c 6= 0 with ψa,L(x) = c

∏
b (eL(x)− eL(b)) (b in a−1L/L). Consequently ϕa,L(x) =

c
∏
b (x− eL(b)) is a polynomial over C∞ whose degree is equal to the cardinality

|a|r of L/aL. �

Let E∞ be a fixed finite extension of F∞ in C∞. Let Es denote the completion
of the separable closure Es of E∞ in C∞. The fields E∞, Es, Es appear only in
section 1.

Definition 1.2. A lattice L is called a lattice over E∞ if it lies in Es and it is
invariant under the action of the Galois group Gal(Es/E∞) of Es over E∞.

Example 1.1. The ring L = A is a lattice over F∞, of rank one.

Proposition 1.7. If L is a lattice over E∞ then ϕa,L is a polynomial over E∞.

Proof. The coefficients of the Taylor expansion at 0 of eL lie in Es, and they are
invariant under Gal(Es/E∞) by definition of L. Hence they lie in E∞ (by [?],
Theorem 1, p. 176). The proposition now follows from the proof of Lemma ??. �

Definition 1.3. (i) The lattices L,L′ over E∞ are isomorphic if L′ = uL for some
u 6= 0 in E∞. (ii) Let L,L′ be lattices of rank r. A morphism from L to L′ is u in
E∞ with uL ⊂ L′.
Lemma 1.8. If L is a lattice over E∞ and u 6= 0 is in E∞, then u−1ϕa,uL(ux) =
ϕa,L(x).

Proof. Using the identity euL(x) = ueL(u−1x) we rewrite the relation ϕa,uL(euL(x))
= euL(ax) in the form ϕa,uL(ueL(u−1x)) = ueL(au−1x). This implies the required
identity

u−1ϕa,uL(ueL(x)) = eL(ax) = ϕa,L(eL(x)).

�
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Definition 1.4. A polynomial h in C∞[x] is called additive if h(x+y) = h(x)+h(y).

Lemma 1.9. If h is additive then h(x) =
∑I
i=1 aix

pi .

Proof. If h(x) =
∑
bix

i is additive, then bi((x+ y)i − xi − yi) = 0. If i = pnj with

j > 1 prime to p, then (x+ y)i =
(
xp

n

+ yp
n)j

is not equal to xi + yi, since it has

the term jxp
n(j−1)yp

n

in its binomial expansion. Hence bi = 0 if i is not a power
of p. �

The map ϕL : a 7→ ϕa,L has several properties which suggest the following

Definition 1.5. (1) A map ϕ : A → E∞[x], a 7→ ϕa, is called an elliptic module
of rank r over E∞ if (i) ϕa(x + y) = ϕa(x) + ϕa(y) (a in A); (ii) ϕab = ϕa ◦ ϕb,
ϕa+b = ϕa + ϕb; (iii) degϕa = |a|r; (iv) ϕa(x) ≡ axmodxp.
(2) The elliptic modules ϕ,ϕ′ are isomorphic if there is u 6= 0 in E∞ with ϕ′a(x) =
uϕa(u−1x) (a in A).
(3) Let ϕ,ϕ′ be two elliptic modules of rank r over E∞. A morphism from ϕ to ϕ′

is an additive polynomial P in E∞[x] with P ◦ ϕa = ϕ′a ◦ P (a in A).

Lemma 1.10. Any morphism P is of the form P (x) =
∑
i aix

qi , where ai lie in
E∞. The group of automorphisms of an elliptic module is F×q .

Proof. For any a in the finite subfield Fq of A we have ϕa(x) = ax and ϕ′a(x) = ax.
Hence aP (x) = P (ax), and the lemma follows. �

Corollary 1.11. (1) For each b in A, we have ϕb(x) =
∑I(b)
i=1 aix

qi , where I(b) =
rvq(b), vq(b) = logq |b|, and aI(b) 6= 0. (2) If A = Fq[t] then |t| = q, and an elliptic

module is determined by ϕt(x) = tx +
∑r
i=1 aix

qi with ar 6= 0. (3) In (2), up to

isomoprhism we may replace ai by aiu
qi−1.

Remark 1.1. (1) An elliptic module of rank r over C∞ is defined on replacing E∞
by C∞ in Definition ??(1). The following theorem holds also with E∞ replaced by
C∞. (2) Since the case of r = 0 is trivial, we consider from now on only the case of
r > 0.

Theorem 1.12. The map L 7→ ϕL defines an equivalence from the category of
(isomorphism classes of) lattices of rank r over E∞ to the category of (isomorphism
classes of) elliptic modules of rank r over E∞.

Proof. (i) Our first aim, accomplished in (iv), is to construct an inverse to the map
L 7→ ϕL. Thus let ϕ be an elliptic module over E∞, of rank r. Fix a in A − Fq;
then |a| > 1. We have ϕa(x) = ax+

∑
i aix

qi with ai in E∞ (1 ≤ i ≤ s = rvq(a)).

We claim that there exists a unique power series e(x) =
∑∞
i=0 eix

qi with e0 = 1,

ei in E∞, and ϕa(e(x)) = e(ax). To show this we equate the coefficients of xq
n

in
ϕa(e(a−1x)) = e(x) to obtain

en

(
1− a1−qn

)
= ana

−qn +

n−1∑
i=1

aie
qi

n−ia
−qn

(an = 0 for n > s; ei = 0 for i < 0); this yields a recursive formula for en.
(ii) We claim that e is entire. To see this we note that for n > s we have

en(aq
n

− a) =

s∑
i=1

aie
qi

n−i.
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Then

|a|rn ≤ max
{
|ai|p

−n
rn−i; 1 ≤ i ≤ s

}
,

where rj = |ej |q
−j

. For θ with |a|−1 < θ < 1 there is n′ such that for n > n′ we
have rn ≤ θmax {rn−i; 1 ≤ i ≤ s}. Hence rn → 0, and e is entire.

(iii) For any b in A we claim that ϕb(e(x)) = e(bx). Indeed, if b 6= 0 then we
have

(ϕb ◦ e ◦ b−1)(x) = (ϕb ◦ ϕa ◦ e ◦ a−1 ◦ b−1)(x) = (ϕa ◦ (ϕb ◦ e ◦ b−1) ◦ a−1)(x).

But then the uniqueness of the solution e for the equation ϕa ◦ e ◦ a−1 = e implies
the claim.

(iv) Let L be the kernel of e. Since the derivative e′ of e is identically one, the
zeroes of e are simple. Hence L lies in Es. The group L is a discrete, Gal(Es/E∞)-
invariant A-module, and we have |L/aL| = |a|r. Hence L is finitely generated.
Indeed, if {bi} are |a|r representatives in L for L/aL, then the finite set of x in
L with |x| ≤ maxi{|bi|} generates L as an A-module. Now since L is torsion free
and A is a Dedekind domain, L is flat. A finitely generated flat module over a
Noetherian ring is projective. Hence L is a lattice of rank r. Since we have e = eL
and ϕa,L = ϕa for all a in A, we constructed an inverse to the map L 7→ ϕL,
establishing a set theoretic isomorphism.

(v) Let L,L′ be lattices of rank r over E∞ with uL ⊂ L′ for some u in E∞. Then
eL′(ux) is L-invariant. The proof of Lemma ?? shows that there is a polynomial P
over E∞ with P (eL(x)) = eL′(ux). But then P is additive, and

(P ◦ ϕa,L) (eL(x)) = P (eL(ax)) = eL′(uax)

= ϕa,L′ ((eL′ ◦ u)(x)) = (ϕa,L′ ◦ P ) (eL(x))

implies that P is a morphism from ϕL to ϕL′ .
(vi) Conversely, if P is a polynomial over E∞ with P ◦ ϕL = ϕL′ ◦ P , then

(P ◦ eL)(x) = (P ◦ ϕa,L ◦ eL)(a−1x) = (ϕa,L′(P ◦ eL)) (a−1x).

Hence we conclude from the uniqueness assertion of (i) that there is u 6= 0 in E∞
with (P ◦ eL)(x) = eL′(ux). Then uL ⊂ L′, and the theorem follows. �

Remark 1.2. It is clear from the proof of (vi) that any polynomial P in E∞[x] with
P ◦ ϕa = ϕ′a ◦ P for all a in A has to be additive.
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2. Elliptic modules-algebraic definition

Definition ?? of an elliptic module over a field extension of F∞ is purely algebraic.
So it has a natural generalization defining elliptic modules over any field over A.

Let B be a ring of characteristic p (by definition, p = 0 in B). Let R be a
B-algebra, namely a ring with a ring homomorphism i : B → R. Then R has
characteristic p. By an affine group scheme G over B we mean a representable
functor from the category of B-algebras R to the category of groups; thus G(R) =
Hom(B′, R) = Hom(SpecR,SpecB′) if G is represented by the B-algebra B′. Then
B′ is a Hopf algebra (with comultiplication µ : B′ → B′ ⊗B B′, counite ε and
coinverse ι, which are B-algebra homomorphisms satisfying standard axioms), and
SpecB′ has a natural structure of a group. As usual, we write G = SpecB′ if the
functor G is representable by B′. The group G is called algebraic if B′ is finitely
generated over B. For example, the additive group Ga,B over B is the functor
which associates to the B-algebra R the additive group of R. Then Ga,B(R) =
HomB(B[x], R), namely Ga,B is represented by the B-algebra B[x] (which is of finite
type), and Ga,B = SpecB[x]. The group structure on Ga,B is defined by the Hopf
algebra structure on B[x], namely by the comultiplication µ : B[x]→ B[x]⊗BB[x],
x 7→ x⊗ 1 + 1⊗ x, counit ε : x→ 0 and coinverse ι : x→ −x.

The set of morphisms from a functor E to a functor E′ is denoted by Hom(E,E′).
When E = E′ we write EndE for Hom(E,E). Put EndB Ga for EndGa,B . If G′ =
SpecB′, G′′ = SpecB′′ are affine group schemes then the map which associates to
the Hopf algebra morphism P : B′′ → B′ the morphism P : G′ → G′′, defined by
P (u : B′ → R) = (u◦P : B′′ → R), is an isomorphism Hom(B′′, B′)

∼−→Hom(G′, G′′).
Let B[τ ] be the ring generated by τ over B under the relations τb = bpτ for all b
in B.

Lemma 2.1. The ring EndB Ga is canonically isomorphic to B[τ ] as a ring.

Proof. An endomorphism P of Ga,B is equivalent to a homomorphism B[x]→ B[x]
over B which commutes with µ. Such P is determined by the image P (x) =

∑
i aix

i

of x. The morphism P commutes with µ if and only if P (y+z) = P (y)+P (z), where

y = x ⊗ 1 and z = 1 ⊗ x. The proof of Lemma ?? implies that P (x) =
∑
bix

pi .
Denote by τ the endomorphism τ(x) = xp. For b in B, denote by b also the
endomorphism b(x) = bx of multiplication by b. Then τb = bpτ . Hence P =

∑
biτ

i

lies in B[τ ]. Since B[τ ] clearly lies in EndB Ga, the lemma follows. �

Remark 2.1. (1) We identity B with its image in B[τ ]. (2) If the characteristic of
B is zero then EndB Ga = B: the only endomorphisms of Ga over B are b(x) = bx.
The richer structure of EndB Ga in the case of characteristic p > 0 is the basis of
the theory of elliptic modules.

Definition 2.1. (i) Let D
(∑n

0 biτ
i
)

= b0 define the ring homomorphism D :
B[τ ]→ B. (ii) The polynomial P in B[τ ] is called separable if D(P ) 6= 0.

We can now make the following

Definition 2.2. Let K be a field over A. An elliptic module over K is a ring
homomorphism ϕ : A → K[τ ] = EndK Ga, a 7→ ϕa, whose image is not contained
in K, such that D ◦ ϕ = i.

Lemma 2.2. Any elliptic module ϕ : A→ K[τ ] is an embedding.
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Proof. Since K[τ ] has no zero divisors, the ideal kerϕ is prime. Suppose that
kerϕ 6= 0. Since A is a Dedekind domain, kerϕ is a maximal ideal. Hence the
image of ϕ is a field, necessarily contained in K, since all invertible elements in
K[τ ] lie in K. We obtain a contradiction to the definition of an elliptic module.
This implies that kerϕ = 0, as required. �

To compare Definition ?? with Definition ??, define the degree homomorphism
deg : K[τ ]→ Z by deg

(∑n
0 biτ

i
)

= pn if bn 6= 0, and deg 0 = 0. It satisfies

deg(x+ y) ≤ max(deg x,deg y), deg(xy) = deg x · deg y.

Hence the homomorphism d : A→ Z, d(a) = degϕa, satisfies d(ab) = d(a)d(b) and
d(a+ b) ≤ max(d(a), d(b)). Lemma ?? then implies that d is an absolute value on
A at some point of C, in fact at ∞ since d(a) ≥ 1 on A. Hence there exists some
r > 0, which we call the rank of ϕ and denote by rankϕ, with d(a) = |a|r. Once
we show, in Corollary ?? below, that r is an integer, it is clear that when K is the
extension E∞ of F∞ as in Definition ??, the elliptic module of Definition ?? is an
elliptic module in the sense of Definition ??, with rank r.

Definition 2.3. (i) The characteristic of an elliptic module ϕ : A → K[τ ] is
the prime ideal ker[i : A → K] in SpecA. It is denoted by charϕ. (ii) Let Eϕ
be the functor from the category of K-algebras R to the category of A-modules,
whose composition with the forgetful functor from A-modules to groups is Ga,K ,

with the A-structure defined by ϕ. Thus if ϕa = i(a) +
∑S
i=1 biτ

i (bi in K), then

a ◦ r = ϕa(r) = i(a)r+
∑
bir

pi in Eϕ(R) (r in R). A functor E is called an elliptic
functor if it is isomorphic to Eϕ, where ϕ is an elliptic module. (iii) For any ideal
I in A, let EI = Ann(I)|E be the subfunctor of the elliptic functor E annihilated
by I. Thus if E = Eϕ then EI(R) is the A/I-module consisting of all x in E(R)
with a ◦ x = 0 for all a in I.

Remark 2.2. (1) Since A is a Dedekind domain, either charϕ = {0}, in which case
i : A → K is injective, or charϕ is a maximal ideal. (2) If I = (a) is principal
and E = Eϕ, write Ea for EI = kerϕa. In general, EI(R) = ∩Ea(R) (a in I). If
a1, . . . , as generate I in A then EI(R) = Ea1(R) ∩ · · · ∩ Eas(R). (3) The functors
E and Ea are equal if and only if a = 0, and EI = E if and only if I = {0}.
Lemma 2.3. Let w be a maximal ideal of A. Let πππ denote a uniformizer in the
local ring Aw. Let E′′ be an Aw/πππ

2mAw-module of cardinality |πππ|−2mr. Suppose the
submodule E′ = kerπππm | E′′ has cardinality |πππ|−mr. Then E′ is a free Aw/πππ

mAw-
module of rank r.

Proof. As a finitely generated torsion module over a local ring Aw, we have that E′′

is a finite direct sum of modules isomorphic to Aw/πππ
jAw. Since πππ2m annihilates

E′′ we have that 0 < j ≤ 2m. Now kerπππm is the sum of Aw/πππ
min{j,m}Aw. Hence

| kerπππm|2 ≥ |E′′|, with equality only when j = 2m for all j. The lemma follows. �

Let ϕ be an elliptic module of rank r over K. Fix an algebraic closure K of K.

Theorem 2.4. Let I be an ideal in A which is prime to charϕ. Then EI(K) is a
free A/I-module of rank r.

Corollary 2.5. (i) Fix w in SpecA prime to charϕ, and b in A− Fq whose only

zero is at w. Then lim−→
m

Ebm(K) is a free Fw/Aw-module of rank r. (ii) The rank of

an elliptic module is an integer.
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Remark 2.3. The ideal I is prime to charϕ if and only if I is not contained in
charϕ.

Proof. (i) Let w in SpecA be prime to charϕ. We first consider the case where
I 6= A is a principal ideal generated by b in A whose only zeroes are at w. Then (b)
is prime to ker i = charϕ, so that i(b) 6= 0. We have Eb(K) = kerϕb, where ϕb(x) =
i(b)x + · · · + asx

|b|r , and as 6= 0. Since dϕb/dx(≡ i(b)) is never zero, the roots of
ϕb(x) = 0 are simple, and the cardinality of Eb(K) is |b|r. The same argument
implies that the cardinality of Eb2(K) is |b|2r. In the notations of Lemma ?? there
is some positive integer m with bAw = πππmAw, and we have A/bA ' Aw/πππ

mAw
and A/b2A ' Aw/πππ

2mAw. The theorem follows on taking E′′ = Eb2(K) and
E′ = Eb(K) in Lemma ??, in our case where I = (b) is principal and supported at
w. In particular the corollary is proven.

(ii) Let I be any ideal which is prime to charϕ. Since A is Noetherian I has
the primary decomposition I = ∩wn(w), where w are maximal ideals in SpecA not
contained in charϕ, and n(w) are positive integers. Then A/I = ⊕A/wn(w), and
any finitely generated A/I-module M is the direct sum of its primary components
Mw, which are A/wn(w)-modules. To show that EI(K) is a free A/I-module of
rank r it suffices to show that EIh(K) is a free A/Ih-module of rank r for some
positive integer h. We take h to be the (finite) cardinality of the quotient of the
multiplicative group of ideals in A by its subgroup of principal ideals. Then whn(w)

is principal, and the theorem follows from the case proven in (i). �

Let w be a prime ideal of A which is not contained in charϕ. Let b be an element
of A− Fq whose only zero is at w. In view of Corollary ?? we can make

Definition 2.4. The Tate module TwE of E at w is HomAw(Fw/Aw, lim−→
m

Ebm(K)).

Corollary 2.6. If w is prime to charϕ then TwE is a free Aw-module of rank r.

Let K be a ring over A. Let ϕ,ϕ′ be two elliptic modules over K. Let E = Eϕ
and E′ = Eϕ′ be the associated elliptic functors. In the rest of this section 2
we study basic properties of the group Hom(E,E′) which are fundamental for the
description in Part 2 of isogeny classes.

Lemma 2.7. The group Hom(E,E′) is isomorphic to the group of all P in K[τ ]
with Pϕa = ϕ′aP for all a in A.

Proof. This follows at once from the definitions. Namely, since the composition
of E or E′ with the forgetful functor from A-modules to groups is Ga,K , any P
in Hom(E,E′) lies in EndK Ga = K[τ ]. The morphism P commutes with the
A-module structures on E and E′ if and only if Pϕa = ϕ′aP for all a in A. �

Remark 2.4. The group Hom(E,E′) has an A-module structure given by a ◦ P =
ϕ′aP .

Lemma 2.8. The A-module Hom(E,E′) is torsion free.

Proof. There are no zero divisors in K[τ ]. �

Let G′ = SpecB′ and G = SpecB be affine group schemes over K. We say that
the morphism G→ G′ is injective (resp. surjective) if the corresponding morphism
B′ → B of Hopf K-algebras is surjective (resp. injective). By a subgroup (or group
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subscheme) of G we mean a pair (H, i) consisting of a group H and an injection
i : H → G. A subgroup H of G corresponds to a Hopf ideal I in B, namely an
ideal I with µ(I) ⊆ I ⊗B +B ⊗ I, ε(I) = 0 and ι(I) ⊆ I.

The subgroup H of G is called normal if H(R) is normal in G(R) for all K-
algebras R.

The kernel H = HP of a morphism P : G → G′ is the functor defined by
H(R) = ker[P (R) : G(R) → G′(R)]. The kernel H is the (normal) subgroup of

G corresponding to the ideal IP = P̃ (ker ε′)B of B, where ε′ : B′ → K is the

counit of B′, and P̃ : B′ → B is the Hopf algebra morphism corresponding to P .

Indeed, g : B → R in G(R) is in the kernel H(R) if and only if g ◦ P̃ : B′ → R is

zero in G′(R), namely g ◦ P̃ factorizes through ε′, or g(P̃ (ker ε′)) = 0, equivalently
g(IP ) = 0.

A quotient ofG is a pair (G′, P ) consisting of an affine group schemeG′ = SpecB′

and a surjection P : G→ G′. If H is a normal subgroup of G then there is a unique
quotient P : G→ G′ with kernel H (see [?], (16.3)). The quotient (G′, P ) of G has
the universal property that for any morphism Q : G → G′′ which vanishes on the
kernel HP of P : G→ G′, namely Q satisfies IQ ⊂ IP , there is a unique morphism
R : G′ → G′′ with Q = RP (see [?], (15.4)).

The group G is called a finite group scheme of order m over K if B is an algebra
of rank m over K. A finite group G over K is called étale if B ⊗K Ks is a finite
direct product of copies of the separable closure Ks of K in K.

An affine group G is called connected if SpecB is connected (equivalently, ir-
reducible). In the case where G is the additive group Ga,K , all subgroups and
quotients can be explicitly described, as follows.

Lemma 2.9. (i) Every proper subgroup H of Ga,K is of the form HP for some
P 6= 0 in EndK Ga. Every quotient of Ga,K is of the form P : Ga,K → Ga,K . The
quotient map corresponding to HP is defined by P : K[x] → K[x], x 7→ P (x). We
have HP = HQ if and only if P = aQ for some a 6= 0 in K. The order of HP is
the degree of P (x). (ii) The morphism P is separable if and only if HP is étale.
The group HP is connected if and only if P = aτ j for some a 6= 0 in K and j ≥ 0.

Proof. (i) If H is a proper subgroup of Ga,K then it corresponds to a proper ideal
I in the principal ideal domain K[x]. Hence H is finite, and I = (P (x)) for some
monic P (x) in K[x]. The ideal I is an Hopf ideal precisely when ε(P ) = 0, thus
P (0) = 0, and µ(P (x)) = P (x + y) lies in I ⊗K[x] + K[x] ⊗ I. Namely there are
polynomials ai and bj in K[x] (0 ≤ i ≤ n, 0 ≤ j ≤ m) with an 6= 0, bm 6= 0, and

P (x+ y) = P (x)
∑

0≤i≤n

ai(y)xi + P (y)
∑

0≤j≤m

bj(y)xj .

Choose n ≥ 0 to be minimal. Comparing highest powers of x we conclude that
m = n + deg(P ), and an(y) + P (y)bm(y) = 0, namely n can be reduced by 1 if
n > 0. Thus n = 0. By symmetry (of x and y), the bi(y) are independent of y.
Thus P (x+ y) = P (x)a0(y) + P (y)c0(x). Comparing the heighest degree terms of
P (x + y), P (x)a0(y), P (y)c0(x) we see that c0(x) = 1 and a0(y) = 1. Hence P is
additive, and (i) follows.

(ii) The group of connected components of the finite group H is isomorphic to the
group H(K) of points on H; this is isomorphic to the group of zeroes of P (x) = 0.
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The group H is connected if and only if P (x) has only one zero, necessarily at

x = 0. Since P is additive, it has the asserted form P (x) = axp
j

; (ii) follows. �

We shall now verify directly the universal property of quotients in the case of
Ga,K .

Lemma 2.10. Let P (x), Φ(x) be additive polynomials in K[x] such that P (x)
divides Φ(x). Then there is an additive polynomial Q(x) in K[x] with Φ(x) =
Q(P (x)).

Proof. Suppose that P =
∑I
i=I′ piτ

i and Φ =
∑R
k=R′ φkτ

k satisfy P (x) | Φ(x).

Then R′ ≥ I ′. Our aim is to find Q =
∑J
j=J′ qjτ

j with Φ = QP and qj in K.

Since R′ ≥ I ′ we may assume that I ′ = 0. Suppose first that R′ = 0, namely Φ is
separable. Since P (x) divides Φ(x), kerP (x) = {b ∈ K;P (b) = 0} is a subgroup
of ker Φ(x), and the quotient ker Φ(x)/ kerP (x) is isomorphic to P (ker Φ(x)). The
group P (ker Φ(x)) is an additive Gal(Ks/K)-invariant subgroup of Ks. Hence there
is some c 6= 0 in K such that Q(x) = c

∏
u(x− u) (u in P (ker Φ(x))) is an additive

polynomial (by part (ii) in the proof of Proposition ??) with Φ(x) = Q(P (x))

and coefficients in K. In general, define φ′k in Kp−R
′

by τR
′
φ′k = φk+R′τ

R′ and

Φ′ =
∑R′′

k=0 φ
′
kτ
k, where R′′ = R − R′. Then Φ = τR

′
Φ′, Φ′ is separable and P (x)

divides Φ′(x). Hence there is Q′ =
∑
q′jτ

j with Φ′ = Q′P . Then Q = τR
′
Q′ =∑

q′j
pR
′

τ j+R
′

has coefficients in K, and it satisfies Φ = QP , as required. �

Recall that an elliptic functor E is the additive group equipped with an A-module
structure.

Definition 2.5. (i) A morphism P 6= 0 in Hom(E,E′) is called an isogeny (from
E to E′ or from ϕ to ϕ′). The functors E and E′ (and ϕ,ϕ′) are called isogenous
if Hom(E,E′) 6= {0}. (ii) An isogeny P =

∑m
i=0 biτ

i in K[τ ] is called separable if
b0 6= 0. It is called purely inseparable if it is of the form P = bτm with some b 6= 0
in K and a positive integer m.

Remark 2.5. (i) If ϕ,ϕ′ are isogenous then they have the same rank. (ii) If P is a
purely inseparable isogeny then its kernel on E(K) is {0}. (iii) If m > 0 then τm

lies in EndE if and only if ϕ is defined over Fpm . In this case the characteristic of
ϕ is nonzero, and pm is an integral power of qv = |A/v|.

Any P 6= 0 in EndK Ga can be written uniquely in the form Sτ j , where S in
EndK Ga is separable, and j ≥ 0. For isogenies we have

Proposition 2.11. Let P be an isogeny in Hom(E,E′). If P is not separable then
(i) charϕ = v 6= {0}, and (ii) there are separable and purely inseparable isogenies
S and R = τ j such that P = SR and pj = qhv for a positive integer h; here
qv = |A/v| = |Fv|.

Proof. Let bτ j be the first term in P . The relation Pϕa = ϕ′aP implies that

i(a)p
j

= i(a) for all a in A. If charϕ = {0} then j = 0. If j 6= 0 then pj has
to be a power of qv = |A/v|, where charϕ = v 6= 0, as we now assume. Suppose
that P =

∑m
i=0 biτ

i+j , with b0 6= 0. Put S =
∑m
i=0 biτ

i, and R = τ j . Then

τ j is an isogeny from ϕ to ϕ′′, defined by ϕ′′a =
∑
ap

j

i τ
i if ϕa =

∑
aiτ

i. Since

ap
j

0 = i(a)p
j

= i(a), ϕ′′ is indeed an elliptic module. Since K[τ ] is a domain, the
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relation ϕ′aSR = SRϕa = Sϕ′′aR implies that ϕ′aS = Sϕ′′a for all a in A. Hence R
lies in Hom(E,E′′) and S in Hom(E′′, E′), as required. �

Proposition 2.12. Let P 6= 0 be an isogeny from ϕ to ϕ′. Then there exists an
isogeny Q from ϕ′ to ϕ, and a 6= 0 in A, such that QP = ϕa.

Proof. (i) We first consider the case where P is separable. Put H = HP . Since
H(K) is a finite A-submodule of E(K) there exists a 6= 0 in A with ϕa(h) = 0 for
all h in H(K). Since P is separable, the polynomial P (x) divides ϕa(x), and the
ideal (ϕa(x)) lies in (P (x)). The universal property of quotients asserts that there
is Q in EndGa,K with ϕa = QP . It remains to show that Q is an isogeny. Since
Pϕb = ϕ′bP for all b in A, we have

ϕbQP = ϕbϕa = ϕaϕb = QPϕb = Qϕ′bP.

Since K[τ ] is a domain we conclude that ϕbQ = Qϕ′b, as required.
(ii) If P = τ j , choose a 6= 0 in charϕ (since P is purely inseparable, charϕ 6=

{0}). Then ϕa =
∑
aiτ

i with a0 = 0, and ϕaj = (
∑
aiτ

i)j = Qτ j for some Q.
(iii) Suppose that P = SR, where S is separable and R is purely inseparable, R in

Hom(E,E′′), S in Hom(E′′, E′). Then there is T in Hom(E′, E′′) with TS = ϕ′′a′′ ,
and U in Hom(E′′, E) with UR = ϕa′ , for some a′, a′′ in A. Put a = a′a′′ and
Q = UT . Then QP = UTSR = Uϕ′′a′′R = URϕa′′ = ϕa′ϕa′′ = ϕa, as required. �

Corollary 2.13. If charϕ = 0 then EndE is commutative.

Proof. The map D : EndE → F , D(
∑
aiτ

i) = a0, is a ring homomorphism.
Proposition ?? asserts that for each P 6= 0 in EndE there is a 6= 0 in A and Q in
EndE with QP = ϕa. Since D(ϕa) = i(a) = a, D is injective, and the corollary
follows. �

Let E = Eϕ be an elliptic functor over K. Then E(K) is an A-module. We
shall now determine those finite subgroups H = HP of Ga,K which are kernels of
isogenies.

Proposition 2.14. The morphism P 6= 0 in EndK Ga is an isogeny from E to an
elliptic functor E′ if and only if (i) H(K) is an A-submodule of E(K), (ii) P = Sτ j

where S is a separable isogeny, and (1) j = 0 if charϕ = {0}, (2) pj is a power of
qv if charϕ = v 6= {0}.

Proof. If P lies in Hom(E,E′) then Pϕa = ϕ′aP for all a in A. If P (b) = 0 then
ϕ′a(P (b)) = 0, hence P (ϕa(b)) = 0, whence (i). (ii) is verified in the proof of
Proposition ??. In the opposite direction, we deal first with a separable P which
satisfies (i) and (ii). By (i), the map ψa = Pϕa in EndK Ga is zero on H(K), for
every a in A. Since P is separable, P (x) divides ψa(x), hence (ψa(x)) lies in (P (x)),
and the universal property of quotients implies that there is ϕ′a in EndK Ga with
ψa = ϕ′aP , for any a in A. Then ϕ′ : A → K[τ ] is the required elliptic module.
In general P = Sτ j , and it is verified in the proof of Proposition ?? that τ j as
in (ii(2)) lies in Hom(E,E′′), where E′′ is defined there. Since by (i) we have tht
HP (K) is an A-submodule of E(K), it is clear that HS(K) is an A-submodule of
E′′(K). Namely S is separable and satisfies (i), hence it is an isogeny from E′′ to
some E′ as shown above. The proposition follows. �
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Our next goal is to show that the torsion free A-module Hom(E,E′) is finitely
generated and projective. Let m∞ be the maximal ideal in the ring A∞ of integers
in the completion F∞ of F at ∞.

Lemma 2.15. For each nonnegative integer i the group A + mi
∞ has finite index

in F∞.

Proof. (i) If B = Fq[t] and J = Fq(t) then J∞ = Fq((t−1)) and J∞/B is compact.
(ii) Take t in A − Fq. The ring A is a finitely-generated torsion-free module over
the principal ideal domain B = Fq[t]. Hence A is a free B-module of finite rank s.
Choosing a basis we have A = Bs and F∞ = A⊗B J∞ = Js∞. By virtue of (i) the
quotient J∞/B is compact, hence F∞/A is compact. Since mi

∞ is open in F∞, the
quotient F∞/(A+mi

∞) is finite, as required. �

Proposition 2.16. Let V be a subspace of F ⊗A Hom(E,E′) of finite dimension.
Put V∞ = V ⊗F F∞ and X = V ∩Hom(E,E′). Then (i) X is a discrete subset of
V∞; (ii) X is a finitely generated projective A-module.

Proof. (i) The degree homomorphism deg : Hom(E,E′)→ Z≥0 satisfies (1) deg u ≥
0; (2) deg u = 0 if and only if u = 0; (3) deg(au) = |a|r deg u; (4) deg(u + v) ≤
max(deg u,deg v); (5) deg(uv) = deg u·deg v (u, v ∈ V ; a ∈ A). By (3), deg extends
to V∞ on taking a in F∞. Hence deg is a norm on V∞, and X is discrete since X is
a group and deg a ≥ 1 for all a 6= 0 in X. To prove (ii), let x1, . . . , xd be a basis of
V over F which lies in X. We use this basis to identify V∞ with F∞ × · · · ×F∞ (d
times), which we now denote by [F∞]d. Hence we have [A]d ⊂ X ⊂ [F ]d ⊂ [F∞]d,
and [mi

∞]d ⊂ [F∞]d, for all i ≥ 0. Since X is discrete, there exists some i ≥ 0 with
X∩ [mi

∞]d = 0. Hence X embeds in [F∞/m
i
∞]d, and X/[A]d in [F∞/m

i
∞+A]d, the

latter being finite by Lemma ??. Since [A]d is a finitely generated A-module, and
X/[A]d is finite, X is a finitely generated A-module. Since X is torsion free over a
Dedekind domain A, X is flat. Since X is also finitely generated we conclude that
X is projective, as required. �

Put v = charE, and let w in SpecA be with w 6= v. For any V as above we have

Proposition 2.17. The natural map from X ⊗A Aw to HomAw(TwE, TwE
′) is

injective.

Proof. Since X is projective and finitely generated, we have X⊗AAw = lim−→
m

X/(bm)

for any b in A − Fq whose only zero is at w. Since TwE and TwE
′ are free Aw-

modules of rank r we have

HomAw(TwE, TwE
′) = lim←−

m

HomAw(TwE, TwE
′)/(bm).

Hence it suffices to show that the map X/(bm) → HomAw(TwE, TwE
′)/(bm) is

injective for all m; we may take m = 1 on replacing bm by b. Note that

HomAw(TwE, TwE
′)/(b) = HomA/(b)(kerϕb, kerϕ′b).

Hence P in Hom(E,E′) maps to zero in HomAw(TwE, TwE
′)/(b) if and only if

P (a) = 0 for any a in K with ϕb(a) = 0. Since b does not lie in v, we have i(b) 6= 0,
and ϕb is separable. Hence ϕb divides P , and the universal property of quotients
implies that there exists Q in EndK Ga with P = Qϕb. Since P is an isogeny from
E to E′, so is Q, as K[τ ] is a domain. Hence P is zero in X/(b), as required. �
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Theorem 2.18. Let r be the rank of E. Then (i) Hom(E,E′) is a finitely generated
projective A-module of rank bounded by r2; (ii) for each w 6= v = charE in SpecA,
the natural map from Hom(E,E′)⊗A Aw to HomAw(TwE, TwE

′) is injective.

Proof. Let V be a finite dimensional subspace of F ⊗A Hom(E,E′). Since X =
V ∩Hom(E,E′) is projective and finitely generated, the rank of X over A is equal
to the rank of X ⊗A Aw over Aw (for all w), and the latter is bounded by r2 by
the Proposition, since TwE is a free Aw-module of rank r. Since V is arbitrary,
the rank of Hom(E,E′) is bounded by r2, and (i) as well as (ii) follow from the
Proposition. �

Proposition 2.19. (i) The ring F∞ ⊗A EndE is a division algebra of dimension
at most r2 over F∞. (ii) The ring F ⊗A EndE is a division algebra of dimension
≤ r2 over F .

Proof. (i) By Theorem ??, B∞ = F∞ ⊗A EndE is an algebra of dimension ≤
r2 over F∞. It has no zero divisors by the properties (1) and (2) of the degree
homomorphism deg : (EndE)⊗A F∞ → Q of Proposition ??. Given b 6= 0 in B∞,
let Lb : B∞ → B∞ the F∞-linear operator x 7→ bx. This B∞ is a finite dimensional
vector space over F∞, and Lb is injective, since the ring B∞ has no zero divisors.
Hence Lb is surjective. Then there is x ∈ B∞ with bc = 1.

(ii) follows on replacing F∞ by F in the proof of (i). �

Corollary 2.20. If charE = {0} then (EndE)⊗A F∞ is a field of degree ≤ r over
F∞.

Proof. When charE = {0}, Corollary ?? asserts that EndE is commutative.
Hence F ⊗A EndE is a commutative division algebra, that is a field extension
of F of degree ≤ r2. Theorem ?? implies that Fw ⊗A EndE embeds in the al-
gebra EndAw(TwE) ⊗Aw Fw of r × r matrices, hence Fw ⊗A EndE is a direct
sum of field extensions of Fw, the sum of whose degrees is bounded by r. Hence
[F ⊗A EndE : F ] ≤ r. Since F∞ ⊗A EndE is a division algebra, ∞ does not split
in F ⊗A EndE, so F∞ ⊗A EndE is a field of degree ≤ r over F∞, as required. �
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3. Elliptic modules-geometric definition

The definition in section 2 of elliptic modules as A-structures on the additive
group Ga,K over a field K over A has a natural generalization in which the field K,
that is the scheme SpecK, is replaced by an arbitrary scheme S over A, and Ga,K
is replaced by an invertible (locally free rank one) sheaf G over S (equivalently a
line bundle over S). An elliptic module of rank r over S will then be defined as an
A-structure on G which becomes an elliptic module of rank r over K for any field
K over S (thus SpecK → S). For our purposes it suffices to consider only affine
schemes S and elliptic modules defined by means of a trivial line bundle G alone.

Definition 3.1. Let S = SpecB be an affine scheme over A, thus we have a ring
homomorphism i : A→ B. Let Ga,S = SpecB[x] be the additive group over S. (i)
An elliptic module of rank r over S is a ring homomorphism ϕ : A → EndGa,S =
B[τ ], a 7→ ϕa, such that for any field K with a morphism s : SpecK → S (or
s : B → K), the homomorphism ϕs = s ◦ ϕ : A → B[τ ] → K[τ ] is an elliptic
module of rank r over K. (ii) Let Eϕ be the functor from the category of rings over
B (or affine schemes over S) to the category of A-modules, which associates to any
ring R over B the additive group of R, together with the A-structure a ◦ r = ϕa(r)
defined by ϕ. A functor E is called elliptic if it is isomoprhic to some Eϕ.

Remark 3.1. A morphism P : E → E′ of elliptic functors E = Eϕ and E′ = Eϕ′ is
P in EndGa,S = B[τ ] with Pϕa = ϕ′aP for all a in A.

Let ϕ be an elliptic module over S. Then ϕa =
∑I(a)
i=0 bi(a)τ i for each a in A.

Here the bi(a) lie in B, and b0(a) = i(a). Denote by B× the group of units in B.
Define vp on F× by vp(uπππ

m) = −m logp q where u is a unit, m an integer.

Lemma 3.1. For each a in A we have (i) brvp(a)(a) is a unit; (ii) if i > rvp(a)
then bi(a) is nilpotent in B.

Proof. (i) If brvp(a)(a) is not a unit then it lies in some maximal ideal m in B, and
the reduction of ϕ modulo m cannot be an elliptic module of rank r over the residue
field B/m; (i) follows. (ii) For each prime ideal P in B, the reduction of ϕ modulo
P is an elliptic module over the fraction field of the domain B/P. Consequently for
each i > rvp(a) we have that bi(a) lies in each prime ideal of B. Since the nilradical
of B, which is defined to be the set of all nilpotent elements in B, is equal to the
intersection of all prime ideals of B (see [?], Prop. 1.8, p. 5), (ii) follows. �

Definition 3.2. (i) The element f =
∑n

0 biτ
i of B[τ ] is called strictly of degree pn if

its leading coefficient bn is a unit. (ii) An elliptic module ϕ over S is called standard
if ϕa is strictly of degree |a|r for all a in A. Namely bi(a) = 0 for i > rvp(a).

Proposition 3.2. (1) Every elliptic module is isomorphic to a standard module.
(2) Every automorphism of a standard module is linear.

Proof. We begin with two lemmas, and then deduce the proposition.

Lemma 3.3. Let f =
∑n

0 biτ
i be an element of B[τ ] such that for some d > 0

we have that bd is invertible and bi is nilpotent for i > d. Then there exists g =

1 +
∑k

1 cjτ
j in B[τ ] such that the cj are nilpotent (hence g is invertible) and gfg−1

is strictly of degree d.
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Proof. We may assume that n > d. The ideal I generated by the nilpotent elements
bi (d < i ≤ n) is nilpotent. Hence there is some j > 1 with Ij = {0}. In B′ = B/I2

we have I2 = 0, and the degree of

f1 = (1− bnb−p
n−d

d τn−d)f(1− bnb−p
n−d

d τn−d)−1

is less than n. Repeating this process with f1 replacing f , where n is replaced by
the exponent n1 < n of the highest power of τ in f1, we obtain g1 as in the lemma,
such that f ′ = g1fg

−1
1 is strictly of degree d over B/I2. Namely the coefficients

b′i (d < i ≤ n) of f ′ lie in I2. Since Ij = {0} the lemma follows on repeating this
process (with I replaced by I2, I4, etc.). �

Lemma 3.4. Suppose that fi =
∑d(i)
j=0 bijτ

j (i = 1, 2) and h =
∑d
j=0 hjτ

j in B[τ ]

satisfy f2h = hf1, hd is either a unit or nilpotent 6= 0, d(1) > 0, and bi,d(i) are
units. Then d(1) = d(2) and hd is a unit.

Remark 3.2. The proof below shows that the same conclusion is valid if the as-
sumption that: “hd is either a unit or nilpotent 6= 0” is replaced by “hd 6= 0 and
SpecB is connected”, i.e., B is not the direct product of two rings.

Proof. If hd is nilpotent, then it lies in a maximal ideal m of B, and we may
assume that hd lies in mi−1 but not in mi for some i > 1. We then replace B by

B/mi to have mi = 0 and h2
d = 0. The highest term in hf1 is hdb

pd

1,d(1)τ
d+d(1).

Hence d(2) ≥ d(1), and hdb
pd

1,d(1) = b2,d(1)h
pd(1)

d . As h2
d = 0 and b1,d(1) is invertible,

we deduce that hd = 0. This contradiction implies that hd is indeed a unit, and
d(1) = d(2). �

Proof of proposition. Consider a in A − Fq and use (i) to produce g as in (i) such
that gϕag

−1 is strictly of degree |a|r. Then we define ϕ′b = gϕbg
−1 for all b in A.

Since both ϕ and ϕ′ are elliptic modules, the leading coefficients of ϕb and ϕ′b are
either units or nilpotents. Since ϕ′aϕ

′
b = ϕ′bϕ

′
a for all b, it follows from (ii) that

ϕ′b is strictly of degree |b|r. Hence ϕ′ is a standard elliptic module. If P is an
endomorphism of ϕ′ and SpecB is connected, then it follows from (ii) that there is
a nonnegative integer s such that P is strictly of degree s. If P is invertible then
s = 0 and P is linear. The proposition follows. �

Let I 6= 0 be an ideal in A. Let E = Eϕ be an elliptic functor of rank r over S.

Definition 3.3. Let EI = Ann I|E be the subfunctor of E annihilated by I.

Corollary 3.5. The annihilator EI of I in E is finite and flat as an affine group
scheme over S.

Proof. Up to isomorphism we may assume that E = Eϕ is a standard elliptic
functor. The affine group scheme underlying E is SpecB[x], and the subgroup

underlying EI corresponds to the ideal J = JI =
(∑rvp(a)

j=0 bj(a)xp
j

(a ∈ I)
)

in B[x],

namely it is SpecB[x]/J . Since E is standard, the leading coefficients brvp(a)(a) are
invertible in B. Let I ′ be an ideal in A with I+I ′ = A and I∩I ′ = (a) for some a 6= 0
in A (cf. (ii) in the proof of Theorem 2.4). Then B[x]/JI⊕B[x]/JI′ = B[x]/(ϕa(x))
is finitely generated and free over B. Consequently B[x]/JI is finitely generated
and projective, hence locally free and flat, of rank |A/I|r over B. �
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Let K be a field over B. Then there is a homomorphism j : B → K whose kernel
mK lies in SpecB. Let mB be an element of SpecB. A finite flat scheme SpecC
over SpecB is called étale over mB if for any separably (equivalently, algebraically)
closed field K over B with mK = mB we have that C ⊗B K is a direct product of
copies of K; the number of copies is equal to the rank of C over B.

Definition 3.4. Let V (I) be the set of m in SpecA which contain the ideal I of
A.

Proposition 3.6. The affine group scheme underlying EI is étale over i−1(SpecA−
V (I)).

Proof. Put C = B[x]/JI . Fix any mB in SpecB with i(mB) 6⊃ I. Since i(mB) is
prime in A, i(mB) 6⊃ Id for all d ≥ 1. The ideal class group of A is finite. Hence
there is some h ≥ 1 such that Ih = (a) is principal, so that i(a) does not lie in mB .
Let K be a separably closed field over B, thus we have j : B → K, with mK = mB .
For any P (x) in B[x] we apply j : B → K to the coefficients of P (x) to obtain a

polynomial P (x) in K[x]. Since i(a) does not lie in mB = mK , i(a) = j(i(a)) 6= 0,
and ϕa(x) is separable. Hence the principal ideal JI = (ϕb; b ∈ I) in K[x] is
generated by a separable polynomial. But ϕa ∈ JI , so JI is generated by a separable
polynomial. Consequently C ⊗B K = K[x]/JI is a direct product of copies of K,
and C is étale over mB for any mB in i−1(SpecA− V (I)), as required. �

Lemma 3.7. Let H ⊂ SpecB[X] be a finite flat closed subscheme of rank r over
SpecB. Then the ideal I defining H is principal, generated by a uniquely determined
monic polynomial h in B[X] of degree r.

Proof. Our assertion is equivalent to: Suppose H = SpecS, S = B[X]/I, is finite
and flat of rank r over B. Then 1, X, . . . , Xr−1 is a basis of S over B.

Consider the natural morphism f : Br → S, f(a0, . . . , ar−1) =
∑
{i;0≤i<r} aiX

i.

It is an isomorphism. To see this, we may pass to localizations. Thus we may
assume that B is a local ring. Then S is a free B-module of rank r. So it suffices
to show that f is surjective. By Nakayama’s lemma, we reduce to the case of f
modulo the maximal ideal of the local ring B, thus reducing to the case when B is
field. This case it is obvious.

Now Xr is a linear combination
∑
{i;0≤i<r} aiX

i of Xi, 0 ≤ i < r, with coeffi-

cients in B, modulo I. Thus f = Xr −
∑
{i;0≤i<r} aiX

i is a monic element of I.

Let g ∈ B[X] be a nonzero element of I of lowest degree. The degree of g is at least
r. If not, 1, X, . . . , Xr−1 are linearly dependent in S, that is, modulo I. Then
there is a monomial q ∈ B[X] such that g− qf has lower degree than that of g, and
g − qf ∈ I, since g, f ∈ I. Hence g = qf , and I is principal, generated by f . �

Let ϕ : A→ B[τ ] be an elliptic module of rank r over a ring B (or affine scheme
S = SpecB). Then EI(S), or EI(B), is the A/I-module

Hom(S,EI) = Hom(B[x]/JI , B) = {b ∈ B;ϕa(b) = 0 for all a ∈ I}.

Definition 3.5. (1) A structure of level I on the elliptic functor E = Eϕ of rank
r over S = SpecB is an A-module homomorphism ψ : (I−1/A)r → EI(S) =
SpecB[x]/JI such that JI = (P (x)), P (x) =

∏
u∈(I−1/A)r (x − ψ(u)). Then EI is

the kernel of the polynomial map P (x) =
∏
u∈(A/I)r (x − ψ(u)), P : Ga → Ga. In

other words,
∑
u∈(A/I)r (ψ(u)) is EI as divisors on E.



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 25

(2) Let Fr,I be the covariant functor from the category RA of rings B over A to
the category Set of sets, which assigns to the ring B the set of isomorphism classes
of elliptic modules ϕ : A→ B[τ ] over B of rank r with a structure ψ : (I−1/A)r →
EI(B) of level I. The functor Fr,I is anti-equivalent to a contravariant functor, also
denoted by Fr,I , from the category SA of affine schemes over A to Set, defined by
Fr,I(S) = Fr,I(B) if S = SpecB.

(3) A covariant functor F : C→ Set is called representable if there is an object
C in the category C such that F(B) = Hom(C,B) for all B in C. A contravariant
functor F : C→ Set is called representable if there is T in C with F(S) = Hom(S, T )
for all S in C.

Remark 3.3. It is illuminating to describe the (scheme Ga,B = SpecB[x] over
S = SpecB which underlies the) functor E by a diagram

section:

sE : fiber above s

EI =Spec B[x]/J I

S = Spec B

Base scheme = zero section

s

subscheme of

codimension 1

Figure 1

The sections ψ(u) may intersect only over the support i−1(V (I)) of I in S =
SpecB. If the image of S in SpecA does not intersect V (I) then EI is étale over S,
namely the sections ψ(u) : S → EI do not intersect, and the graph is as in Figure
2 below.

Our aim in Theorem ?? is to show that the functor Fr,I is representable, for any
ideal I 6= 0 in A with [V (I)] ≥ 2.

Let ϕ be an elliptic module of rank r over B with structure ψ : (I−1/A)r →
EI(S) ⊂ B of level I 6= 0. Suppose that m in SpecA contains I. Let mB be a
maximal ideal in B. Fix u 6= 0 in (m−1/A)r. Recall that we have i : A→ B.

Lemma 3.8. If ψ(u) lies in mB then mB contains the image i(m) of m.

Proof. Denote the field B/mB by B. Let ϕ : A → B[τ ] and ψ : (I−1/A)r → B be
the elliptic module with level structure over B obtained on composing ϕ,ψ with
B → B. Suppose that ψ(u) lies in mB , namely ψ(u) = 0 in B. If i(m) does
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I

s

S

E

Figure 2

not lie in mB then there is a in m with i(a) 6= 0. Hence ϕa is separable, and
Jm = (ϕb(x); b in m) is generated by a separable polynomial in B[x]. Hence the
restriction ψ : (m−1/A)r → B of the level structure ψ to (m−1/A)r is injective.
This contradicts the assumption that ψ(u) = 0 for u 6= 0. Hence i(m) lies in
mB . �

Suppose that there are m1 6= m2 in V (I). Fix uj 6= 0 in (m−1
j /A)r.

Proposition 3.9. Put u0 = u1 + u2. Then ψ(u0) is a unit in B.

Proof. Let a be an element of A inm2 such that a−1 lies inm1. If ψ(u0) is not a unit
in B, then it lies in some maximal ideal mB of B. Since au0 = u1 +(1−a)u1 +au2,
we have that ψ(u1) = ψ(au0) = ϕaψ(u0) lies in mB . Lemma ?? implies that mB

contains i(m1). Similarly, mB contains i(m2); hence mB contains i(A), 1B and B.
This contradiction implies that ψ(u0) is a unit in B, as required. �

Theorem 3.10. Let I 6= 0 be an ideal in A such that V (I) contains more than
one element. Then the functor Fr,I is representable by an affine scheme Mr,I =
SpecAr,I of finite type over A.

Proof. (i) We claim that in each isomorphism class of elliptic modules ϕ over a ring
B over A, of rank r, with structure ψ of level I, there is precisely one pair (ϕ,ψ)
with standard ϕ and ψ with ψ(u0) = 1. Indeed, (ϕ,ψ) and (ϕ′, ψ′) are isomorphic
if and only if there is a unit b in B with ϕ′a = bϕab

−1 and ψ′ = bψ for all a in
A. Hence Fr,I is the functor which associates to B the set of pairs (ϕ,ψ) with
ψ(u0) = 1 in B.

(ii) The ring A is finitely generated over Fq. Hence there is an epimorphism
e : T = Fq[t1, . . . , ts] → A, with kernel K. Let A1 be the free ring A[bij , bi, c(u)];
here 1 ≤ i ≤ s, 0 ≤ j ≤ rvq(e(ti)), u ranges over (I−1/A)r. We will show that
there is an ideal K1 in A1 such that Fr,I(B) = Hom(A1/K1, B). To define K1,

put ϕti =
∑
j bj(ti)τ

j logp q, where bj(ti) = bij , and extend ϕ to a homomorphism

ϕ : T → A1[τ ], t 7→ ϕt =
∑
i bi(t)τ

i logp q (0 ≤ i ≤ rvq(e(t))). Let K1 be the ideal
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in A1 generated by the relations implied by the following identities. (1) ϕt = 0 for
t in K; (2) bi0 = ti (1 ≤ i ≤ s); (3) bibrvq(e(ti))(ti) = 1 (1 ≤ i ≤ s); (4) c(0) = 0,

c(u0) = 1, c(u+ v) = c(u) + c(v) for all u, v in (I−1/A)r; (5) ϕt(c(u)) = c(e(t)u) for
each t in T and u in (I−1/A)r; (6) the ideal JI = (ϕt(x); t in T with e(t) in I) in
A1[x] (here τ(x) = xp) is equal to (

∏
u(x−c(u))). It is clear that there is a bijection

between the sets Fr,I(B) and Hom(A1/K1, B) for every ring B over A. Hence the
ring Ar,I = A1/K1 represents the functor Fr,I . Since A1 is finitely generated, the
theorem follows. �

Definition 3.6. The elliptic module ϕ : A → Ar,I [τ ] with level structure ψ :
(I−1/A)r → EI(Ar,I) in Fr,I(Ar,I) = Hom(Ar,I , Ar,I), which corresponds to the
identity map Ar,I → Ar,I , is called the universal elliptic module with a structure of

level I. It has the form ϕa =
∑
i bi(a)τ i logp q and ψ(u) = c(u) for a in A and u in

(I−1/A)r, where bi(a) and c(u) denote the image of bi(a) and c(u) in Ar,I = A1/K1.

Lemma 3.11. Let (ϕ,ψ) be the universal elliptic module of rank r with structure
of level I. Then the map ψ : (I−1/A)r → Ar,I is injective.

Proof. We have to show that if u 6= 0 in (I−1/A)r then c(u) 6= 0 in Ar,I . If c(u) = 0
then relation (6) implies that x2 divides ϕa(x) for all a in I. But this is impossible
since the homomorphism b0 : A→ Ar,I is injective, and ϕa(x) = b0(a)x+ terms of
higher degree. �

Lemma 3.12. Let ϕ : A→ B[τ ] be an elliptic module, I ′ ⊃ I 6= 0 ideals in A with
[V (I)] ≥ 2, and ψ : (I−1/A)r → EI(B) an I-level structure. Then the restriction
of ψ to (I ′−1/A)r is an I ′-level structure on the elliptic module ϕ.

Proof. It suffices to prove the lemma when B = Ar,I and (ϕ,ψ) is the universal
elliptic module with an I-level structure. The ideal JI′ divides the ideal JI , and
(by (6)) JI is generated by the separable polynomial

∏
u(x−ψ(u)), u in (I−1/A)r.

The relation (5) in (ii) of the proof of Theorem ?? implies that for each u in
(I ′−1/A)r we have that ϕa(ψ(u)) = 0, for every a in I ′; moreover, for each u
in (I−1/A)r − (I ′−1/A)r there is a in I ′ − I such that ϕa(ψ(u)) 6= 0. Hence
JI′ = (

∏
u(x− ψ(u));u ∈ (I ′−1/A)r), and the lemma follows. �

Definition 3.7. A homomorphism B → B′ of rings is called separable if every
element of B′ is separable over the image of B.

Proposition 3.13. Let I ′ ⊃ I 6= 0 be two ideals in A with [V (I ′)] ≥ 2. Then the
natural map Ar,I′ → Ar,I is separable, finite and flat.

Proof. The ring Ar,I is generated over Ar,I′ by the elements c(u), where u ranges
over (I−1/A)r − (I ′−1/A)r. These c(u) satisfy the relations (4), (5), (6) in (ii) of
the proof of Theorem ??. In particular, for any a 6= 0 in I, (5) implies that

0 = c(au) = ϕa(c(u)) =

rvq(a)∑
i=0

bi(a)c(u)q
i

.

Since b0 : A→ Ar,I is injective, the map Ar,I′ → Ar,I is separable. The relation (3)
implies that the leading coefficient brvq(a)(a) is invertible in A1. As in the proof of
Corollary ??, this implies that Ar,I is a flat Ar,I′ -module of finite rank. The rank
is bounded by the product of the number of generators c(u) (which is bounded by
|A/I|r − |A/I ′|r), and |a|r, for any a 6= 0 in I. The proposition follows. �
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Definition 3.8. (i) Put Ar = lim−→Ar,I ; the direct limit is defined by means of the

transition maps Ar,I′ → Ar,I for I ′ ⊃ I 6= 0. (ii) Put Mr = SpecAr = lim←−Mr,I ,

where Mr,I = SpecAr,I . (iii) Let Fr be the functor lim←−Fr,I , which associates to

the ring B over A the set lim←−Fr,I(B) = lim←−Hom(Ar,I , B). The transition maps

Fr,I(B)→ Fr,I′(B) are given by mapping (ϕ,ψ) to (ϕ,ψ′), where ψ′ is the restric-
tion of ψ : (I−1/A)r → Eϕ(B) to (I ′−1/A)r.

Corollary 3.14. (i) The functor Fr is represented by the ring Ar (and scheme
Mr). (ii) The functor Fr associates to the scheme S = SpecB over A the set of
isomorphism classes of elliptic modules ϕ over B of rank r with a structure of all
levels, namely an A-module homomorphism ψ : (F/A)r → E(S) = B such that for
any ideal I 6= 0 in A the restriction ψ : (I−1/A)r → EI(S) of ψ to (I−1/A)r is a
structure of level I.

Proof. This follows from the definitions. �

Let A denote the ring of adèles of F . It consists of all sequences (xw;w ∈ |C|)
with xw in Fw for all closed points w of C, and xw in Aw for almost all w. Here |C| is
the set of closed points of C. Addition and multiplication are componentwise. The
topology on A is defined by making a fundamental system of (open) neighborhoods
of the identity consist of

∏
w∈V Nw ×

∏
w/∈V Aw, where V ranges over all finite

subsets of the set |C|, and Nw is a (open) neighborhood of zero in Fw. Then A is
a locally compact ring.

For any r ≥ 1, let GL(r, Fw) denote the topological group of r × r invertible
matrices with entries in Fw, and GL(r,Aw) the group of r× r matrices with entries
in Aw and determinant in A×w . By GL(r,A) denote the group of sequences (gw in
GL(r, Fw); w in |C|), with gw in GL(r,Aw) for all but finitely many points w.

The topology on GL(r,A) is defined by a system
∏
w∈V Nw ×

∏
w/∈V GL(r,Aw)

of neighborhoods of the identity, where V is finite and Nw is a neighborhood of 1
in GL(r, Fw). Then GL(r,A) is a locally compact group. The group GL(1,A) is
called the group of idèles; it is denoted by A×, being the multiplicative group of
A. The ring of finite adèles Af and the groups GL(r,Af ) are defined analogously
on replacing the set C by the set SpecA = C − {∞}, namely on omitting the
component at the place ∞. The set F is dense in Af , F× is discrete in A×f , and

F×\A×f is compact.

Let Â denote the compact open subring
∏
w Aw (w in SpecA) of Af . Since

(F/A)r =
∏
w(Fw/Aw)r, the group GL(r, Â) =

∏
w GL(r,Aw) is equal to the group

AutA(F/A)r of automorphisms of (F/A)r. The matrix g in GL(r, Â) is the au-

tomorphism of multiplication by g. Hence GL(r, Â) acts on (F/A)r, and on the
functor Fr, by mapping (ϕ,ψ) to (ϕ,ψ◦g).

Proposition 3.15. There is an action of GL(r,Af ) on Fr extending the action of

GL(r, Â).

Proof. (i) Let M(r) denote the algebra of r × r matrices. The semigroup G1 =

GL(r,Af ) ∩M(r, Â) has the property that GL(r,Af ) = F×G1. We shall define an
action of G1 on Fr which is trivial on F×∩G1 = A−{0}, thereby defining an action
of GL(r,Af ) on Fr which is trivial on F×. Thus, for each g in G1 and a ring B over
A, we have to construct a map ρ(g) : Fr(B)→ Fr(B), such that ρ(gg′) = ρ(g)ρ(g′)
for all g, g′ in G1. Let ϕ : A → B[τ ] be an elliptic module of rank r over B, with
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a level structure ψ : (F/A)r → E(S) = B. We shall now construct a new pair
(ρ(g))(ϕ,ψ) = (ϕ′ = gϕ, ψ′ = gψ). It suffices to deal—as we now do—with the
case where B = Ar, and (ϕ,ψ) is the universal elliptic module with a structure of
all levels.

(ii) Multiplication by g defines an epimorphism g : (F/A)r → (F/A)r with
a finite kernel H. Consider the polynomial PH(x) =

∏
h∈H(x − ψ(h)) in B[x].

Let H ′ denote the kernel of the restriction ψ|H of ψ to H. Put H ′′ = H/H ′.

Then ψ|H factorizes through ψ′′ : H ′′ → B, and PH(x) =
∏
h∈H′′(x − ψ′′(h))|H

′|.
The values ψ′′(h) are distinct. Since aH ⊂ H for each a in A, we have that
PH(ϕa(b)) = 0 for any b in B with PH(b) = 0. Hence PH(x) divides PH(ϕa(x)) =∏
h∈H′′(ϕa(x)− ψ′′(h))|H

′|.

Lemma 3.16. Let P (x), Φ(x) be additive polynomials in B[x] such that (1) P (x)
divides Φ(x); (2) P (x) is separable; (3) Φ(x) splits as a product of linear factors
over B. Then there is an additive polynomial Q(x) in B[x] with Φ(x) = Q(P (x)).

Proof. This is the same as the proof of Lemma ??. �

Applying Lemma ?? with P (x) = PH(x) and Φ(x) = PH(ϕa(x)), we con-
clude that there exists an additive polynomial ϕ′a(x) in B[x] with ϕ′a(PH(x)) =
PH(ϕa(x)). It is clear that ϕ′ : A → B[τ ], a 7→ ϕ′a, is an elliptic module of rank r
over B. Put E′ = Eϕ′ , and gϕ = ϕ′. Then there is a map ψ′ : (F/A)r → E′(S) = B
which makes commutative the diagram

0 → H → (F/A)r
g
−→ (F/A)r → 0

ψ ↓ o ψ ↓ ↓ ψ′

0 → ψ(H) → E(B) −→
PH

E′(B) → 0.

Since ψ is injective, so is ψ′; hence ψ′ is a level structure. Put gψ for ψ′. Since
(ϕ,ψ) is the universal elliptic module, for each ring B over A we can associate to
any g in G1 the map ρ(g) : Fr(B)→ Fr(B) which takes the elliptic module ϕ with
level structure ψ to the pair (ϕ′ = gϕ, ψ′ = gψ). Since ρ(gg′) = ρ(g)ρ(g′) for all g,
g′ in G1, this defines an action of G1 on the functor Fr.
(iii) If g = a is a scalar matrix in A−{0}, then the definition of the level structure
ψ implies that (PH(x)) = (ϕa(x)) in B[x]. Hence there is b in B× with ϕa(x) =
bPH(x). Since ϕaϕa′ = ϕa′ϕa for any a′ in A, we have PHϕa = b−1ϕabPH for every
a in A, hence ϕ′a = b−1ϕab, and the elliptic module ϕ′ is isomorphic to ϕ. Hence
the elements of A− {0} act trivially on the functor Fr, and we obtain an action of
GL(r,Af )/F× on Fr; the proposition follows. �

Remark 3.4. The action of GL(r,Af )/F× on Fr induces an action of this group on
the ring Ar and the scheme Mr = SpecAr.

Let I 6= 0 be an ideal in A.

Definition 3.9. (i) The congruence subgroup UI of GL(r, Â) is the group of all g

in GL(r, Â) with g−1 in M(r, IÂ). (ii) If U is a group which acts on a ring B then
we write BU for the ring of b in B fixed by U . (iii) If U is a group which acts on
an affine scheme M then we write U\M for the quotient of M by the action of U .

Remark 3.5. (i) UI is an open compact subgroup of GL(r, Â). (ii) UI\Mr is an
affine scheme which is equal to SpecAUIr .
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Definition 3.10. A domain B is called normal if it is integrally closed in its fraction
field, equivalently, if its localization BP at each of its prime ideals P is an integrally
closed domain, i.e., normal. A ring B is normal if BP is a normal domain for every
prime ideal P of B. A Noetherian normal ring is a finite direct product of normal
domains.

Lemma 3.17. Let B → C be a finite separable homomorphism of rings over Fp.
Suppose the ring B is normal, and (∗) Hom(C,K)→ Hom(B,K) is an isomorphism
for every algebraically closed field K. Then B → C is an isomorphism.

Proof. Without loss of generality we may assume that B and C are domains. Let
B′, C ′ denote the fraction fields of B, C. Since B′ → C ′ is separable, (∗) implies
that B′ → C ′ is an isomorphism. In particular, B → C is injective. Since B → C
is finite, C is integral over B. Hence C lies in the integral closure of B in B′. Since
B is normal we have that B = C, as required. �

Remark 3.6. In the next proposition we use the fact that for I 6= 0 with [V (I)] ≥ 2,
the ring Ar,I is normal. The proof, which involves techniques independent of section
4 and Chapters II-IV, is given in [?], sections 1, 4 and 5C).

Proposition 3.18. The ring Ar,I is equal to AUIr for I 6= 0 with [V (I)] ≥ 2.
Equivalently, the scheme UI\Mr = SpecAUIr is equal to Mr,I .

Proof. We have to show that Ar,I = AUIr,J for any 0 6= J ⊂ I in A. In view of
Lemma ?? it suffices to show that for any algebraically closed field K the natural
map Hom(AUIr,J ,K)→ Hom(Ar,I ,K) is an isomorphism. This map takes the elliptic

module ϕ : A→ K[τ ] with a structure ψ of level J , to the pair (ϕ,ψ′), where ψ′ is
the restriction of ψ to (I−1/A)r. To construct an inverse to this map we need to
extend a structure ψ′ of level I to a structure ψ of level J . This can be done since
K is algebraically closed, and the proposition follows. �

For any v in SpecA we make the following

Definition 3.11. (1) Let Mr,v = Mr ×SpecA Spec(A/v) be the fiber of Mr at v.
(2) Let Mr,v,I = Mr,I ×SpecA Spec(A/v) = (UI\Mr)×SpecA Spec(A/v) = UI\Mr,v

be the fiber of Mr,I at v.

Remark 3.7. The affine scheme Mr,v represents the functor Fr,v, which is the re-
striction of the functor Fr to the category of rings B over A/v, namely rings B
over A with characteristic v. In particular, the set Fr,v(B) consists of pairs (ϕ,ψ),
where ϕ is an elliptic module of characteristic v.
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4. Covering schemes

The group GL(r,Af ) acts (by Proposition ??) on the moduli scheme Mr =
SpecAr = lim←−Mr,I constructed in Theorem ??. The central group F× acts trivially.

In this section we construct a covering scheme M̃r of Mr for which the action of
GL(r,Af ) extends nontrivially to an action of (GL(r,Af ) × D×∞)/F×, where D∞
is a division algebra of rank r over F∞.

As in section 1 we have F , ∞, A, and we let F∞ be the completion of F at
∞, A∞ the ring of integers in F∞, m∞ the maximal ideal of A∞, πππ = πππ∞ a local
uniformizer, q = q∞ the cardinality of A∞/m∞, |.| = |.|∞ the absolute value on
F∞ which is normalized by |πππ| = q−1 (equivalently |a| = |A/aA| for a 6= 0 in A).
Put vp(a) = logp |a| for a ∈ F×∞. Then vp(πππ) = − logp q. Note that A∩A∞ consists
of the constant functions on C (thus A ∩ A∞ = Fq if F = Fq(C) as in section 1).
Moreover, F∞ is Fq((πππ)). As usual, given a ring B of characteristic p we denote by
B[τ ] the ring generated by τ over B subject to the relations τb = bpτ for all b in B.

A reduced ring B is called perfect if for each b in B there exists a (necessarily
unique) x in B with xp = b. Equivalently, the Frobenius homomorphism from B to
B, by x 7→ xp, is an isomorphism. Let B be a perfect ring. Then for each b in B
there exists a unique bp

−1

in B.

Definition 4.1. (1) Let B((τ−1)) be the ring of formal Laurent series
∑−∞
i=N biτ

i

with coefficients bi in B, N in Z, and multiplication(∑
i

b′iτ
i

)∑
j

bjτ
j

 =
∑
i,j

b′ib
pi

j τ
i+j .

(2) Let B[[τ−1]] be the subring of formal Taylor series in τ−1 (thus N ≤ 0).
(3) The ring B((τ−1)) is a topological ring, where a system of open neighborhoods
of 0 is given by τ−jB[[τ−1]] (j ≥ 0).

Let ϕ : A → B[τ ] be a standard elliptic module of rank r over a perfect ring B
over A.

Lemma 4.1. The elliptic module ϕ extends uniquely to a continuous ring homo-
morphism ϕ : F∞ → B((τ−1)).

Proof. The homomorphism ϕ extends uniquely to a homomorphism ϕ : F →
B((τ−1)) such that for each a in F we have ϕa =

∑−∞
i=N bi(a)τ i, where N = rvp(a)

and bN (a) is invertible. In particular, for each t ≥ 0 the image of F ∩mt
∞ lies in

τ−tB[[τ−1]] (when t = 0, we put mt
∞ = m0

∞ for A∞). Hence ϕ extends to F∞ by
continuity, and the lemma follows. �

Corollary 4.2. The ring B contains a copy of Fq.

Proof. We have F∞ = Fq((πππ)), and Fq = A∞/m∞ embeds in B[[τ ′]]/τ ′B[[τ ′]] = B,

where τ ′ = τ rvp(πππ). �

As usual, we denote the algebraic closure of Fp by Fp.

Definition 4.2. Let ϕ′ : F∞ → Fp((τ−1)) be the ring homomorphism over Fq
defined by ϕ′πππ = τ rvp(πππ).
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Remark 4.1. (1) Recall that vp(πππ) = − logp q. (2) Since F∞ = Fq((πππ)), ϕ′ is
uniquely determined by its value at πππ. (3) For any a 6= 0 in F∞ the leading

coefficient b′N (a) of ϕ′a =
∑−∞
i=N b

′
i(a)τ i has index N = rvp(a). In fact, all homo-

morphisms ϕ′′ : F∞ → Fp((τ−1)) such that the dominant term in ϕ′′a has degree

|a|r = prvp(a) for all a in A, are conjugate by an inner automorphism of Fp((τ−1));
ϕ′ can be chosen to be any of these ϕ′′.

Lemma 4.3. The centralizer D∞ of the image Fq((τ rvp(πππ))) of ϕ′ in Fp((τ−1)) is
a division algebra of rank r central over F∞.

Proof. The centralizer D∞ is equal to Fqr ((τvp(πππ))). It is a division algebra, whose

center is the field Fq((τ rvp(πππ))) = Fq((ϕ′πππ)) ' F∞, as asserted. �

Remark 4.2. The invariant of the division algebra D∞ over F∞ is −1/r.

Let B be a perfect A-algebra, and ϕ : F∞ → B((τ−1)) the homomorphism of
Lemma 4.1.

Definition 4.3. Let Gϕ be the functor from the category of perfect B-algebras C to
the category of sets, which associates to C the set of pairs (λ, u). Here λ : Fqr → C
is a homomorphism, which defines a homomorphism λ∗ : Fqr ((τ−1)) → C((τ−1))
by its action on the coefficients, and u is an element in C[[τ−1]] with an invertible
constant term, such that uϕa = λ∗(ϕ

′
a)u for all a in F∞.

Let Fr denote the Frobenius endomorphism x 7→ xp of Fp, in particular of Fqr .
Let det : D×∞ → F×∞ denote the reduced norm on D×∞, and put ṽp(g) = logp |det g|
for g in D×∞. Then ṽp(g) = vp(det g), and ṽp(τ

vp(πππ)) = ṽp(πππ) = vp(πππ
r) = rvp(πππ).

Lemma 4.4. The multiplicative group D×∞ of the division algebra D∞ acts on the
functor Gϕ as follows: g in D×∞ maps (λ, u) in Gϕ(C) to

g(λ, u) = (λ ◦ Frn, τnλ∗(g)u),

where n = −ṽp(g). The element τ rvp(πππ) of D×∞ acts trivially.

Proof. We have to check that g(λ, u) lies in Gϕ(C). Since

τnϕ′a = Frn ·ϕ′aτn

and g lies in the centralizer D∞ of ϕ′(F∞), we have

(λ ◦ Frn)∗ϕ
′
a[τnλ∗(g)u] = λ∗(τ

nϕ′a)λ∗(g)u = τnλ∗(g)λ∗(ϕ
′
a)u = [τnλ∗(g)u]ϕa

for all a in F∞, as required. It is clear that D×∞ acts on Gϕ, namely (gh)(λ, u) =

g(h(λ, u)). Since τ rvp(πππ) acts trivially on Fqr , it acts trivially on Gϕ. �

Remark 4.3. (1) Lemma ?? establishes an action of D×∞/〈πππ〉 on Gϕ.

(2) The element Φ = τ logp q of D×∞ satisfies ṽp(Φ) = logp q, and it acts by Φ(λ, u) =

(λ ·Fr− logp q, u). Let D0 be the kernel of the map ṽp : D×∞ → Z. Then g in D0 acts
on Gϕ(C) by g(λ, u) = (λ, λ∗(g)u). The group D×∞ is generated by Φ over D0.

Let ψ : A→ B[τ ] be another elliptic module of rank r over B. Let h =
∑m
i=0 biτ

i

in B[τ ] be an isogeny from ϕ to ψ of degree m; thus hϕa = ψah for all a in A, and
the leading coefficient bm of h is invertible. Hence h is invertible in B((τ−1)).

Lemma 4.5. The morphism h∗ : Gϕ → Gψ which, for each perfect B-algebra C,
maps the element (λ, u) in Gϕ(C) to h∗(λ, u) = (λ◦Frm, τmuh−1) in Gψ(C), is an
isomorphism of functors. Moreover, h∗ commutes with the action of D×∞.



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 33

Proof. To verify the last claim, note that τmλ∗(g) = (λ ◦ Frm)∗(g)τm for all g in
D×∞. �

Definition 4.4. Let j be a positive integer. The congruence subgroup Dj of D×∞
consists of all elements of the form 1 +

∑
k≥j bkτ

−kvp(πππ) in D∞ = Fqr ((τvp(πππ))).

Remark 4.4. Each congruence subgroup is normal, compact and open in D×∞. It
has a finite index in D×∞/〈πππ〉.

Theorem 4.6. (i) The functor Gϕ is representable by a (perfect) ring B̃ over B.

(ii) The stabilizer in D×∞ of any element of B̃ contains a congruence subgroup.

(iii) Let U∞ be a congruence subgroup, and B̃U∞ the subring of B̃ fixed by the action

of U∞. Then Spec B̃U∞ is a finite flat étale Galois covering of SpecB with Galois
group D×∞/U∞〈πππ〉.

Proof. (i) Let B̃ be the quotient of the free ring B[y, ci(i ≥ −1)] by the ideal
generated by the following relations. The first relation is (1) c0c−1 = 1. To state
the second, let P (x) be an irreducible polynomial over Fq whose splitting field is
Fqr . The second relation is: (2) P (y) = 0. For the third relation, note that we have
a map λ : Fqr → B[y], sending a generator of Fqr over Fq to y. Put u =

∑∞
i=0 ciτ

−i.
The remaining relations are obtained on equating, for each i in Z, the coefficients
of τ i in each of the identities (3) uϕa = λ∗(ϕ

′
a)u, for each a in F∞. It is clear that

B̃ represents Gϕ, once we show the following

Lemma 4.7. The ring B̃ is a perfect ring.

Proof. It suffices to show that B̃ is reduced and that each of the generators ci is

a pth power in B̃. We shall use the identity uϕa = λ∗(ϕ
′
a)u, with a = πππ−1. Then

ϕ′πππ−1 = τ r logp q, and ϕπππ =
∑
j≥0 bj(πππ)τ−j−r logp q. Equating the coefficients of τ−i

in ∑
i≥0

ciτ
−i = u = τ r logp quϕπππ = τ r logp q

∑
i≥0

ciτ
−i
∑
j≥0

bj(πππ)τ−j−r logp q

=
∑
i,j≥0

cq
r

i bj(πππ)q
r/piτ−(i+j),

we conclude that each ci is a pth power in B̃, since

ci =

( ∑
j+k=i

ckbj(πππ)p
−i

)
qr .

But these are the only relations among the ci. Hence B̃ is reduced and the lemma
follows. �

(ii) The group D×∞ acts on the functor Gϕ, hence on the perfect ring B̃. The
normal subgroup D0 acts trivially on y. If j > 0 then the element 1 + τ−j of D×∞
has ṽp(1 + τ−j) = 0. It acts by

u =
∑
i≥0

ciτ
−i 7→ (1 + τ−j)u =

∑
0≤i<j

ciτ
−i +

∑
i≥j

(ci + cp
−i

i−j)τ
−i.

Namely 1 + τ−j maps ci to ci if 0 ≤ i < j, and to ci + cp
−j

i−j if i ≥ j. Similarly we
have that each element of the congruence subgroup Dj acts trivially on ci for i in
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0 ≤ i < j. Now every element b of B̃ is a polynomial in only finitely many ci’s, say
0 ≤ i < j, over B[y], and it is stabilized by Dj .

(iii) Denote by Bj the image of B[y, ci(i < j)] in B̃, where j ≥ 0. If U∞ = Dj

then B̃U∞ is equal to Bj . The coefficient b0(πππ) of ϕπππ, defined in the proof of Lemma
??, is a unit in B. Hence the last displayed formula (for ci) in the proof of Lemma
?? implies that Bj+1 is a free Bj-module (j ≥ 0), and B0 is a free B[y]/(P (y))-
module, of finite rank (bounded by qr in all cases). Consequently Bj is a finite flat
B-module.

To show that Bj is étale over B we shall now show that Bi is étale over Bi−1 for
all i ≥ 1 (and B0 over B[y]/(P (y))). Thus let K be a separably closed field over
Bi−1. We have a homomorphism h : Bi−1 → K. Applying h to the last displayed
formula (for ci) in the proof of Lemma ?? we obtain a separable equation for ci
over K. Hence Bi⊗Bi−1

K is a direct product of copies of K, and Bi is indeed étale

over Bi−1, as required. Since D×∞/U∞〈πππ〉 acts on Bj = B̃U∞ without fixed points,

B̃U∞ is a finite étale Galois covering of B, with Galois group D×∞/U∞〈πππ〉, and the
theorem follows. �

To formulate the following proposition we recall

Definition 4.5. A ring homomorphism D → D is called radical if for each alge-
braically closed field K the homomorphism Hom(D,K)→ Hom(D,K) is injective.
Equivalently, SpecD→ SpecD is universally injective.

Remark 4.5. See [?], I. (3.7.2) and (3.7.1) for equivalent definitions.

Proposition 4.8. Let D → D be a flat radical homomorphism such that SpecD→
SpecD is surjective. Then the categories of étale covers of D and D are equivalent.

Proof. See [?], Exp. IX, Cor. 4.11, p. 241. �

We can now construct the covering scheme M̃r. Recall that Mr = SpecB, where
B = Ar is a Noetherian ring over A. Denote by (ϕ,ψ) the universal elliptic module

of rank r with its level structure. Let B = lim−→nB
p−n be the perfect closure of B.

Theorem ?? constructs a B-algebra B̃ with an action of D×∞/〈πππ〉. For any congru-

ence subgroup U∞ in D×∞, the B-subalgebra B̃U∞ of B̃ stabilized by U∞ is étale
over B with Galois group D×∞/U∞〈πππ〉. It is easy to check that the homomorphism
B → B is radical, and flat. The morphism SpecB → SpecB is onto since the

radical m = lim−→nm
p−n of the prime ideal m in SpecB is a prime ideal of B with

m ∩B = m. Hence we can make the

Definition 4.6. (i) Let B̃U∞ be the étale B-algebra which corresponds to B̃U∞
by Proposition ?? and the homomorphism B → B. (ii) Put M̃r,U∞ = Spec B̃U∞ ,

B̃ = lim−→B̃
U∞ and M̃r = Spec B̃ = lim←−M̃r,U∞ .

Remark 4.6. (1) The ring B̃U∞ is an étale cover of B with Galois group D×∞/U∞〈πππ〉.
(2) We have M̃r,U∞ = U∞\M̃r. In sections 5 and 9 we need to use only M̃r,U∞ ,

and not M̃r.

The group F× embeds diagonally in (U∞\D×∞)×GL(r,Af ).

Proposition 4.9. The actions of Lemma ?? and Definition ?? define an action

of ((U∞\D×∞) ×GL(r,Af ))/F× on U∞\M̃r for each normal open subgroup U∞ of

D×∞ of finite index; equivalently, of (D×∞ ×GL(r,Af )) /F× on M̃r.
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Proof. (i) The action of D×∞ on the functor Gϕ in Lemma ?? defines an action of

D×∞ on the B-algebra B̃ and B-algebra B̃, hence an action on M̃r. On the other

hand, GL(r,Af )∩M(r, Â) acts on the functor Fr which is represented by the scheme

Mr = SpecB. As in Proposition ??, g in GL(r,Af ) ∩M(r, Â) defines an isogeny
from the universal elliptic module ϕ over B, to gϕ. This defines (by Theorem ??)
an action g∗ on the functor Gϕ, which commutes—by Lemma ??—with the action

of D×∞ on Mr. In particular g lifts to an endomorphism of M̃r.
(ii) For each a 6= 0 in A, the elements (1) a of GL(r,Af ), and (2) a−1 of

D×∞, acts on M̃r in the same way. Indeed, (1) if s = ϕa, then m = rvp(a) and

s∗(λ, u) = (λ ◦ Frrvp(a), τ rvp(a)uϕ−1
a ); (2) via A − {0} ↪→ F× ↪→ F×∞ ↪→ D×∞,

a maps to ϕ′a. Since |detϕ′a| = |a|r∞, we have n = −rvp(a), and a(λ, u) =

(λ ◦ Fr−rvp(a), τ−rvp(a)λ∗(ϕ
′
a)u). Since λ∗(ϕ

′
a)uϕ−1

a = u, the composition of these
two maps is the identity.

(iii) We obtained an action of [GL(r,Af ) ∩M(r, Â)] × D×∞, such that for each
a 6= 0 in A, the diagonal element (a, a) acts trivially. Hence we obtain an action of
GL(r,Af )×D×∞, where F× acts trivially, as required. �
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Part 2. Hecke correspondences

In this part and in parts 3 and 4 we study some relations between two natural
actions—of a Galois group and of a Hecke algebra—on `-adic cohomology groups
with compact support and coefficients in a Q`-sheaf L(ρ), attached to the geometric
generic fiber Mr,I ⊗A F of the moduli scheme Mr,I constructed in part 1, section
3. We present two approaches. That of part 2, section 5.2, is based on congruence
relations and Hecke correspondences. That of part 4 is an application of the trace
formula. The sections 6-8 of part 3 develop the tools needed for the comparison
in sections 9-10 of part 4 of the Grothendieck-Lefschetz fixed point formula with
the Selberg trace formula. We begin with a summary (in subsection 5.1) of those
properties of the `-adic cohomology groups with compact support which we need
in order to state—and use in the proof of—our main theorems in sections 5, 9, 10.
The main application of the theory of congruence relations is given in Theorem
??, which asserts that if πf × σ is an irreducible G(Af ) × Gal(F/F )-subquotient

of Hi
c(Mr,I ×A F ,L(ρ)), then for almost all v each eigenvalue of the geometric

Frobenius endomorphism σ(Frv ×1) at v is the product by q
(r−1)/2
v of a Hecke

eigenvalue of the component πv of π at v. Consequently σ(Frv ×1) has at most r
distinct eigenvalues.

5. Deligne’s conjecture and congruence relations

5.1. `-adic cohomology. In this subsection (5.1) we summarize some properties
of the étale cohomology groups with compact support needed for our study of the
action of the Hecke operators and the Galois group on them. This is a rather
selective summary, and not a complete exposition. For an introductory textbook
to the subject see [?]. The shorter exposition of [?]; Arcata, Rapport; is very useful,
and so are the fundamental results of [?], Exp. XVII, XVIII; and [?]; Exp. III.
5.1.1 Throughout this section, by a scheme we mean a separated scheme of finite
type over a scheme S. Basic definitions now follow. An étale covering of a scheme U
is a finite set gi : Zi → U of étale morphisms with U = ∪igi(Zi). The (small) étale
site Xét of X is the category whose objects are all the étale morphisms f : U → X,
and whose morphisms are the étale morphisms U → U ′ over X, together with the
étale topology, which is defined to be the Grothendieck topology (see [?], p. 15), in
which the coverings of U are the étale coverings. A sheaf (resp. of sets) on the site
Xét is a contravariant functor from the category underlying Xét to the category of
abelian groups (resp. sets) which satisfies standard axioms (see [?], p. 49). The
sheaves on Xét make a category (see [?], p. 50).

The simplest example of a sheaf (resp. of sets) on Xét is the constant sheaf
NX associated to a finite abelian group (resp. finite set) N . The constant sheaf
NX assigns to each étale morphism g : Z → X the abelian group (resp. set)
Hom(Z,N) = Nπ0(Z); here π0(Z) is the finite set of connected components of Z.
Denote by HomX(Z,N×X) the group (resp. set) of morphisms Z → N×X whose
composition with the projection N ×X → X on the second factor is the morphism
g : Z → X. Then Hom(Z,N) = HomX(Z,N × X). This suggests the following
definition of a locally constant sheaf.

5.1.2 Let Y → X be a finite étale morphism. Then Z → YX(Z) = HomX(Z, Y )
defines a sheaf YX of sets on the étale site Xét. The sheaf of set YX is a sheaf if
Y is an abelian group scheme. A locally constant sheaf on Xét is a sheaf which is
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locally constant, namely it is of the form YX . A sheaf L on Xét is locally constant
if and only if (see [?], p. 155) there is an étale covering Zi → X of X such that the
restriction L|Zi of L to the étale site Zi,ét of Zi is constant for all i. If Y → X and
Y ′ → X are finite and étale then we have HomX(Y, Y ′) = Hom(YX , Y

′
X), the later

Hom is taken in the category of sheaves on Xét.

Remark 5.1. Our definition of “locally constant sheaf” is the same as that of a
“locally constant sheaf with finite stalks” in [?], p. 155.

Example 5.1. Let K be a field of characteristic p > 0. Let n be a positive integer
with (p, n) = 1. Let X = Y be the affine group scheme Gm,K = SpecK[x, x−1].
Then the morphism Y → X defined by x 7→ xn is étale, since (n, p) = 1, and we
obtain a locally constant sheaf YX on Xét. Let N be the group of nth roots of unity
in the multiplicative group K× of K. We claim that the restriction of YX to the
étale covering {Z → X} = {Y → X} of X is the constant sheaf defined by N .
Indeed,

Z ×X Y = Y ×X Y = {(z, y); zn = yn} = {(z, ζ); z ∈ Z, ζ ∈ N} = Z ×N
defines a constant sheaf on Zét.

5.1.3 Let X be a scheme, S(X) the category of sheaves on Xét, and f : X ′ → X
a morphism of schemes. For any sheaf L in S(X ′) define the direct image f∗L of
L by (f∗L)(Z) = L(Z ×X X ′) for any Z in Xét. Then f∗L is a sheaf in S(X) (see
[?], p. 59). Moreover, f∗ : S(X ′) → S(X) is a functor which is exact if f is a
finite morphism, for example, a closed immersion (see [?], p. 72). If L is the locally
constant sheaf YX′ defined by the finite étale morphism Y → X ′, and f : X ′ → X
is finite étale, then the direct image f∗YX′ is locally constant, defined by the finite
étale morphism Y → X ′ → X. Indeed,

(f∗YX′)(Z) = HomX′(Z ×X X ′, Y ) = HomX(Z, Y ) = YX(Z).

The direct image functor f∗ : S(X ′)→ S(X) has a left adjoint functor (see [?], p.
68) which is denoted by f∗ : S(X)→ S(X ′) and called the inverse image functor.
Thus f∗ is the unique functor which satisfies

Hom(f∗L,L′) = Hom(L, f∗L
′) (L ∈ S(X), L′ ∈ S(X ′)).

If YX is a locally constant sheaf on X, then its inverse image f∗YX is the locally
constant sheaf Y ′X′ on X ′ defined by the finite étale morphism Y ′ = Y ×XX ′ → X ′;
indeed, HomX′(Z

′, Y ′) = HomX(Z ′, Y ). If f is finite and étale then the inverse
image f∗YX is the restriction of the sheaf YX from the étale site Xét to X ′ét. Hence
for all L in S(X) we define the restriction L|X ′ of L to X ′ to be f∗L.

The direct image of a locally constant sheaf is not necessarily locally constant
when f is not finite étale. A sheaf L on Xét is called constructible (see [?], p. 161)
if every irreducible Zariski closed subscheme Z of X contains a nonempty open
subscheme U such that the restriction L|U of L to the étale site of U is locally
constant. Equivalently L is called constructible if X is the union of locally closed
subschemes Ui such that each L|Ui is locally constant. If f is a proper (in particular
a finite) morphism, and L′ is a constructible (in particular locally constant) sheaf
on X ′, then the sheaf f∗L

′ is constructible (see [?], p. 223).

5.1.4 Fix a prime ` 6= p. A Z`-sheaf L on X is defined to be a projective system
of constructible sheaves Ln of Z/`nZ-modules such that the transition morphisms
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Ln → Ln−1 factorize via the isomorphism

Ln ⊗Z/`nZ Z/`n−1Z ∼−→ Ln−1 for all n;

see [?], p. 163. The Z`-sheaf L is called smooth if the Ln are locally constant.
We also introduce the category of (smooth) Q`-sheaves to be the category whose
objects are the (smooth) Z`-sheaves, and whose morphisms are given by

Hom(L⊗Q`,L′ ⊗Q`) = Hom(L,L′)⊗Q`.

Here L⊗Q` denotes the Z`-sheaf L viewed as a Q`-sheaf. If no confusion is likely
to occur we write “Q`-sheaf L” for L⊗Q`. The fiber of L⊗Q` at a geometric point
x of X is defined to be

(L⊗Q`)x = Lx ⊗Z` Q`.

Example 5.2. The scheme Yn = Gm,K with the morphism pn : Yn → X = Gm,K
given by pn(x) = x`

n

defines a locally constant sheaf Ln which is locally (in the
étale topology) isomorphic to Z/`nZ (since Yn×XYn = Yn×Z/`nZ). The transition
morphisms ` : Yn → Yn−1, x 7→ x`, define a smooth sheaf L.

In this work we shall be interested mainly in the following fundamental

Example 5.3. Let X be a scheme, X̃ a finite étale Galois covering of X with Galois

group π1 = π1(X̃/X), and ρ : π1 → AutQt` an irreducible (finite dimensional)
representation. Since π1 is finite, in particular compact, ρ factorizes through ρ′ :

π1 → AutZt`. Then π1 acts on X̃×(Z/`nZ)t by g(x̃, v) = (gx̃, ρ′(g)v). The quotient
Yn has the property that the natural projection pn : Yn → X is finite and étale.
Locally, in the étale topology, Yn is a trivial bundle with fiber (Z/`nZ)t. The
projective system L(ρ), of locally constant sheaves Ln = Yn,X of Z/`nZ-modules
defined by the morphisms pn : Yn → X, is a smooth Z`-sheaf.

Suppose that G is a topological group with the property that the direct product

G × π1 acts on X̃. Then G acts on X, and we assume (in our example) that
G acts on X without fixed points. Fix n, put Y for Yn and L for the locally
constant sheaf determined by Y . Let U be an open subgroup of G, put XU for
U\X, and LU for the locally constant sheaf on (the étale site of) XU defined by

YU = U\Y (= π1\[(U\X̃)× (Z/`nZ)t]). Let g be an element of G. Then there are
morphisms

h : U ∩ g−1Ug\X → U\X (quotient by U),

f : U ∩ gUg−1\X → U\X (quotient by U),

g : U ∩ g−1Ug\Y → U ∩ gUg−1\Y (multiplication by g).

The sheaf LU∩g−1Ug on U ∩ g−1Ug\X determined by U ∩ g−1Ug\Y is isomorphic
to h∗LU , since the morphism

U\Y → (U\X)×(U∩g−1Ug\X) (U ∩ g−1Ug\Y )

is an isomorphism. Similarly we have f∗LU = LU∩gUg−1 . The morphism g defines
a sheaf morphism LU∩g−1Ug → LU∩gUg−1 , hence a sheaf morphism β = β(g) :
h∗LU → f∗LU . Clearly f∗LU can be viewed as a locally constant sheaf on U ∩
g−1Ug\X defined by the morphism

U ∩ gUg−1\Y → (U ∩ gUg−1\X g−1

−−→) U ∩ g−1Ug\X.

We shall return below to the example above. Now we make the following
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Definition 5.1. (a) If L is a constructible sheaf (of finite abelian groups; in par-
ticular a locally constant sheaf YX defined by an abelian group scheme Y which
is finite and étale over X), denote by Hi

c(X,L) the étale cohomology group with
compact support and coefficients in the sheaf L of the scheme X (see [?], p. 227).
When X is a separated scheme of finite type over a separably closed field (this is the
only case used below), these are finite groups, defined for i ≥ 0, with Hi

c(X,L) = 0
for i > 2 dimX (see [?], p. 221). Note that Hi

c(X,L) is defined to be Hi(X, j!L)
for any compactification j : X ↪→ X of X, where j!L is the “extension by zero” of
L to X; it is independent of the choice of compactification.

(b) The `-adic cohomology group Hi
c(X,L) of X with compact support and co-

efficients in the Z`-sheaf L is the projective limit lim←−nH
i
c(X,Ln). It is a Z`-module

of finite rank, which vanishes unless 0 ≤ i ≤ 2 dimX. For a Q`-sheaf L = L0 ⊗Q`
we write Hi

c(X,L) = Hi
c(X,L0) ⊗Z` Q`. The effect of tensoring with the field Q`

is to make Hi
c(X,L) into a vector space, and so erase the torsion in the Z`-module

Hi
c(X,L0).

Remark 5.2. Let Eλ be a finite field extension of Q`, Rλ the ring of integers in Eλ,
and πππ a uniformizer in Rλ. Then we can define an Rλ-sheaf as above on replacing
Z/`nZ by Rλ/πππ

nRλ. An Rλ-sheaf is equivalent to a Z`-sheaf L together with a
homomorphism Rλ → EndL. Each λ-adic cohomology group is an Rλ-module of
finite rank; it is constructed as a Z`-module on which Rλ acts (see [?], p. 85).
Similarly we have Eλ-sheaves and also Q`-sheaves, where Q` is an algebraic closure
of Q`.

Let f : X ′ → X be a finite morphism. The inverse image functor f∗ yields, for
each constructible sheaf L on X and Z`-sheaf L on X, the inverse image homomor-
phisms

Hi
cf
∗ : Hi

c(X,L)→ Hi
c(X

′, f∗L)

and

Hi
cf
∗ : Hi

c(X,L)→ Hi
c(X

′, f∗L);

f∗L is the Z`-sheaf obtained as the inverse image of the constructible sheaf L on
X. When f is finite, the direct image functor f∗ is exact (see [?], p. 72; and [?], p.
24), and we have the direct image isomorphisms

Hi
cf∗ : Hi

c(X
′, L′)

∼−→ Hi
c(X, f∗L

′)

and

Hi
cf∗ : Hi

c(X
′,L′) ∼−→ Hi

c(X, f∗L′)
for any constructible sheaf L′ on X ′ and Z`-sheaf L′ on X ′. Here f∗L′ is the Z`-sheaf
obtained as the direct image of the Z`-sheaf L′ on X ′.

5.1.5 If f : X ′ → X is finite and étale then the functor f∗ is right adjoint to f∗,
namely Hom(f∗L

′, L) = Hom(L′, f∗L) for all sheaves L′, L on X ′, X. For a proper
morphism f the functor Rf∗ (= Rf!) has a right adjoint, denoted Rf !, only in the
derived category D(X) (see [?], C, D and [?], p. 310) of the category S(X) of
sheaves on X. However, when f is finite, which is the case of interest for us, the
functor f∗ is exact ([?], p. 72), in particular left exact, hence it has a right adjoint
functor f ! : S(X)→ S(X ′). Thus by definition we have

Hom(f∗L
′, L) = Hom(L′, f !L) (L ∈ S(X), L′ ∈ S(X ′))
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for a finite morphism f . In particular, if L′ = f !L we obtain

Hom(f∗f
!L,L) = Hom(f !L, f !L).

Definition 5.2. (i) Let f, h : X ′ → X be finite morphisms, L a smooth sheaf on
X, and α : h∗L→ f !L a sheaf morphism. Let Hi

c(f, α, h) be the endomorphism of
the Z`-module Hi

c(X,L) defined as the composition of

Hi
c(X,L)

Hich
∗

−−−→ Hi
c(X

′, h∗L)
Hicα−−→ Hi

c(X
′, f !L)

Hicf∗−−−→ Hi
c(X, f∗f

!L)
t−→Hi

c(X,L),

where t : f∗f
!L→ L is the sheaf morphism corresponding to the identity morphism

f !L→ f !L, and Hi
cf∗ is an isomorphism.

(ii) Suppose that f : X ′ → X is a finite flat morphism. Let a : f∗L → f !L denote
the morphism obtained by adjunction from the trace map tr : f∗f

∗L → L of [?];
Exp. XVIII, Thm 2.9 (p. 553).
(iii) In the notations of (i), given a sheaf morphism β : h∗L → f∗L we write
Hi
c(f, β, h) for Hi

c(f, α, h), where α = a ◦ β.

Remark 5.3. If f = h, and a : f∗L→ f !L is an isomorphism, and β : h∗L→ f∗L is
the identity, then Hi

c(f, id, f) is the multiplication by the degree of X ′ over X (cf.
[?], XVIII, p. 554).

5.1.6 Our next aim is to compare the cohomologies of geometric fibers of X and
construct the endomorphisms Hi

c(f, α, h) in a way compatible with this fibration.
We begin by considering a morphism b : X → S of schemes and a Z`-sheaf L on

X. Let j : S0 → S be an open dense subscheme of S. For each i ≥ 0 denote by
Rib!L|S0 the cohomology sheaf Hi( , Rb!L|S0) of the restriction Rb!L|S0 = j∗Rb!L
to S0 of the complex Rb!L of sheaves in the derived category D(X).

Lemma 5.1. For any Z`-sheaf L on X and morphism b : X → S, the sheaf Rib!L
is constructible. Consequently there is an open dense subscheme j : S0 → S such
that the restriction Rib!L|S0 is a smooth sheaf, for all i ≥ 0.

Proof. The first claim is the constructibility theorem of [?], XVII, p. 364; see also
[?]; Th. finitude, Thm 1.9, p. 236. The second follows from the definition of
constructibility. �

Let S be an irreducible scheme. Then any open dense subscheme S0 of S is also
irreducible. Let η : SpecK → S be a geometric generic point of S (geometric means
that K is a separably closed field; generic means that the image of η is dense in S;
we use η rather than the standard η to simplify the notations). Then η factorizes
through S0 → S. Let G be a sheaf on S. Denote by Gη the (geometric generic)
stalk of G at η (see [?], p. 60). Let v : Spec k → S0 be a geometric closed (namely
the image of v is closed in S0) point, and denote by Gv the stalk of G at v. The
fundamental group π1(S0, η) of S0 at η acts on the stalk Gη, and π1(S0, v) acts on
Gv. By the class of an isomorphism i : Gη

∼−→ Gv we mean the set of isomorphisms
i′ : Gη

∼−→ Gv of the form i′ = i ◦ α (α in π1(S0, η)). This is equal to the set of
isomorphisms i′ = β ◦ i (β in π1(S0, v)). With these notations, the specialization
and cospecialization theorems of [?], p. 256/7, assert

Lemma 5.2. Let S be an irreducible scheme, S0 an open dense subscheme, and G a
Z`-sheaf on S whose restriction G|S0 to S0 is smooth. Then Gη is noncanonically
isomorphic to Gv for any geometric closed point v in S0, and the class of the
isomorphism Gη

∼−→Gv is canonical.
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Let b : X → S be a morphism and L a sheaf as in Lemma ??. Let η : SpecK → S
be a geometric generic point and v : Spec k → S0 a geometric closed point in S0

(S0 is defined by Lemma ??). Let Xη = X ×S SpecK be the (geometric generic)
fiber of X at η, and Xv = X ×S Spec k the (geometric special) fiber of X at v. We
conclude

Proposition 5.3. For any Z`-sheaf L on X there is an open dense subscheme S0

of S such that Hi
c(Xη,L|Xη) and Hi

c(Xv,L|Xv) are noncanonically isomorphic for
all i ≥ 0 and any closed geometric point v in S0; the class of this isomorphism is
canonical.

Proof. From the proper base change theorem ([?], XVII, Prop. 5.2.8, p. 358)
it follows that one has the canonical isomorphisms (Rib!L)s = Hi

c(Xs,L|Xs) and
(Rib!L)v = Hi

c(Xv,L|Xv). The proposition now follows from Lemmas ?? and
??. �

5.1.7 Let f, h : X ′ → X be finite morphisms, and b : X → S a morphism where S
is irreducible. Let L be a smooth sheaf on X, and fix a morphism α : h∗L→ f !L.
Proposition ?? asserts that there is an open dense subscheme S0 of S such that
Hi
c(Xη,L) and Hi

c(Xv,L) are isomorphic for all geometric closed points v in S0,
where the class of the isomorphism is canonical. Let t be a geometric point in S0

(in particular v or η as above). Denote by Xt and X ′t the fibers of X and X ′ at t,
by i′t : X ′t → X ′ and it : Xt → X the natural morphisms, and by ft, ht : X ′t → Xt

the fiber morphisms of f, h : X ′ → X.

Definition 5.3. Let Hi
c(ft, α, ht) be the endomorphism of Hi

c(Xt,L|Xt) defined as
the following composition:

Hi
c(Xt,L|Xt)

Hich
∗
t−−−→ Hi

c(X
′
t, h
∗
t (L|Xt))

Hicα−−→ Hi
c(X

′
t, f

!
t(L|Xt))

Hicft∗−−−−→ Hi
c(Xt, ft∗f

!
t(L|Xt))

t−→ Hi
c(Xt,L|Xt).

The homomorphism Hi
cα is obtained from the sheaf morphism α : (h∗L)|X ′t →

(f !L)|X ′t.

The class of the Z`-module isomorphism Hη
∼−→ Hv (where Ht = Hi

c(Xt,L) with
t = η or v) is canonically determined. The functorial construction of Hi

c(ft, α, ht)
implies then the following

Proposition 5.4. The isomorphism Hη
∼−→ Hv can be chosen to map the endo-

morphism Hi
c(fη, α, hη) of Hη to the endomorphism Hi

c(fv, α, hv) of Hv, uniformly
in f, h and α.

5.1.8 Let X be a scheme (as usual, X is separated of finite type over a scheme S).
Let (h, f : X ′ → X) be a pair of finite flat morphisms h : X ′ → X and f : X ′ → X.
We say that the pair (h1, f1 : X ′1 → X) is isomorphic to (h, f : X ′ → X) if
there is an isomorphism F : X ′ → X ′1 with h1◦F = h and f1◦F = f . By a
correspondence T on X we mean an isomorphism class of pairs. Let R(X) be the
quotient of the free abelian group generated (over Z) by all correspondences on
X, by the relation T1 = d1T if T1 is the correspondence of (h◦k, f◦k : X ′1 → X)
and k : X ′1 → X ′ is a finite flat morphism of degree d1. The group R(X) has
a Z-algebra structure, which is not necessarily abelian, obtained as follows. The
product PP1 of the pairs P = (h, f : X ′ → X) and P1 = (h1, f1 : X ′1 → X)
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is the pair (h◦ pr1, f1◦pr2 : X ′ ×X X ′1 → X); here pr1 : X ′ ×X X ′1 → X ′ and
pr2 : X ′ ×X X ′1 → X ′1 are the natural projections. If L is smooth, then for each
pair (h, f : X ′ → X) and morphism α : h∗L → f !L we constructed in Definition
??(i) an endomorphism Hi

c(f, α, h) of Hi
c(X,L|X). In particular, Hi

c(f, id, f) is
multiplication by the degree of f .

We shall apply the above constructions in the case of Example 4 (in (5.1.4)),

which is our main example in this work. As in (5.1.4), let X̃ be a finite étale Galois
covering of a scheme X with Galois group π1, and let G be a topological group such

thatG×π1 acts on X̃. For any open subgroup U ofG putXU = U\X. Given g inG,
put X ′ = U ∩ g−1Ug\X. In (5.1.4) we constructed a correspondence h : X ′ → XU

(quotient by U), and f : X ′ → U∩gUg−1\X → XU (the first arrow is multiplication
by g, the second is quotient by U ; the finite morphism f can also be defined by
X ′ → g−1Ug\X → XU , where the first arrow is the quotient by g−1Ug, and the
second is multiplication by g), and a sheaf morphism β = β(g) : h∗LU → f∗LU ; here
LU is the smooth Q`-sheaf determined by the projective system of finite étale Galois
morphisms U\Yn → XU defined in (5.1.4). Given this data we put α(g) = a ◦ β(g)
and construct (as in (5.1.7)) the endomorphism Hi

c(f, α(g), h) of Hi
c(XU ,LU ) as

the composition of

Hi
c(XU ,LU )

h∗−→ Hi
c(X

′, h∗LU )
α(g)
−−→ Hi

c(X
′, f !LU )

f∗−→ Hi
c(XU , f∗f

!LU )
t−→ Hi

c(XU ,LU ).

It is clear that Hi
c(f, α(g), h) depends only on the double coset g of g in U\G/U ;

hence it can be denoted by Hi
c(g). Let H(U) be the Q`-algebra of U -double cosets

in G: we fix a Haar measure on G such that the volume |U | lies in Q×` , identify a U -
double coset UgU with the quotient of its characteristic function by |U |, and let the
product be defined by convolution. A standard verification shows that g 7→ Hi

c(g)
is an algebra homomorphism H(U)→ EndHi

c(XU ,LU ), namely that H(U) acts on
Hi
c(XU ,LU ). Proposition ?? of (5.1.7) now implies the following

Proposition 5.5. Let G,U, X̃,L be as above. Let b : X → S be a morphism where
S is irreducible. Then there exists an open dense subscheme S0 of S such that the
H(U)-algebras Hi

c(XU,η,LU ) (as in (5.1.6), η denotes a geometric generic point in
S) and Hi

c(XU,v,LU ) are isomorphic for every geometric closed point v in S0.

5.1.9 Let K be a field of characteristic p. Let K be a separable closure of K. Let
X be a scheme over K. Put X = X ⊗K K(= X ×SpecK SpecK). Then the Galois

group Gal(K/K) acts continuously on K, hence on X. Consequently the group
Hi
c(X,L) is a Gal(K/K)-module; the action of Gal(K/K) is continuous.
If K is a finite field Fq of characteristic p, the Galois group Gal(Fq/Fq) is topo-

logically generated by the Frobenius substitution Frq : x 7→ xq. The action of Frq
on the second factor in X = X⊗Fq Fq is denoted by 1×Frq and called the arithmetic

Frobenius. In addition Frq acts on X, hence on the first factor in X = X ⊗Fq Fq.
This action, denoted by Frq ×1, is called the geometric Frobenius. Both Frq ×1 and

1 × Frq act on Hi
c(X,L); their product is the identity endomorphism (see [?], p.

80).
Let X be a separated scheme of finite type over Fq, where q = pd. Let L = (Ln)

be a smooth Z`-sheaf, where Ln is a locally constant sheaf associated with the finite
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étale morphism pn : Yn → X. Let m be an integer. At each point x in the set

X(Fq|m|) = Hom(SpecFq|m| , X) = X(Fq)(Frq ×1)m ,

the inverse image p∗n(x) is isomorphic to (Z/`nZ)t, and the stalk Lx = lim←−np
∗
n(x) is

isomorphic to Zt`. Since (Frq ×1)m fixes x, it acts on p∗n(x). Passing to the limit we
obtain an action of (Frq ×1)m on the stalk Lx ' Zt`. Denote by tr((Frq ×1)m|Lx)
the trace of (Frq ×1)m on the stalk Lx. Denote by (Frq ×1)m also the endomorphism

of Hi
c(X,L) which is denoted in Definition ??(i) in (5.1.5) by

Hi
c(id, (Frq ×1)m, (Frq ×1)m),

thus f = id, α = (Frq ×1)m, h = (Frq ×1)m there.
The following form of the fixed point formula, for powers of the Frobenius acting

on a scheme over a finite field, is due to Grothendieck (see [?], Exp. III, (6.13.3),
p. 134, [?], p. 86).

Theorem 5.6. Grothendieck Fixed Point Formula. For a separated scheme
of finite type over Fq, any Q`-adic sheaf L on X, and every m 6= 0, we have∑

x∈X
(
F
q|m|

) tr((Frq ×1)m|Lx) =
∑
i

(−1)i tr((Frq ×1)m|Hi
c(X,L)).

Remark 5.4. (i) Since m is any nonzero integer, the formula holds also with the
arithmetic Frobenius 1 × Frq instead of the geometric Frq ×1. (ii) Here X is not
required to be smooth or proper. (iii) Underlying the proof is the observation
that in characteristic p > 0 one has d

dx (xp) = 0, hence the graph of the Frobenius
is transverse to the diagonal. In particular the fixed points of the Frobenius are
isolated.

If X is proper and smooth over an algebraically closed field k, and L is a smooth
Q`-sheaf on X, then a stronger variant of the fixed point formula (which is not used
in this work) is known (see [?], p. 151, for the case of the constant L, and [?], Exp.

III, in general). To state this variant, let i : X
′
↪→ X ×k X be a closed subscheme

which is transverse to the diagonal morphism ∆ : X ↪→ X ×k X. Suppose that
f = pr1 ◦i is finite and flat. Put h = pr2 ◦i. Let L = (Ln) be a smooth Q`-sheaf over
X, and β : h∗L→ f∗L a sheaf morphism. Put α = a ◦ β. Then an endomorphism

Hi
c(f, α, h) of Hi

c(X,L) is defined in (5.1.5) (for all i). For each point x′ of X
′

we have (h∗L)x′ = Lh(x′) by definition. If h(x′) = x and f(x′) = x, then the
sheaf morphism β : h∗L → f∗L induces a morphism βx′ : (h∗L)x′ → (f∗L)x′ on
the stalks, namely βx′ is an endomorphism of the finite dimensional Q`-space Lx.
Then we have

Theorem 5.7. Lefschetz Fixed Point Formula. If X is proper and smooth
over an algebraically closed field, and L is a smooth Q`-sheaf on X, then∑

{x′∈X′;h(x′)=f(x′)=x}

tr[βx′ |Lx] =
∑
i

(−1)i tr[Hi
c(f, α, h)|Hi

c(X,L)].

However, the scheme to which we are to apply the fixed point formula in section
9 is not proper, and only the form of Theorem ??, where f = id and α = h =
(Frq ×1)m is a power of the Frobenius, is available. We shall now formulate a
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variant conjectured by Deligne, of the fixed point formula, and study its applications
in sections 10, 11.

Theorem 5.8. Deligne’s Conjecture. Suppose that X is a separated scheme of
finite type over Fq; f, h : X ′ → X morphisms, where h is proper and f is quasi-

finite; L a smooth Q`-adic sheaf on X and α : h∗L → f !L a sheaf morphism
which factorizes as the composition of a morphism β : h∗L→ f∗L and the natural
morphism a : f∗L→ f !L. Then there exists an integer m0 such that for any integer
m with |m| ≥ m0 we have ∑

x′

tr[(β◦(Frq ×1)m)x′ |Lx]

=
∑
i

(−1)i tr[Hi
c(f, α◦(Frq ×1)m, h◦(Frq ×1)m)|Hi

c(X,L)].

On the left the sum ranges over all x′ in X
′

with (h◦(Frq ×1)m)(x′) = f(x′), and
we put x = f(x′).

It suffices for us to assume that f is étale, in which case f∗ = f !.
This conjecture is motivated by the hope that after multiplication by a suffi-

ciently high power of the Frobenius the correspondence (f, h : X ′ → X) becomes
transverse to the diagonal ∆ : X ↪→ X ×Fq X. The Lefschetz fixed point formula
confirms the conjecture when X is proper and smooth, and Grothendieck’s formula
deals with the case of f = h = id and α = id.

Deligne-Lusztig (Ann. of Math. 103 (1976), 103-161) noted that Deligne’s con-
jecture holds for an automorphism of finite order of the scheme X. They multiplied
the automorphism by a Frobenius, and obtained a Frobenius (with respect to an-
other structure on the scheme) for which the Grothendieck formula is again valid.

In fact Illusie [?]; Exp.III, Thm 4.4, gives an explicit formula in terms of local
data for the alternating sum on the cohomological (right) side of the formula, for
any quasi-finite flat correspondence (loc. cit., (4.12), p. 111), and a complex L of
sheaves in Db

c(X,Q`).
The problem is to compute these local terms. This was actually done in the case

of a curve X, for a correspondence multiplied by a sufficiently high power of the
Frobenius; the local data turned out to be the trace on the stalk Lx, confirming
Deligne’s conjecture in the case of curves.

The usage of high powers of the Frobenius is already suggested by Drinfeld [?],
p. 166, `. 1. Additional evidence is provided by the form of the trace formula which
is proven in [?] and in section 9.4. This form is a representation theoretic analogue
of Deligne’s algebro-geometric conjecture.

Remark 5.5. After the completion of the first draft of this work in 1983, several
cases of Deligne’s conjecture were proven by Pink [?] and Shpiz [?] (in a form not
sufficiently strong as yet for our purposes: for a variety with smooth compactifica-
tion by a divisor with normal crossings). They also reduced the conjecture to the
conjectural resolution of singularities in positive characteristic.

Deligne’s conjecture was finally proven unconditionally by Fujiwara [?] and by
Varshavsky [?], by completely different techniques. We strongly recommend the
lucid statement and proof of [?]
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5.2. Congruence relations.
5.2.1 We shall now return to our case of moduli schemes of elliptic modules. Thus
let I be a nonzero ideal in A with [V (I)] ≥ 2. Recall that V (I) is the set of
maximal ideals of A which contain I. By Theorem ?? the functor Fr,I , which
associates to any affine scheme SpecB over A the set of isomorphism classes of
elliptic modules of rank r with structure of level I over B, is represented by an
affine scheme Mr,I = SpecAr,I of finite type over A. Let v be a maximal ideal
of A. As usual we denote by Uv the maximal compact subgroup GL(r,Av) of
Gv = GL(r, Fv). Fix the Haar measure dgv on Gv which assigns Uv the volume 1.
For any open compact subgroup U ′v of Uv, let H(U ′v) denote the convolution Q`-
algebra of Q`-valued compactly supported U ′v-biinvariant functions on Gv. Put Hv
for H(Uv). As usual let UI be the congruence subgroup of g in G(Af ) with g− 1 in

M(r, IÂ). Then Uv,I = Gv∩UI is equal to Uv for all v prime to I. The convolution

algebra HI of compactly supported Q`-valued UI -biinvariant functions on G(Af ) is
isomorphic to the restricted direct product ⊗vH(Uv,I) of the local algebras H(Uv,I);
the isomorphism associates the characteristic function of UIgUI with the product
over v of the characteristic functions of Uv,IgvUv,I ; note that Uv,IgvUv,I is equal to
Uv for almost all v.

An action of the adèle group G(Af ) on the moduli scheme Mr = lim←−IMr,I =

lim←−UI\Mr is defined in Proposition ??. Section 4 concerns the construction of a

covering scheme M̃r of Mr, with Galois group D×∞, such that G(Af ) acts on M̃r and

the action ofG(Af ) on M̃r commutes with the action of the Galois group. The group

G(Af )/F× acts on Mr without fixed points, and Mr,I is smooth over Fp. Put M̃r,I

for UI\M̃r, and let ρ be a finite dimensional representation of π1(M̃r,I/Mr,I) = D×∞
with finite image. As noted in Example 4 in (5.1.4), to ρ one assigns a smooth
Q`-sheaf L(ρ) on Mr,I , and Q`-adic cohomology spaces Hi

c,I = Hi
c(Mr,I ,L(ρ))

and Hi
c,v,I = Hi

c(Mr,I,v,L(ρ)). Here Mr,I denotes the geometric generic fiber

Mr,I ×A F of Mr,I , and Mr,I,v is the geometric closed fiber Mr,I,v ×Fv Fv, where

Mr,I,v = Mr,I ×A Fv and Fv is an algebraic closure of Fv = A/v, for any v 6= 0 in
SpecA. We also write Mr,v,I for Mr,I,v.

The maps HI → EndHi
c,I and HI → EndHi

c,v,I of (5.1.8), which are induced by

g 7→ Hi
c,I(g) and g 7→ Hc,v,I(g) (g in G(Af )), turn the Q`-spaces Hi

c,I and Hi
c,v,I

into HI -modules. In particular, if v 6= 0 in SpecA does not contain I, then Hi
c,I

and Hi
c,v,I are Hv-modules. Proposition ?? asserts that the HI -modules Hi

c,I and

Hi
c,v,I are isomorphic for almost all v 6= 0 in SpecA, for all i.

5.2.2 Let v be a maximal ideal in A. An irreducible Gv-module πv is called unram-
ified if it contains a nonzero Uv-invariant vector, which is necessarily unique up to a
scalar multiple. It is well known that there is a bijection between the sets of equiv-
alence classes of (1) irreducible Hv-modules in which the unit element acts as the
identity, and (2) irreducible unramified Gv-modules: The irreducible Gv-module
πv defines a (one-dimensional) Hv-module π̃v by π̃v(fv) = trπv(fv) (fv ∈ Hv),
where πv(fv) is the convolution operator

∫
fv(g)πv(g)dg, which factorizes through

the projection on the one-dimensional subspace of Uv-fixed vectors in πv. If I is a
nonzero ideal in A then there is a bijection between the sets of equivalence classes
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of (1) irreducible G(Af )-modules πf with a nonzero UI -fixed vector, and (2) irre-
ducible HI -modules in which the unit element acts as the identity. It is given by
πf 7→ πIf , where πIf is the space of UI -fixed vectors in πf .

Let Sr denote the symmetric group on r letters. It acts by permutation on

Q×r` . For each z = (zi) (1 ≤ i ≤ r) in Q×r` denote by χz the unramified character

(bij) 7→
∏
i z

deg(bii)
i of the upper triangular subgroup Bv (bij = 0 if i > j) of Gv. Let

δ denote the character δ((bij)k) =
∏
i |bii|r−2i+1

v of Gv (here k ∈ Uv = GL(r,Av)).

Let Iv(z) = Ind(δ1/2χz) denote the unramified Gv-module unitarily induced from

χz. Its space consists of the locally constant functions f : Gv → Q×` with

f(bg) = (δ1/2χz)(b)f(g) (b ∈ Bv, g ∈ Gv),

and Gv acts by right translation. The image of the representation Iv(z) in the
Grothendieck group, namely the equivalence class of its semisimplification, de-

pends only on the projection of z in Q×r` /Sr. This Iv(z) has a unique irre-
ducible unramified constituent π̃v(z) in its composition series, and (π̃v(z))(fv) =
tr(Iv(z))(fv) for all fv in Hv. Every irreducible Q`-valued Hv-module π̃v is equiv-

alent to π̃v(z) for a unique z in Q×r` /Sr. Moreover, the Satake homomorphism
fv 7→ f∨v , where f∨v (z) = (π̃(z))(fv), is an algebra isomorphism from Hv to

Q[Q×r` /Sr] = Q[z1, z
−1
1 , . . ., zr, z

−1
r ]Sr . In particular, Hv is commutative.

Remark 5.6. The commutativity of Hv quickly follows from the fact that the invo-
lution of Hv induced by the transpose map on Gv coincides with the identity on
Hv.

Let πππ denote a local uniformizer in the local ring Av, and as usual put qv = |πππ|−1
v .

For any j (1 ≤ j ≤ r) denote by gj the diagonal matrix (πππ, . . . ,πππ, 1, . . . , 1) in Gv
with j = deg(det gj). To simplify the notations choose the Haar measure on Gv
which assigns Uv the volume one. Let φj be the characteristic function of the double
coset UvgjUv in Gv. In (5.2.4) we use the following well-known

Lemma 5.9. We have

(π̃v(z))(φj) = qj(r−j)/2v

∑
ij

zi1 . . .zij ;

the sum ranges over all j-tuples ij = (i1, . . ., ij) of integers with 1 ≤ i1 < i2 < · · · <
ij ≤ r.

Proof. In the course of this proof we put K = Uv, g = gj , B = upper triangular
subgroup of K. The double coset B\K/(K ∩ gKg−1) is isomorphic to B\KgK/K
by k 7→ kgK. Moreover, B\K/(K ∩ gKg−1) is isomorphic (on reducing modulo
v) to B(Fv)\G(Fv)/Pj(Fv), where G = GL(r) and Pj is the (lower triangular)
parabolic subgroup of type (j, r − j). We have G(Fv) = ∪wB(Fv)wPj(Fv), where
the sum is disjoint and taken over W/(W ∩ Pj(Fv)). Here W is the Weyl group in
G(Fv); W ' Sr, W ∩ Pj(Fv) ' Sj × Sr−j , and the cardinality of W/(W ∩ Pj(Fv))
is
(
r
j

)
= r!/j!(r − j)!. This is the number of terms in the sum of the lemma.

The double coset in B\KgK/K corresponding to w = 1 is BgK, and f(bgk) =

δ1/2(g)z1. . .zj for any b in B and k in K. We have δ1/2(g) = q
j(r−j)/2
v . Since the

symmetric group Sr permutes the monomials in z1, . . ., zr in the element (π̃v(z))(φj)

of Q[z1, z
−1
1 , . . ., zr, z

−1
r ]Sr , each of the

(
r
j

)
terms on the right of the formula of the
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lemma occurs in (π̃v(z))(φj). Since there are only
(
r
j

)
cosets in W/(W ∩ Pj(Fv)),

there are only
(
r
j

)
monomials in (π̃v(z))(φj), and the lemma follows. �

Our goal in this subsection 5.2 is to prove the following. Let I be a nonzero ideal

in A with [V (I)] ≥ 2, M̃r,I a finite étale Galois covering of Mr,I contained in the Ga-
lois covering of Mr,I with Galois group D×∞ which is constructed in section 4, and ρ

an irreducible Q`-adic representation of the Galois group π1(M̃r,I/Mr,I). Let π̃If⊗σ
be an irreducible composition factor of the HI×Gal(F/F )-module Hi

c(Mr,I ,L(ρ)),
π̃Iv the component of π̃If at v, and σv the restriction of σ to the decomposition

subgroup Gal(F v/Fv). For all v with Hi
c,I ' Hi

c,v,I (as HI ×Gal(Fv/Fv)-modules),

σv factorizes via Gal(Fv/Fv), and π̃Iv is unramified. Let z = z(π̃v) be an r-tuple

(zj ; 1 ≤ j ≤ r) in Q×r` whose image in Q×r` /Sr corresponds to the irreducible Hv-
module π̃Iv . Let Frv ×1 denote the geometric Frobenius morphism of Hi

c,v,I . We
can now state the following main

Theorem 5.10. For every i (0 ≤ i ≤ 2(r − 1)) and each irreducible composition
factor π̃f ⊗σ of Hi

c(Mr,I ,L(ρ)) as an HI ×Gal(F/F )-module, and for every v with

Hi
c,v,I ' Hi

c,I as HI ×Gal(Fv/Fv)-modules, we have the following. Each eigenvalue

u of the (geometric) Frobenius endomorphism σv(Frv ×1) is equal to q
(r−1)/2
v zj for

some j = j(u) (1 ≤ j ≤ r).

Corollary 5.11. The (geometric) Frobenius endomorphism σv(Frv ×1) has at most

r distinct eigenvalues; they lie in the set {q(r−1)/2
v zj ; 1 ≤ j ≤ r}.

Remark 5.7. (i) Using the trace formula, the purity (see [?] or [?]; sommes trig,
p. 177/8) of the action of the Frobenius on Hi

c,v,I , and unitarity properties of the

components of cuspidal automorphic representations of G(A), we show in section
9 that if the D×∞-module ρ corresponds to a cuspidal G∞-module then each zj
(1 ≤ j ≤ r), for every v which appears in Theorem ??, is algebraic with complex
absolute values all equal to one. Hence the absolute value of each conjugate of the

algebraic number u is q
(r−1)/2
v , independently of i.

(ii) It will be interesting to show that the dimension of the finite dimensional
representation σv is bounded by, and moreover equal to, r.
(iii) The main geometric result of this section 5 is the intrinsic “congruence rela-
tion” of Proposition ??, which establishes an identity of correspondences on the
scheme Mr,I,v. Its translation in (5.2.7) to a cohomological statement is formal.
Consequently Theorem ?? is valid also when Hi

c,I is replaced by cohomology Hi

without compact support, or any other cohomology theory.

5.2.3 The proof of Theorem ?? will occupy the rest of this section 5. We begin
with giving an alternative definition of the correspondence Tj = Tgj on the scheme
Mr,v,I associated as in (5.1.8) with the open compact subgroup Uv and the diagonal
matrix gj = (πππ, . . . ,πππ, 1, . . . , 1) in Gv, with j = deg(det gj).

Let Fj be the functor from the category of rings over A to the category of sets
which associates to a ring B the set of isomorphism classes of elliptic modules ϕ of
rank r over B, structures ψ of level I, and Fv-module homomorphisms ψj : Fjv →
Ev(B) with the property that the ideal (

∏
u(x− ψj(u));u in Fjv) divides the ideal

Jv = (ϕa(x); a in v) in B[x]. The proof of Theorem ?? shows that the functor Fj is
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representable by an affine scheme Mr,I,j = SpecAr,I,j . The ring Ar,I,j is generated
over Ar,I by generators c(u), u in Fjv − {0}, subject to the relations of the proof of
Theorem ??. The group Gj = GL(j,Fv) of automorphisms of Fjv acts on Mr,I,j .

Denote by Gj\Mr,I,j the quotient. It is equal to SpecA
Gj
r,I,j .

Let h′j be the morphism Mr,I,j → Mr,I defined by the finite flat generically
separable (see Proposition ??) embedding Ar,I → Ar,I,j ; as a morphism of functors
h′j maps (ϕ,ψ, ψj) to (ϕ,ψ). Let f ′j be the morphism Mr,I,j → Mr,I defined as a
morphism of functors by mapping (ϕ,ψ, ψj) to (ϕ′, ψ); here ϕ′ is the elliptic module
defined by Pϕa = ϕ′aP for all a in A, where P is the endomorphism of the additive
group with P (x) =

∏
u(x − ψj(u)) (u ∈ Fjv). Each of f ′j and h′j is finite, flat, and

étale outside v. Since they factorize through the quotient Mr,I,j → Gj\Mr,I,j , the
correspondence Sj defined by (f ′j , h

′
j : Mr,I,j → Mr,I) (see (5.1.8)) is the multiple

|Gj |Tj of Tj .

5.2.4 Put X for the fiber Mr,v,I = Mr,I,v = Mr,I ⊗A Fv of Mr,I at v, and similarly
Xj for Mr,v,I,j = Mr,I,j ⊗A Fv. Denote by fj , hj : Xj → X the fibers at v of the
morphisms f ′j and h′j . It is clear that fj , hj are finite and flat, but not étale. Let
(ϕ,ψ) denote the universal elliptic module of rank r with structure of level I, of
characteristic v. Then ϕa =

∑
i bi(a)τ i (bi(a) in Ar,v,I) for all a in A. Fix a0 in

v−v2. Then b0(a0) = 0 since ϕ has characteristic v. Define X0 to be the open dense
affine subscheme of X corresponding to the ring Ar,v,I [x]/(xb1(a0)− 1). It is clear
that the definition of X0 is independent of the choice of a0 in v− v2. Denote by F0

the functor represented by X0. The inverse images Xj ×X X0 of X0 with respect
to the two morphisms fj , hj : Xj → X coincide, and are equal to the subscheme
X0
j of Xj defined by the requirement that the coefficient b1(a) of ϕa =

∑
i bi(a)τ i

be invertible for all a in v − v2. Denote by F0
j the functor represented by X0

j . The

restrictions f0
j , h0

j : X0
j → X0 of fj , hj are finite and flat by definition of X0

j .

The ring A0
j such that X0

j = SpecA0
j is generated over A0 (where X0 = SpecA0)

by the elements c(u) (u ∈ Fjv−{0}) subject to the relations of the proof of Theorem
??. In particular

∏
u(x− c(u)) (u ∈ Fjv) divides ϕa(x) for all a in v. Since c(0) = 0,

the product
∏

(x − c(u)) over u 6= 0 in Fjv divides ϕa(x)/x. Since ϕa(x)/x =∑
i≥1 bi(a)xq

i
v−1, we conclude that for any a in v−v2 and u 6= 0 in Fjv the generator

c(u) satisfies the relation∑
i≥1

bi(a)c(u)q
i
v−1 = c(u)qv−1

∑
i≥1

bi(a)c(u)q
i
v−qv = 0.

Let X++
j denote the closed subscheme of X0

j defined by the equation∏
u 6=0

c(u)qv−1 = 0;

the product ranges over all u in Fjv −{0}. The scheme X++
j is a covering of degree

qv − 1 of the scheme X+
j which represents F+

j . The functor F+
j is the functor

which associates to each ring B over Fv the set F+
j (B) consisting of all triples

(ϕ,ψ, ψj) in F0
j (B) with the property that ψj : Fjv → Ev(B) is not injective, that

is,
∏
u6=0 c(u) = 0. By the definition of X0

j the kernel of ψj is a line Fv in Fjv. Let
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X−j be the closed subscheme of X0
j defined by the equations∑

i≥1

bi(a)c(u)q
i
v−qv = 0 for every u 6= 0 in Fjv.

It represents the subfunctor F−j of F0
j such that F−j (B) consists of the (ϕ,ψ, ψj) in

F0
j (B) with injective ψj : Fjv → Ev(B). The intersection of X++

j and X−j is empty.

Indeed if u 6= 0 has c(u)qv−1 = 0 and
∑
i≥1 bi(a)c(u)q

i
v−qv = 0, then b1(a) = 0; but

b1(a) is a unit inX0
j (for a in v−v2). We conclude thatX0

j decomposes into two open

closed disjoint components X−j and X++
j , where the later is a covering of degree

qv − 1 of X+
j . Consequently the maps f+

j , h
+
j : X+

j → X0 and f−j , h
−
j : X−j → X0,

derived from f0
j , h

0
j : X0

j → X0, are finite and flat, and étale. The morphisms f0
j ,

h0
j and f++

j , h++
j are finite and flat, but not étale.

5.2.5 The triples (f+
j , h

+
j : X+

j → X0), (f++
j , h++

j : X++
j → X0), (f−j , h

−
j :

X−j → X0) define correspondences S+
j , S++

j and S−j on the open dense subscheme

X0 of X. We have S++
j = (qv − 1)S+

j . Since f+
j , h+

j factorize through Gj\X+
j

and f−j , h−j through Gj\X−j , we obtain correspondences T+
j and T−j on X0 with

S++
j = |Gj |T+

j and S−j = |Gj |T−j . Since X0
j is the disjoint union of X++

j and X−j
we have Sj = S++

j + S−j = (qv − 1)S+
j + S−j , and Tj = T+

j + T−j .

Lemma 5.12. We have an equality Frv ◦T−j = qjvT
+
j+1 of correspondences on X0.

Proof. (i) Let X̃−j be the product of X−j and the set of surjective homomorphisms

Fj+1
v → Fjv. It represents the functor F̃−j which associates to a ring B over Fv the set

of isomorphism classes of (1) elliptic modules ϕ of rank r over B with b1(a) 6= 0 for
the a in v− v2, (2) structures ψ of level I, (3) injective Fv-module homomorphisms
ψj : Fjv → Ev(B), and (4) surjective homomorphisms γ : Fj+1

v → Fjv. The ideal
(
∏
u(x − ψj(u));u ∈ Fjv) divides the ideal Jv = (ϕa(x); a ∈ v) in B[x]. The

morphism h̃−j : X̃−j → X0, (ϕ,ψ, ψj , γ) 7→ (ϕ,ψ), is finite and étale.

Define the morphism Frv ◦f̃−j : X̃−j → X0 by (ϕ,ψ, ψj , γ) 7→ (ϕ′, ψ), where the

elliptic module ϕ′ is defined by the relation τsPϕa = ϕ′aτ
sP for all a in A. Here

s = logp qv, P (x) is the polynomial
∏
u(x − ψj(u)) (u in Fjv), so that τsP is the

polynomial
∏
u(x − ψj(u))qv . Then Frv ◦f̃−j is finite and flat. Since the degree of

X̃−j over X−j is |Gj |(qj+1
v −1)/(qv−1), the correspondence determined by the triple

(h̃−j ,Frv ◦f̃−j : X̃−j → X0) is

qj+1
v − 1

qv − 1
|Gj |Frv ◦S−j =

qj+1
v − 1

qv − 1
|Gj |2 Frv ◦T−j .

(ii) Let F̃+
j+1 be the functor which associates to the ring B over Fv the set of

isomorphism classes of (1) elliptic modules ϕ of rank r over B with b1(a) 6= 0 for a
in v−v2, (2) structures ψ of level I, (3) Fv-module homomorphisms ψj+1 : Fj+1

v →
Ev(B) which are not injective, and (4) isomorphisms α : Fjv

∼−→ ψj+1(Fj+1
v ). The

partial level structure ψj+1 is required to satisfy that (
∏
u(x−ψj+1(u));u in Fj+1

v )
divides Jv = (ϕa(x); a ∈ v) in B[x]. As in the proof of Theorem ?? the functor

F̃+
j+1 is representable by an affine scheme X̃+

j+1. The morphism X̃+
j+1 → X+

j+1,
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(ϕ,ψ, ψj+1, α) 7→ (ϕ,ψ, ψj+1) is finite and étale, of degree |Gj |, since Gj = AutFjv
acts on α.

The morphism h̃+
j+1 : X̃+

j+1 → X0, (ϕ,ψ, ψj+1, α) 7→ (ϕ,ψ), is finite and flat.

The morphism f̃+
j+1 : X̃+

j+1 → X0, (ϕ,ψ, ψj+1, α) 7→ (ϕ′, ψ), where ϕ′ is the elliptic

module determined by Pϕa = ϕ′aP , P (x) =
∏
u(x − ψj+1(u)) (u ∈ Fj+1

v ), is also

finite and flat. It is clear that the correspondence determined by (h̃+
j+1, f̃

+
j+1 :

X̃+
j+1 → X0) is

|Gj |S+
j+1 = (qv − 1)−1|Gj |S++

j+1 = (qv − 1)−1|Gj ||Gj+1|T+
j+1.

(iii) The map ρ : (ϕ,ψ, ψj : Fjv ↪→ Ev(B), γ : Fj+1
v � Fjv) 7→ (ϕ,ψ, ψj+1 =

ψj◦γ, ψj) is a morphism from F̃−j to F̃+
j+1. To verify this claim, we have to show

that Qj+1(x) =
∏
u(x − ψj+1(u)) (u in Fj+1

v ) divides ϕa(x) for all a in v. Our
assumption is that Qj(x) =

∏
u(x−ψj(u)) divides ϕa(x) for all a in v. Since ker γ

has cardinality qv, we have that Qj+1(x) = Qj(x)qv . Now, since the separable

additive polynomial Qj(x) divides ϕa(x) =
∑
i≥1 bi(a)xq

i
v = xqvR(x), it divides

R(x); consequently there is a polynomial P in B[τ ] with R = PQj . Hence ϕa =
τsR = τsPQj = P ′τsQj = P ′Qj+1, and Qj+1(x) divides ϕa(x), as required. Here
we put s = logp qv and P ′ =

∑
bqvi τ

i if P =
∑
biτ

i.

(iv) The map (ϕ,ψ, ψj+1 : Fj+1
v → B,α : Fjv

∼−→ ψj+1(Fj+1
v )) 7→ (ϕ,ψ, α, α−1◦ψj+1)

defines a morhism from F̃+
j+1 to F̃−j which is inverse to the morphism ρ of (iv). It

is clear that h̃+
j+1◦ρ = h̃−j and f̃+

j+1◦ρ = Frv ◦f̃−j . We conclude that the correspon-

dences of the formulae displayed at the end of (i) and (ii) are equal. The lemma
follows from the formula

|Gj | =
j−1∏
i=0

(qjv − qiv)

which implies that

|Gj+1| = (qj+1
v − 1)|Gj |qjv.

�

Proposition 5.13. We have the following equality of correspondences on Mr,v,I :∑
j odd

qj(j−1)/2
v Frr−jv ◦Tj =

∑
j even

qj(j−1)/2
v Frr−jv ◦Tj (0 ≤ j ≤ r).

Proof. Since the two morphisms fj , hj : Mr,v,I,j →Mr,v,I which define Tj are finite
and flat, and X0 is an open dense subscheme of X = Mr,v,I , it suffices to prove the
displayed formula only for the restriction of the correspondences to X0, namely to
fj , hj : M0

r,v,I,j → M0
r,v,I . As a correspondence on X0, each Tj decomposes as a

sum of T+
j and T−j , so that the left side of the formula is the sum of I+ and I−,

where

I+ =
∑

0≤j≤r/2

q(2j+1)2j/2
v Frr−2j−1

v ◦T+
2j+1

and

I− =
∑

0≤j≤r/2

q(2j+1)2j/2
v Frr−2j−1

v ◦T−2j+1.
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Note that T+
r+1 = 0 = T−r+1, and T+

0 = 0. Using Lemma ?? we rewrite I− in the
form∑

j

q(2j+1)2j/2
v q2j+1

v Frr−2j−2
v ◦T+

2j+2 =
∑
j

q(2j+1)(2j+2)/2
v Frr−2j−2

v ◦T+
2j+2.

Hence the left side of the formula of the proposition is equal to∑
0≤j≤r

qj(j−1)/2
v Frr−jv ◦T+

j .

This is equal to the right side of the formula by the same argument, using Lemma
??, and our proposition follows. �

5.2.7 It remains to prove theorem ??.

Proof. By (5.1.9) the identity of Proposition ?? correspondences on Mr,v,I yields

an identity of endomorphisms on the Q`-module Hi
c(Mr,I,v,L(ρ)), as an Hv ×

Gal(Fv/Fv)-module, hence on each of its composition factors π̃Iv ⊗ σv. On the
factor π̃Iv ⊗ σv the correspondence Tj acts by π̃v(φj), where we denote by φj the
characteristic function of the double coset UvgjUv. By Lemma ?? the irreducible
Hv-module π̃v = π̃v(z), z = (zj), satisfies

π̃v(φj) = q(r−j)j/2
v

∑
ij

zi1zi2 . . .zij ;

the sum ranges over all j-tuples ij = (i1, . . .ij) with 1 ≤ i1 < i2 < · · · < ij ≤ r.
Applying the identity of Proposition ?? of correspondences to the factor π̃v ⊗ σv
we obtain the identity

r∑
j=0

(−1)jqj(j−1)/2
v π̃v(φj)σv(Frv ×1)r−j = 0.

This we rewrite in the form

0 =

r∑
j=0

(−1)jqr(r−1)/2
v π̃v(q

j(j−r)/2
v φj)[q

(1−r)/2
v σv(Frv ×1)]r−j

= qr(r−1)/2
v

r∑
j=0

(−1)j

∑
ij

zi1 . . .zij

 [q(1−r)/2
v σv(Frv ×1)]r−j .

It remains to note that the characteristic polynomial p of a matrix Z whose eigen-
values are z1, . . ., zr, is

p(t) = det(tI − Z) =

r∑
j=0

(−1)j

∑
ij

zi1 . . .zij

 tr−j .

Hence
p(q(1−r)/2

v σv(Frv ×1)) = 0.

In particular, for each eigenvalue u of σv(Frv ×1) we have

p(q(1−r)/2
v u) = 0.

Hence q
(1−r)/2
v u is equal to zi for some i, and the theorem follows. �
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Part 3. Trace formulae

The work of part 4 depends on a comparison of the Fixed Point Formula and
the Trace Formula. Since only automorphic G(A)-modules occur in the Selberg
Formula, the purpose of this approach is to show that the G(Af )-modules π̃f which
occur in the virtual module H∗c =

∑
i(−1)iHi

c are automorphic, in addition to
establishing the relation concerning the local Frobenius and Hecke eigenvalues. The
Grothendieck fixed point formula gives an expression for the trace of the action of
the (geometric) Frobenius Frv ×1 on the cohomology module H∗c by means of the
set of points in Mr,I,v(Fv) fixed by the action of the Frobenius, and the traces of

the resulting morphisms on the stalks of the Q`-sheaf L(ρ) at the fixed points.
Part 3 prepares for the comparison. Following [?], in section 6 the set Mr,I,v(Fv)

is expressed as a disjoint union of isogeny classes of elliptic modules over Fv, and
their types are studied. In section 7 it is shown that the elliptic modules with level
structure of a given type make a homogeneous space under the action of G(Af ), and
the stabilizer is described. Moreover, the action of the Frobenius Frv is identified
with multiplication by a certain matrix. A type is described in group theoretic terms
as an elliptic torus in G(F ), and the cardinality of the set Mr,I,v(Fv,n) ([Fv,n : Fv] =
n) is expressed in terms of orbital integrals of conjugacy classes γ in G(F ) which
are elliptic in G(F∞) and n-admissible (see subsection (7.3)) at v.

Next, in section 8, it is shown that the orbital integral at v obtained in section

7 can be expressed as an orbital integral of a spherical function fn = f
(r)
n on Gv

whose normalized orbital integral F (fn) is supported on the n-admissible set. This

spherical function is defined by the relation tr(πv(z))(fn) = q
n(r−1)/2
v

∑r
i=1 z

n
i .

6. Isogeny classes

The main tool which is applied in part 4 is a comparison of the “arithmetic” fixed
point formula with the “analytic” trace formula. To carry out this comparison we
need to describe the arithmetic data, which is the cardinality of the set of points on
the fiber Mr,v at v of the moduli scheme Mr, over finite field extensions of Fv = A/v,

or equivalently, the set Mr,v(Fv) with the action of the Frobenius morphism on it,
by group theoretic data which appears in the trace formula. In this section we begin
with a description (following Drinfeld [?]) of the set of isogeny classes in Mr,v(Fv)
in terms of certain field extensions of F ; these will be interpreted as tori of GL(r)
in the trace formula.

Let d be a positive integer, and put q = pd. Let B denote the ring Fq[τ ] generated
by the indeterminate τ over Fq subject to the relation upτ = τu for all u in Fq.
The ring B is a domain, and its fraction ring D = Fq(τ) is a division algebra of
rank d (and dimension d2) over its center L = Fp(t), where t = τd. Then D is the
cyclic division algebra sometimes denoted by (Fq(t)/Fp(t), τ, t), associated with the
field extension Fq(t)/Fp(t) and the element τ which acts as the Frobenius on Fq
and satisfies τd = t. Let R be the ring Fp[t] of functions in L regular in t.

Denote by v′′ the place of L where t = 0, and by ∞ the place where t−1 = 0. At
each place w 6= v′′,∞ of L we have that D is unramified, namely Dw = D⊗L Lw is
isomorphic over Lw to M(d, Lw); moreover, Bw = B ⊗R Rw is isomorphic over Lw
to M(d,Rw); here Rw signifies the ring of integers of the completion Lw of L at w.
At v′′ and∞ the division algebra D ramifies, and has the invariants 1/d at v′′, −1/d
at∞. Indeed, in general, if E/F is a cyclic extension of local fields and σ generates
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Gal(E/F ), the cyclic algebra (E/F, σ, a) = 〈E, σ;σx = σ(x)x, σ[E:F ] = a〉, where
a ∈ F×, has invariant inv = k/[E : F ] in (the Brauer group Br(F ) ') Q/Z if a is
πππk up to a unit in F×, where πππ is a uniformizer in F×.

Definition 6.1. An ideal, or lattice, in the division algebra D is a finitely generated
R-module. An ideal class is the set of all right (or left) multiples by elements of
D× of an ideal. An order in D is a multiplicatively closed lattice, namely an open
compact subring of D. If it is maximal then its tensor product with L over R is
D. The class number of the division algebra D is the number of right (or left) ideal
classes in any maximal order; it is independent of the choice of a maximal order.
A type in D is an orbit under conjugation by D× of a maximal order.

Proposition 6.1. If B′ is an order in D then there is x in D× with xB′x−1 ⊂ B.

Proof. The ring B is a maximal order in D. Since Fq is perfect, D is Euclidean,
hence D has class number one. Consequently D has only one type, namely B is
the unique maximal order in D up to conjugation by D×, as required. �

Corollary 6.2. Let L′ be a finite extension of L in D. Let R′ be the ring of
functions in L′ which are regular outside ∞. Then there exists an x in D× with
xR′x−1 ⊂ B.

Proof. The ring R′ is an order in D. �

Remark 6.1. A field extension L′ of L embeds in D if and only if [L′ : L] divides d
and both L′v′′ = L′ ⊗L Lv′′ and L′∞ = L′ ⊗L L∞ are fields. The centralizer ZD(L′)
of L′ in D is a division algebra, central of rank d/[L′ : L] over L′. The invariants
of ZD(L′) over L′ are [L′ : L]/d at v′′,−[L′ : L]/d at ∞, and 0 elsewhere.

Let F = Fq(C) be a function field as in section 1, fix a place ∞ and denote by
A the ring of functions on C which are regular on C −{∞}. Let v be a fixed place
in SpecA, and fix q = pd as above.

Definition 6.2. (1) Let S denote the set of isogeny classes of elliptic modules ϕ
of rank r and characteristic v over Fq. (2) Let S′ be the set of isomorphism classes
of pairs (F ′, t), where F ′ is a field extension of F with [F ′ : F ] dividing r such
that F ′∞ = F ′ ⊗F F∞ is a field, and t is an element of F ′× with (i) F ′ = F (t), (ii)
|t| = q1/r, and (iii) t has a zero only at one place v′ of F ′ above v.

In (ii) the absolute value |·| is the extension to F ′∞ of the absolute value on F∞
such that the valuation group |F×∞| of F×∞ is pZ.

Theorem 6.3. The map which associates to the elliptic module ϕ of rank r and
characteristic v over Fq the pair (F ′, t), where t (= τd) is the Frobenius morphism
in EndE (we put E for Eϕ), and F ′ is the subalgebra F (t) of F⊗AEndE generated
by t, yields an isomorphism from S to S′.

Proof. (i) Given a pair (F ′, t) in S′, consider the maximal order B = Fq[τ ] in the
division algebra D = Fq(τ), where τ is an indeterminate subject to the relations

τd = t, and upτ = τu for all u in Fq. We have |t| = pd/r by (ii). Let d′′, r′′ be
relatively prime positive integers with d/r = d′′/r′′. The valuation group |F×| of
F× is pZ. Since Z+d′′Z/r′′ = Z/r′′, the valuation group of F ′×, which is generated

by pZ and |t| = pd
′′/r′′ , is pZ/r

′′
. The valuation group of L = Fp(t) is pd

′′Z/r′′ .
Hence

[F ′ : F ]/[F ′ : L] = [F ′∞ : F∞]/[F ′∞ : L∞]
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= [Z/r′′ : Z]/[Z/r′′ : d′′Z/r′′] = r′′/d′′ = r/d,

and d/[F ′ : L] = r/[F ′ : F ] is an integer. At the places v′, ∞ of F ′ over the
places v′′, ∞ of L we have that F ′v′ , F

′
∞ are fields. Hence F ′ embeds in the division

algebra D which ramifies precisely at v′′, ∞, and has rank d over L. In particular
F embeds in D. Corollary ?? implies that after conjugating F by some x in D×,
we may assume that the image of the ring A of functions in F regular outside ∞
lies in B = Fq[τ ].

To verify that the resulting homomorphism ϕ : A→ B is an elliptic module, note
that |ϕa| = |a| = pvp(a) = |τ |rvp(a), since |τd| = |t| = q1/r. Hence the highest power
of τ in ϕa is τ rvp(a), and ϕ is an elliptic module of rank r whose characteristic is
the restriction v of v′ from F ′ to F .
(ii) Let ϕ : A → B = Fq[τ ] be an elliptic module of rank r and characteristic
v over Fq. It extends to a homomorphism F → D = Fq(τ). The center of D is
L = Fp(t), where t = τd. Let F ′ = F (t) be the subalgebra of F ⊗AEndE generated
by the endomorphism t of E. Then F ′ is a commutative semisimple subalgebra of
the division algebra D. Hence F ′ is a field. The division algebra D is ramified
precisely at the two places v′′,∞ of L. The embedding of F ′ in D specifies two
places v′,∞ of F ′ whose restrictions to L are v′′,∞, such that F ′v′ and F ′∞ are
fields. The restrictions of v′,∞ to F are the places v,∞. Indeed, the existence of
the extension Av ↪→ A′v′ ↪→ D ⊗R Rv′′ = Fq[[τ ]] of ϕ : A→ D = Fq[τ ] implies that
the characteristic of ϕ is v. Proposition ?? asserts that F∞ ⊗A EndE is a division
algebra. Hence F ′ ⊗F F∞ is a field, and it is equal to F ′∞. On the other hand
F ′⊗F Fv is the direct sum of F ′v′ and the F ′w′ , where w′ are the places of F ′ over v
other than v′. Since the only zero of t in L = Fp(t) is by definition at v′′, and v′ is
the only place of F ′ = F (t) over v′′, it follows that the only zero of t in F ′ is at v′.

Recall that vp(a), vq(a) (a in A) are defined by |a| = pvp(a) = qvq(a). As F lies

in D we have |a| = |ϕa| = |τ rvp(a)| = |trvq(a)|, hence |τ | = p1/r and |t| = q1/r. This
defines the extension of the absolute value to F ′. Since |t| = q1/r we have as in (i)
that

r/[F ′ : F ] = d/[F ′ : L] = rkLD/[F
′ : L].

This is an integer since F ′ is a field extension of L in D. �

Remark 6.2. (i) The centralizer D′ = ZD(F ′) of F ′ in D is a division algebra of
rank r′ = r/[F ′ : F ](= d/[F ′ : L]) over its center F ′. Its invariants are 1/r′ at
v′,−1/r′ at∞, and 0 elsewhere. (ii) Since ϕ is defined over Fq we have that EndE
is an order in D. Since F ′ = F (t) centralizes EndE, EndE is an order in D′.

Let A′ be the ring of functions in F ′ whose only possible pole is at∞. As follows
from (ii) in the proof of Theorem ??, and Corollary ??, the map ϕ : A→ B = Fq[τ ]
extends to a monomorphism ϕ′ : A′ → B, which is an elliptic A′-module of rank
r′ = r/[F ′ : F ] and characteristic v′. Since the class group of A′ is finite, at each
place w′ 6=∞ of F ′ we can choose πππ′ in A′ whose only zero is at w′. As in Theorem
??, we define the torsion module E′πππ′m(Fp) where E′ = Eϕ′ , and the Tate module

Tw′(Eϕ′) = HomA′
w′

(F ′w′/A
′
w′ , lim−→

m

E′πππ′m(Fp)).

At each w′ 6= v′ in SpecA′, the proof of Theorem ?? shows that Tw′(Eϕ′) is a free
A′w′-module of rank r′ (we simply have to replace A,F, v, r by A′, F ′, v′, r′, etc.).

Proposition 6.4. At v′ we have Tv′(E
′) = {0}.
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Proof. We can use t to define Tv′(E
′), since t lies in A′ and the only zero of t is at

v′. The torsion module E′tm(Fp) consists of the x in E′(Fq) (= Fp as a group) with
tmx = 0 for some m. But t is a power of the Frobenius homomorphism x 7→ xp,
and the only solution of xp

m

= 0 is x = 0. Hence E′tm(Fp) = {0} for all m, and the
proposition follows. �

Remark 6.3. Proposition ?? completes the description of the Tate module, which
was started in Theorem ?? in the case where w is prime to the characteristic.

Let ϕ be an elliptic module of rank r and characteristic v over Fp. Since A is
finitely generated and finite fields are perfect, ϕ is defined over Fq for some q = pd

divisible by qv = |A/v|. The construction of the pair (F ′, t) depends on the choice

of d. If d is replaced by d′ ≥ d, then t = τd is replaced by t′ = τd
′

and F ′ = F (t)
by F ′′ = F (t′). We shall associate to ϕ the smallest possible F ′ on considering
all possible values of d, or t, namely on replacing t by a sufficiently large power of
itself. We thus make the following

Definition 6.3. An (F, v)-type is an isomorphism class of pairs (F ′, v′) consisting
of (i) a field extension F ′ of F such that r′ = r/[F ′ : F ] is an integer and F ′∞ =
F ′ ⊗F F∞ is a field, (ii) a place v′ of F ′ over v, such that for any t in A′ with the
property that t has a zero only at v′, we have F ′ = F (t).

Theorem ?? associates a unique type to each elliptic module ϕ over Fp.

Corollary 6.5. (i) The map of Theorem ?? defines an isomorphism from the set
of isogeny classes of elliptic modules of rank r and characteristic v over Fp, to the
set of (F, v)-types (F ′, v′). (ii) The ring of endomorphisms of an elliptic module of
type (F ′, v′) is an order in a division algebra which is central over F ′ and whose

nonzero invariants are 1/r′ at v′,−1/r′ at ∞. (iii) Moreover, Tw′(E
′) = (A′w′)

r′

for w′ 6= v′ in SpecA′, and Tv′(E
′) = {0}.

Proof. Replacing ϕ by an isogenous elliptic module ϕ′ amounts to conjugating F ′

by an element of D×. �

Proposition 6.6. If (F ′, v′) is an (F, v)-type, the completion F ′v′ of F ′ at v′ is Fv.

Proof. We have to show that the decomposition group of F ′/F at v′ is trivial,
namely that any endomorphism σ of F ′ over F which fixes v′ is trivial. Let t be a
nonconstant element of A′ whose only zeroes are at v′; its only pole is at ∞. Then
F ′ = F (tm) for any positive integer m. Since F ′∞ = F ′ ⊗F F∞ is a field we have
σ∞ = ∞. Hence the only zeroes (resp. poles) of σt are at v′ (resp. ∞), and they
have the same multiplicity as those of t. Thus t/σt has neither zeroes nor poles;
hence it is a scalar in F ′. Since the field of scalars of F ′ is finite, there exists a
positive integer m with σtm = tm. As F ′ is equal to F (tm), we conclude that σ
fixes F ′, as required. �

Let Y = Y (F ′, v′) denote the isogeny class of elliptic modules ϕ of rank r and
characteristic v over Fp of (F, v)-type (F ′, v′), equipped with a level structure ψ :

(F/A)r → E(Fp) of all levels. Then the set Mr,v(Fp) of isomorphism classes of

elliptic modules ϕ of rank r and characteristic v over Fp with level structure ψ is
the disjoint union of the Y over all types. Proposition ?? defines an action of the
adèle group G(Af ) = GL(r,Af ) on Mr,v(Fp).
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Proposition 6.7. (i) The group G(Af ) acts transitively on Y = Y (F ′, v′).
(ii) The Frobenius endomorphism Frv : x 7→ xqv of Fv = A/v acts on Y .

Proof. (i) Let E = Eϕ, E′ = Eϕ′ be isogenous elliptic modules. Then there is an
isogeny P : E → E′. Denote its kernel by H. Via the level structure ψ : (F/A)r →
E(Fp) we identify H with the subgroup ψ−1H of (F/A)r. Let g be an element of

G(Af ) ∩M(r, Â) whose kernel is H when acting on (F/A)r. Then gE is E′. We
use the diagram

1 → ψ−1H → (F/A)r −→g (F/A)r → 1
↓ o ψ ↓ ↓gψ

1 → H → E(Fp) P−→ E′(Fp) → 1.

Also, given E, and g in G, then gE is isogenous to E by definition.
(ii) This follows from Proposition ??(ii), with pj = qv in the notations there. �

Our aim in this remainder of this section is to fix notations and embeddings,
relative to the fields F and F ′, which are used in the description of the isogeny
class Y (F ′, v′) in section 7 below. Denote by A′ the ring of adèles of F ′, by A′f
the ring of adèles of F ′ without the ∞ component, and by A′f v

′
the F ′-adèles

without the ∞ and v′ components. Similarly we have A, Af and Avf for F . Put

Gv = GL(r, Fv) and Gv = GL(r,Avf ). Then G(Af ) = GL(r,Af ) is Gv × Gv.

Recall that r′ = r/[F ′ : F ]. To fix an embedding of GL(r′,A′f ) in G(Af ), note

that the F -vector spaces F ′r
′

and F r are isomorphic. At each w in SpecA we
then have an isomorphism over Fw of ⊕w′F ′w′r

′
= (F ′ ⊗F Fw)r

′
with F rw; the sum

ranges over all places w′ of F ′ over w. We may choose the isomorphism so that
⊕w′A′w′r

′
= (A′⊗AAw)r

′
is mapped to Arw, namely we have ⊕w′Tw′(E′) ' Tw(E).

Further, we obtain an embedding of
∏
w′ GL(r′, F ′w′) in Gw = GL(r, Fw), and we

may regard the image as lying in a standard (diagonal) Levi subgroup. At w = v
we have F ′ ⊗F Fv = F ′v′ ⊕ (⊕w′F ′w′), where w′ ranges over the places of F ′ over
v with w′ 6= v′. Recall that F ′v′ ' Fv by Proposition ??. Consequently we have
an embedding of GL(r′, F ′v′) as the group of matrices

(
g 0
0 1

)
in the standard Levi

subgroup Mv of the standard (upper triangular) parabolic subgroup Pv of Gv of
type (r′, r− r′). The group Pv depends on F ′. Denote by Nv the unipotent radical
of Pv, and by Sv the subgroup of Mv which is the image of the group of g in
GL(r′, F ′v′) whose determinant det g is a unit in F ′v′ .

Recall that D′× = ZD(F ′)× is the multiplicative group of a division algebra
of rank r′ central over F ′ which splits away from v′,∞. Fixing an isomorphism
D′w′ = D′ ⊗F ′ F ′w′ ' M(r′, F ′w′) at each w′ 6= v′,∞, we embed D′× diagonally in

GL(r′,A′f v
′
), hence in Gv = GL(r,Avf ). At v′ we have (i) that D′v′ = D′ ⊗F ′ F ′v′ is

a division algebra, and (ii) an epimorphism

D′v′
× → Z ' F ′v′×/A′v′× ' GL(r′, F ′v′)/Sv,

defined by the composition of the reduced norm and the valuation. Hence we have
a map D′× → Gv/Sv which factorizes through Mv/Sv, obtained from combining all
maps D′w′ → Gv/Sv for all places w′ over v. In conclusion we obtain an embedding
of D′× in Gv ×Mv/Sv, hence in G/Sv.
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7. Counting points

We shall now describe each isogeny class in Mr,v(Fp) and the action of the
Frobenius on it. The group G(Af ) acts transitively on the isogeny class, and our
task is to find the stabilizer of an element in the class, in order to describe the
isogeny class as a homogeneous space. Recall that the isogeny class in Mr,v(Fp)
which corresponds to the type (F ′, v′) is denoted by Y (F ′, v′). Denote by Frv the
Frobenius morphism x 7→ xqv of Fv over Fv = A/v. As noted in Proposition ??
(ii), Frv acts on Y (F ′, v′). We use the notations Mv, Nv, Sv, etc., introduced at
the end of section 6. We shall now prove the following

Proposition 7.1. (1) Let (ϕ,ψ) be an elliptic module with level structure in the
isogeny class Y (F ′, v′) in Mr,v(Fv). Then the subgroup of G(Af ) which fixes the
(isomorphism class of the) pair (ϕ,ψ) is equal to NvSvD

′× (the embedding of D′×

in G(Af )/Sv is defined at the end of section 6). Hence Y (F ′, v′) is isomorphic
to (G(Af )/SvNv)/D

′× as a homogeneous space. (2) The Frobenius morphism Frv
acts as right multiplication by an element g in G(A′f ) (⊂ G(Af )) whose component

gw′ is 1 at each w′ 6= v′ in SpecA′, and gv′ is an element of GL(r′, F ′v′) whose
determinant is a uniformizer of F ′v′ ' Fv.

Proof. (i) Since (F/A)r = ⊕w(Fw/Aw)r, the level structure ψ : (F/A)r → E(Fp)
is a set {ψw : (Fw/Aw)r → Ew(Fp)} of level structures for all w in SpecA. As
usual, for each w we put Ew = lim−→

m

Eπππmw , where Eπππmw is the annihilator of πππmw in E,

and πππw is an element of A− Fq whose only zero is at w. By Theorem ??, at each

w 6= v the level structure ψw : (Fw/Aw)r → Ew(Fp) is an isomorphism; it defines
an isomorphism of

Arw = HomAw(Fw/Aw, (Fw/Aw)r) with Tw(E) = HomAw(Fw/Aw, Ew(Fp)).

For g′w in Gw ∩M(r,Aw) and a 6= 0 in Aw, we clearly have that g′wψw = aψw if
and only if g′w = a, when w 6= v.
(ii) Recall from the end of section 6 that at v we have

Pv = MvNv ⊂ Gv, Mv = M ′vM
′′
v , M

′
v = GL(r′, Fv), M

′′
v = GL(r − r′, Fv).

Let g be an element of G(A′f ) with gw′ = 1 at w′ 6= v′, and gv′ in M ′v∩M(r,Av). To

analyze the action of g on (ϕ,ψ), recall that Tv′(E
′) = {0}; E′ = Eϕ′ , and ϕ′ is the

elliptic A′-module extending ϕ from A to A′. The level structure map is therefore
the zero map ψv′ : (F ′v′/A

′
v′)

r → {0}. For any nonscalar b in A′ whose only zeroes

are at v′ we have that ϕ′b(x) is equal to a nonzero scalar multiple of x|b|
r

. Let n
denote the valuation of the determinant of gv′ . If n = 0 then multiplication by gv′

does not change the cardinality of (A′v′/bA
′
v′)

r, hence gv′ψv′ = ψv′ . If n = 1, then

the kernel of multiplication by gv′ on (F ′v′/A
′
v′)

r′ is isomorphic to πππ−1A′v′/A
′
v′ ;

πππ denotes a uniformizer in A′v′ . Hence the element g acts on ϕ as the quotient

map P on Ga,Fp whose kernel corresponds to the ideal (xqv ) of Fv[x]. As noted in

Proposition ??, this is the same as the action of Frv. For general n, g acts as Frnv ;
(2) follows.

(iii) As noted at the end of section 6, at v we have Tv(E) ' Ar−r
′

v . The level

structure ψv defines as in (i) a surjection Arv → Ar−r
′

v with kernel Ar
′

v . The level
structure ψv is fixed by the group action (together with the elliptic module ϕ) when
this map is fixed. Note that any g′v in Pv = M ′vM

′′
vNv can be written uniquely as
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a product m′m′′n with m′ in M ′v, m
′′ in M ′′v , n in Nv. It follows that g′v in

Gv ∩M(r,Av) and a 6= 0 in Av satisfy g′vψv = aψv if and only if g′v lies in Pv,
m′′ = a and deg(detm′) = r′ deg(a).
(iv) The action of G(Af ) on the isogeny class Y (F ′, v′) defines for each g′ in G(Af )∩
M(r, Â) an isogeny ρ(g′) in B = Fq[τ ] on the elliptic module ϕ : A→ B (to another
elliptic module ϕ′ in Y (F ′, v′)); for each g in G(Af ) we obtain an element ρ(g) in
the quotient ring D = Fq(τ). It follows from (i) and (iii) that ρ(g) = 1 if and only if
g lies in SvNv. Our purpose is to determine the set of g in G(Af )/SvNv such that
ρ(g) is an element of D = Fq(τ) which commutes with ϕ; in other words, ϕ′ is ϕ.
Namely, we have to determine the centralizer ZD(A) in D of (the image by ϕ of)
A (in D). The center of D is L, and F ′ = AL. Hence ZD(A) = ZD(F ′) = D′. We
conclude that (G(Af )/SvNv)/D

′× acts transitively on the set of points in Y (F ′, v′),
as required. �

Let n be a positive integer. Let Fv,n denote the extension of degree n of Fv = A/v

in Fp. The set Mr,v,I(Fv,n) of Fv,n-points of Mr,I,v, namely the set of isomorphism
classes of elliptic modules of rank r, characteristic v, level I, over Fv,n, is the set

Mr,v,I(Fp)Frnv of the points in Mr,v,I(Fp) fixed by Frnv . It is the union over (F ′, v′)
of the sets Y F, where Y = Y (F ′, v′) and F in GL(r′, Fv) has degv(detF) = n.

Let us describe the homogeneous space

Y = U\(G(Af )/SvNv)/D
′× = (Uv\Gv/SvNv × Uv\Gv)/D′×,

where U = UI is the congruence subgroup defined by I. By the Iwasawa decompo-
sition

Gv = UvPv = UvMvNv

we have

Uv\Gv/Nv = Uv ∩Mv\Mv,

and

Uv\Gv/SvNv = Z× (Uv ∩M ′′v \M ′′v ),

as M ′v/Sv = Z. Further,

D′ ⊗F ′ (F ′ ⊗F Fv) = (D′ ⊗F ′ F ′v′)⊕ (⊕w′M(r′, F ′w′))

(w′ ranges over the primes of F ′ above v with w′ 6= v′), and its multiplicative group
maps onto Z×M ′′v ; we write (v(γ), γ′′v ) for the image in Z×M ′′v of γ in D′×; here
γ′′v = (γ, . . ., γ) lies in the subgroup

∏
w′ GL(r′, F ′w′) of M ′′v . The group D′× maps

diagonally into Uv\Gv. Hence

Y = [Z× (Uv ∩M ′′v \M ′′v )× (Uv\Gv)]/D′×,

and F is the element (n, 1, 1) in Y . Note that (n, 1, 1) commutes with (the image
of) D′×.

Next we describe the points y in Y fixed by F. Thus yF = y. Then y is
represented by a triple g = (z, gv, g

v) with z in Z, gv in M ′′v , g
v in Gv. Moreover,

there are uv in Uv ∩M ′′v , uv in Uv, and γ in D′×, such that gF = (uvu
v)−1gγ.

Then v(γ) = degv(det γ) equals n, where det denotes the reduced norm on the
multiplicative group of the division algebra D′ ⊗F ′ F ′v′ . Hence the equation gF =
(uvu

v)−1gγ becomes

z + n = z + v(γ), gvγ
′′
v g
−1
v = uv and gvγ(gv)−1 = uv.
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To interprete these equations (in the next corollary), it will be convenient to
introduce the following terminology. By a parabolic subgroup P of Gv we mean a
standard one, one which contains the upper triangular subgroup. Given h in Gv
there is a parabolic P such that the conjugacy class of h intersects (nontrivially) P ,
but not any proper parabolic subgroup of P . We call h semisimple if its conjugacy
class intersects the (standard, i.e., containing the diagonal) Levi subgroup M of
P . Note that this notion differs from the usual definition where h is required to be
diagonalizable over an algebraic closure of Fv. For example, when charFv = 2 and
b is in Fv − F 2

v , the element h(b) = ( 0 1
b 0 ) is semisimple in GL(2, Fv), but it is not

diagonalizable over F v.
An equivalent definition states: h is semisimple if the Fv-subalgebra H of the

matrix algebra M(r, Fv) generated by h is a semisimple algebra over Fv, namely H
has no nonzero nilpotents. Then H is a direct sum of field extensions of Fv.

In general, let R be the nilradical of H. Then H = H/R is again a sum of fields.
The problem of finding a Jordan decomposition for h is equivalent to the problem
of lifting H to H, which is possible if H is separable over Fv but not in general
(e.g., consider a nonperfect field Fv of characteristic 2, and take a ∈ Fv − F 2

v . Put
H = Fv[x] with x2 = a+ y, y2 = 0. Then H = Fv[a

1/2], but there is no element in
H with square a).

Every h in Gv has a Jordan decomposition as a product h′h′′ of commuting
semisimple and unipotent elements h′ and h′′ of Gv.

A (necessarily semisimple) element h is called elliptic if the center of the central-
izer Zh(Gv) of h in Gv is compact modulo the center Zv of Gv. If h is semisimple
then Zh(Gv) '

∏
i GL(ri, Fi), 1 ≤ i ≤ t, where Fi are field extensions of Fv and∑

i ri[Fi : Fv] = r. Correspondingly, we write h = h1 ⊕ · · · ⊕ ht. Each hi is elliptic
in GL(ri[Fi : Fv], Fv). In the example above, h(b) is elliptic; its centralizer is the
multiplicative group of the (inseparable) quadratic extension of Fv generated by
h(b). Let Ni be the norm map from Fi to Fv. Let n be an integer.

Definition 7.1. The semisimple element h of Gv is called n-admissible if there
exists j (1≤j≤t) such that deg(Njhj) = n and deg(Nihi) = 0 for all i 6= j. An
element h of Gv is called n-admissible if its semisimple part is n-admissible.

There is a natural bijection from the set of conjugacy classes δ′ in (D′⊗F ′ F ′v′)×
to the set of elliptic conjugacy classes δ in M ′v = GL(r′, F ′v′). Here δ′ corresponds
to δ if they have equal characteristic polynomials. We conclude

Corollary 7.2. The image in (D′⊗F ′ F ′v′)× of the element γ of D′× defined above
by y in Y F corresponds to an n-admissible element of Gv. �

However, the element γ is not uniquely determined by y. We have the following

Lemma 7.3. The conjugacy class of γ in D′× is uniquely determined by y.

Proof. Suppose that the representative g = (z, gv, g
v) is replaced by g′ = u′gδ, u′

in U , δ in D′×. Then there are u′′ in U , γ′ in D′× with u′gδF = (u′′)−1·u′gδ · γ′.
Use g = u−1gγF−1 on the left to get u′−1u′′u′u−1 = g(δγ′F−1δ−1Fγ−1)g−1. Hence
v(γ′) = v(γ), and the element δγ′δ−1γ−1 of D′× has characteristic polynomial
whose coefficients are integral at each w′ in SpecA′, and also at ∞, since the
determinant of δγ′δ−1γ−1 is rational in F ′× and a unit at each w′ in SpecA′.
Hence δγ′δ−1γ−1 is a scalar which is a unit in F ′×. It has to be 1 since U = UI is a
congruence subgroup and I 6= {0} is prime to v. Hence γ′ = δ−1γδ, as required. �
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Proposition 7.4. Let γ be an element of D′× which is n-admissible over Fv. Let
Zγ(D′×) be the centralizer of γ in D′×. The set of points y in Y F which correspond
to γ is isomorphic to the set of cosets g = (z, g′′v , g

v) in

[Z× (Uv ∩M ′′v \M ′′v )× (Uv\Gv)]/Zγ(D′×)

with gvγ(gv)−1 in Uv and g′′vγ
′′
v (g′′v )−1 in Uv ∩M ′′v .

Proof. We have to determine the set of g in Z×(Uv∩M ′′v \M ′′v )×(Uv\Gv) which yield
γ, namely satisfy (i) u−1gγ = gF; here and below u, u′, u′′ lie in (Uv ∩M ′′v ) × Uv.
Replacing g by another representative g′ = u′gδ (δ in D′×) which also yields γ,
thus u′′−1g′γ = g′F or (ii) u′−1u′′−1u′gδγ = gδF, we conclude from (i) and (ii) that
δγ = γδ, and the proposition follows. �

Remark 7.1. If γ is an n-admissible element of Gv then it determines r′, Mv =
M ′v×M ′′v and a field extension Fv(γ) of Fv of degree r′ and residual degree e′v(γ) =
[Z : degv(detZγ(M ′v))]. Here det is the determinant in M ′v; detZγ(M ′v) is the image
of the norm from Fv(γ)× to F×v . Further, degv is the valuation on F ′v′ = Fv. The
global element γ of D′× determines the type (F ′, v′); see part (ii) of the proof of
Proposition 7.5 below.

Definition 7.2. (i) The centralizer G′ = Zγ(G) in G of a semisimple element γ in
G(F ) is defined over F . An invariant differential form ω′ of maximal degree on G′

rational over F defines a Haar measure on G′w = Zγ(Gw) at each place w of F , and
the product Haar measure on G′(A) = Zγ(G(A)). Let Z∞ be the center of G∞.
The volume

|Zγ(G(A))/Zγ(G)Z∞| = |Zγ(G∞)/Z∞| · |Zγ(G(Af ))/Zγ(G)|

is independent of the choice of the rational form. The differential form defines
also a measure on any inner form of G′. Choose the measure so that the volume
|Uv∩G′v| is one. Similarly, for any semisimple γ in M ′′v we choose the Haar measure
on Zγ(M ′′v ) with |Uv ∩ Zγ(M ′′v )| = 1. In particular |Uv ∩M ′′v | = 1. When γ = 1
we have G′ = G and the measure is denoted by ω. On discrete sets we choose the
measure which assigns the value one to each point. Let dg be the product measure
on Z×M ′′v ×Gv.
(ii) Let χv be the quotient by |Uv| of the characteristic function of Uv. For γv in
Gv put

Φ(γv, χv) =

∫
Gv/Zγ(Gv)

χv(gγg−1)dg.

Let χ′′v be the characteristic function of Uv ∩M ′′v in M ′′v . For γ′′v in M ′′v put

Φ(γ′′v , χ
′′
v) =

∫
M ′′v /Zγ′′v

(M ′′v )

χ′′v(gγ′′v g
−1)dg.

The measures are those of (i).

Proposition 7.5. The set Mr,v,I(Fv,n) is isomorphic to the union over all conju-
gacy classes of γ in G(F ) which are elliptic over F∞ and n-admissible over Fv, of
the cosets

(z, g′′v , g
v) ∈ [Z× (Uv ∩M ′′v \M ′′v )× (Uv\Gv)]/Zγ(G)

with

χv(gvγ(gv)−1)χ′′v(g′′vγ
′′
v (g′′v )−1) 6= 0.
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The number of cosets corresponding to γ is∫
(Z×M ′′v ×Gv)/Zγ(G)

χ′′v(g′′vγ
′′
v (g′′v )−1)χv(gvγ(gv)−1)dg

= |Zγ(G(Af ))/Zγ(G)| · e′v(γ) · Φ(γ′′v , χ
′′
v) · Φ(γ, χv),

where e′v(γ) = [Z : degv(detZγ(M ′v))] is defined in Remark ??.

Proof. (i) The set Mr,v,I(Fv,n) is isomorphic to the union over all types (F ′, v′)
of the sets Y F, Y = Y (F ′, v′), F = Frnv . Each set Y F is the disjoint union of
sets parametrized by conjugacy classes γ in D′×, where D′ is defined by F ′. The
conjugacy class γ in D′× corresponds to a conjugacy class also denoted by γ in
the centralizer G′ = ZG(F ′) of F ′× in G(F ), hence in G(F ). This conjugacy
class is elliptic in G(F∞), and n-admissible in G(Fv). In particular the centralizer
Zγ((D′⊗F ′F ′v′)×) of γ in (D′⊗F ′F ′v′)× is isomorphic to the centralizer Zγ(M ′v) of γ
in M ′v, so that e′v(γ) is defined (see Remark ??). Moreover the inner forms Zγ(D′×)
and Zγ(G′) are isomorphic, and the conjugacy class γ intersects (Uv ∩M ′′v )× Uv.
(ii) Conversely, let γ be an element of G(F ) which is elliptic in G(F∞), n-admissible
in G(Fv) (hence γ determines r′ and a Levi subgroup Mv = M ′v × M ′′v of Gv,
which is standard, up to conjugacy), and its conjugacy class in G(F ) intersects
(Uv ∩M ′′v )× Uv. Then the conjugacy class of γ determines a unique type (F ′, v′).
Indeed, the definition of n-admissibility determines a place v′′ of F (γ) over v. The
element γ is a unit outside v′′,∞, and its only zero is at v′′. Let F ′ be the smallest
field of the form F (γm), where m is a positive integer. Let v′ be the restriction of
v′′ to F ′. Then (F ′, v′) is a type which is uniquely determined by the conjugacy
class of γ, and the proposition follows. �

Our next aim is to express the factor e′v(γ)Φ(γ′′v , χ
′′
v) and the condition that

γ is n-admissible, in a unified, convenient way. We define in the next section a
spherical function fn,v on Gv whose orbital integral Φ(γ, fn,v) will turn out to have
the property that it is zero unless γ is n-admissible in Gv, where it is equal to our
factor.
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8. Spherical functions

In this section we compute the orbital integrals of a certain spherical function,
which is introduced in Definition ?? below. We give two methods of computation.
That of Proposition ?? is natural; it is based on representation theoretic techniques,
as presented for example in [?], [?], [?], [?], [?], [?], [?], [?]. That of Proposition
8.12 is elementary. It is due to Drinfeld. This section is independent of the rest of
the work. In particular, we work with a local field F which is nonarchimedean but
of any characteristic.

We begin with fixing the notations. Let R be the ring of integers of F ; G =
GL(r, F ); K = GL(r,R); Z the center of G; A the diagonal subgroup; U the upper
triangular unipotent subgroup; B = AU ; P = MN a maximal parabolic subgroup
of G of type (s, r − s), with Levi subgroup M = M ′ ×M ′′ (M ′ = GL(s, F ),M ′′ =
GL(r − s, F )) containing A, and unipotent radical N contained in U . Write Ps,
M ′s, etc. to indicate the dependence on s (1 ≤ s ≤ r).

Let πππ be a local uniformizer. Put q = |R/πππR|, and normalize the absolute value
|·| and the valuation deg by |πππ| = q−1 and |a| = q− deg(a). All Haar measures are
normalized here to assign the volume one to the intersection with K.

Let Cc(G//K) (resp. Cc(Z\G//K)) be the convolution algebra of spherical,
namely complex valued K-biinvariant compactly supported functions f , on G (resp.
G/Z). Similarly we have Cc(M//M ∩ K). The map f 7→ f , f(x) =

∫
Z
f(zx)dz,

takes Cc(G//K) onto Cc(Z\G//K).
Let x be a regular element of G. If the eigenvalues of x are x1, . . ., xr, put

∆(x) =
∣∣∣∏
i<j

(xi − xj)2/xixj

∣∣∣1/2.
For x = (x′, x′′) in M = M ′ ×M ′′ put ∆M (x) = ∆M ′(x

′)∆M ′′(x
′′).

Let T be the centralizer of x in G, and ′T its split component. Put

Φ(x, f) =

∫
G/T

f(gxg−1)dg, F (x, f) = ∆(x)Φ(x, f),

′Φ(x, f) =

∫
G/′T

f(gxg−1)dg, ′F (x, f) = ∆(x)′Φ(x, f).

For x in M , f on M , put ΦM (x, f) =
∫
M/T

f(gxg−1)dg, etc.

For f on G put fN (x) = δP (x)1/2
∫
N

∫
K
f(k−1xnk)dndk. Then F (x, f) =

FM (x, fN ) for x in M (see, e.g., [?], section 7). For x = (x1, . . ., xr) in A with
mi = deg(xi) we put m = (m1, . . .,mr) and F (m, f) = q1/2〈

∑
α,m〉 ∫

U
f(xu)du;

the sum runs through all positive roots α of A in U . For f in Cc(G//K) we then
have that F (x, f) = F (m, f); namely F (x, f) depends only on the valuations of the
eigenvalues of x.

For f in Cc(G//K) we define the Satake transform f∨ of f to be the poly-
nomial f∨(z) =

∑
m F (m, f)zm in z1, . . . , zr, z

−1
1 , . . . , z−1

r ;m runs through Zr;
z = (z1, . . ., zr) varies over C×r and we put zm = zm1

1 . . .zmrr . The symmetric
group Sr on r letters acts on C×r by permuting the indices of the entries of z. The
theory of the Satake transform asserts that the map f 7→ f∨ is an isomorphism from
the algebra Cc(G//K) to C(C×r/Sr). This isomorhism has the following alterna-
tive description. We first note that the set of unramified irreducible G-modules is
isomorphic to C×r/Sr as follows. To z corresponds a unique irreducible unramified
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constituent π(z) in the G-module I(z) normalizedly induced from the character

(bij) 7→
∏
i z

deg(bii)
i of B. The elements z1, . . . , zr are called the Hecke eigenval-

ues of π(z), or I(z). Then Cc(G//K) is isomorphic to the algebra C(C×r/Sr) by
f∨(z) = tr(π(z))(f). In particular, to define a spherical function it suffices to define
its Satake transform, or equivalently its orbital integrals on the split set of G.

Definition 8.1. Let fn = f
(r)
n be the member of Cc(G//K) defined by tr(π(z))(fn)

= qn(r−1)/2
∑r
i=1 z

n
i ; equivalently, fn is defined by F (m, fn) = qn(r−1)/2 if m =

(n, 0, . . ., 0) in Zr/Sr, and F (m, fn) = 0 otherwise.

For x in G = GL(r, F ), put v(x) = deg(detx); it is an integer, in Z. For x in
PGL(r, F ), define v(x) in Z/rZ to be v(x′) mod r, where x′ is a representative of x
in G. The superscript (r) in f (r) is to emphasize that this is a function on GL(r, F ).

Proposition 8.1. The normalized orbital integral F (fn) is supported on the n-
admissible (see Definition ??) set of G.

Proof. (i) Let Tn be the set of x in G with v(x) = deg(detx) equals n. Then the
integral F (fn) is zero outside Tn. Indeed, the set Tn is K-biinvariant, and the
orbital integrals of fn multiplied by the characteristic function of Tn are equal to
those of fn on A. Consequently fn itself is supported on Tn.
(ii) Given s we have P = Ps = MN , and a characteristic function χ of the set
of x = (x′, x′′) in M with |detx′| ≤ | detx′′| (thus v(x′) ≥ v(x′′)). The func-

tion χf
(r)
nN lies in Cc(M//M ∩ K). We claim that it is equal to the function

qn(r−s)/2f
(s)
n (x′)f

(r−s)
0 (x′′) in Cc(M//M ∩ K). Indeed, for any m = (m′,m′′) in

Zr, where m′ = (m′i) in Zs, m′′ = (m′′j ) in Zr−s, we have

FM (m,χf
(r)
nN ) = FM (m, f

(r)
nN ) = F (m, f (r)

n )

= qn(r−s)/2FM
′
(m′, f (s)

n )FM
′′
(m′′, f

(r−s)
0 )

if
∑
im
′
i ≤

∑
jm
′′
j , by definition, and

FM (m,χf
(r)
nN ) = 0 = FM

′
(m′, f (s)

n )FM
′′
(m′′, f

(r−s)
0 )

otherwise. This proves the claim. Since

FM ((x′, x′′), χf
(r)
nN ) = F ((x′, x′′), f (r)

n )

on the x = (x′, x′′) with χ(x) 6= 0, the proposition follows by induction on s ≥ 1. �

Definition 8.2. A (locally-constant compactly supported complex valued) function
f on G is called discrete if its orbital integral Φ(x, f) vanishes at each regular
(distinct eigenvalues) nonelliptic element x of G.

Corollary 8.2. For every n ≥ 1 there exists a discrete function fdisc
n on G, and

a function f reg
n on G which vanishes on the elliptic set of G, such that Φ(x, fn) =

Φ(x, fdisc
n ) + Φ(x, f reg

n ) for every x in G.

Proof. Note that all eigenvalues of an n-admissible element have the same valua-
tions if and only if the element is elliptic, and if and only if none of its eigenvalues
is a unit. Since the valuation group is discrete, and the topology on G is totally dis-
connected, it is clear that there exists an open closed subset T of G which contains
all n-admissible x in G which are not elliptic. The corollary holds with f reg

n = θfn,
where θ is the characteristic function of T . �
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By virtue of Proposition ??, to compute Φ(x, fn) it suffices to consider n-
admissible x. In this case we may assume that x = (x′, x′′) lies in M = M ′ ×M ′′,
where x′ is elliptic in M ′ with v(x′) = n, and x′′ lies (up to conjugation in M ′′) in
M ′′ ∩K = GL(r− s,R). Note that the eigenvalues of x′′ are units, but those of x′

are not. In this case

∆M (x)/∆(x) = DG/M (x)−1/2 = δP (x)−1/2 = q−n(r−s)/2

(see, e.g., [?], Proposition 7). Hence

Φ(x, f (r)
n ) = (∆M (x)/∆(x))ΦM (x, f

(r)
nN ) = q−n(r−s)/2ΦM (x, f

(r)
nN )

= q−n(r−s)/2[qn(r−s)/2ΦM
′
(x′, f (s)

n )ΦM
′′
(x′′, f

(r−s)
0 )]

= ΦM
′
(x′, f (s)

n )ΦM
′′
(x′′, f

(r−s)
0 ).

Since the second factor here is Φ(x′′, χ′′v) in the notations of Proposition ??, this
reduces the computation to the case where x is elliptic; here r = s and x = x′.

Let G be a reductive p-adic group with compact center. A unitary (by which we
mean unitarizable) irreducible admissible G-module π0 is called square-integrable if
its matrix coefficients are absolutely square-integrable on G. Let π0 be a square-
integrable G-module.

Definition 8.3. A compactly supported locally-constant complex valued function
f0 on G is called a pseudo coefficient of π0 if trπ0(f0) = 1 and trπ(f0) = 0 for
every irreducible tempered G module π inequivalent to π0.

Although the following is valid in greater generality, we state it only in our
context of G = GL(r, F ).

Lemma 8.3. (1) For any square integrable π0 there exists a pseudo coefficient.
(2) The orbital integral Φ(x, f0) of a pseudo coefficient f0 is zero on every regular
nonelliptic element x of G, and ′Φ(x, f0) = χπ0

(x) on the regular elliptic set of G;
here χπ0

is the complex conjugate of the character χπ0
of π0.

Proof. (1) follows from the trace Paley-Wiener theorem of [?]; (2) is Theorem K of
[?] in characteristic zero. When charF is positive, denote by G′ an anisotropic form
of G. Note that one has a correspondence of G modules with G′-modules, stated by
means of character relations; this well known correspondence can be deduced, e.g.
as in [?], using [?] from the analogous result in characteristic zero. Alternatively,
a simple proof of this correspondence, also in positive characteristic, is given in
[?]. From the corresponding standard fact for G′-modules, it then follows that the
restrictions of the characters of the square integrable G-modules to the elliptic set
make a complete orthonormal set in the usual inner product on the set of class
functions on the elliptic regular set of G. Since the character is a locally constant
function on the regular set (a well known result of Harish-Chandra), the orbital
integral of a pseudo coefficient f0 of π0 is related to χπ0

as in (2). �

For each s ≤ r, let Sts be the Steinberg PGL(s, F )-module contained in Is =
I(q(s−1)/2, q(s−3)/2, . . ., q(1−s)/2). By [?] it is the unique square-integrable con-
stituent in Is. Let ωs be an unramified character of F× primitive of order s, and
put ζs = ωs(πππ)−1. Let fs,i be a pseudo coefficient of Sts⊗ωis; it exists by Lemma
?? above. Put un,s(x) =

∑s
i=1 ζ

ni
s fs,i(x).
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Lemma 8.4. If x is regular then ′Φ(x, un,s) is zero unless x is elliptic with v(x) ≡
n(mod s), where it is equal to (−1)s−1s.

Proof. This follows from Lemma ??(2), since the character of Sts is (−1)s−1 on the
elliptic set. �

Let J be an Iwahori subgroup of G. Then we have the following.

Lemma 8.5. An irreducible G-module π has a nonzero J-fixed vector if and only
if it is a subquotient of an induced unramified G-module I(z).

Proof. This is (4.7) in [?]. Another proof, and a generalization to the tame sub-
group, is in [?], Theorem 2.1. �

Corollary 8.6. The representation Str,i has a nonzero J-fixed vector.

Proposition 8.7. Let π0 be a square-integrable G-module which has a nonzero J-
fixed vector. Then π0 has a pseudo coefficient f0 with the property that trπ(f0) = 0
for every irreducible π which has no nonzero J-fixed vector.

Proof. If fπ0 is a pseudo coefficient of π0, and 1J is the characteristic function of
J , then f0 = 1J ∗ fπ0 . �

Remark 8.1. By the results of [?] and [?], the compact open subgroup J is “good”
in the following sense. The category C of algebraic G-modules decomposes as the
direct sum of the category CJ of G-modules whose subquotients all have nonzero
J-fixed vectors, and the category CJ of G-modules whose subquotients never have
nonzero J-fixed vectors. Let Z(C) = Z(CJ)⊕Z(CJ) be the corresponding decom-
position of the Bernstein co-center (see [?], [?]) of this category. Let H(G) denote
the convolution algebra of compactly supported locally constant functions on G.
By [?] there exists f1 in H(G) which acts trivially on CJ and as zero on CJ . Let
f ′0 be any pseudo coefficient of π0. Then f0 = f ′0 ∗ f1 has the properties asserted
by the proposition.

Corollary 8.8. There exists a pseudo coefficient fr,i of Str ⊗ωir with the following
property. Every irreducible π with trπ(fr,i) 6= 0 has a nonzero J-fixed vector.

The main result of this section is the following

Proposition 8.9. Suppose that x is elliptic. Then ′Φ(x, f
(r)
n ) is r if v(x) = n, and

0 otherwise.

Proof. To prove the proposition it suffices to show that for x elliptic, ′Φ(x, f
(r)

n ) is
zero unless v(x) ≡ n(mod r), where the value is r. This will now be proven in five
steps, when x is elliptic regular. Then we will reduce the case of any elliptic x to
this special case.
(i) By induction we assume the claim for all s < r, and prove it for r. For each
s < r, let hn,s be a compactly supported locally constant function on Z\G such

that for all regular x we have ′Φ(x, hn,s) = 0 unless modulo Z the element x

is n-admissible of size (s, r − s), where ′Φ((x′, x′′), hn,s) = s′Φ(x′′, f
(r−s)
0 ). The

existence of hn,s is proven in [?], I.7, using the trace Paley-Wiener theorem of

[?]. Put hn =
∑r−1
s=1 hn,s. The induction assumption implies that hn satisfies

Φ(hn) = Φ(fn) on the regular nonelliptic set. Hence Φ(fn − hn) is supported on
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the elliptic set, and trπ(fn−hn) = 0 for every nonelliptic G-module π (a G-module
π is called elliptic if its character is not identically zero on the regular elliptic set).
(ii) Let πPs denote the Ms-module of Ns-coinvariants of a G-module π (see [?]).
The definition (i) of hn, the Theorem of [?] and the Weyl integration formula, imply
that trπ(hn) =

∑
s<r trπPs(hn,s,Ns). If trπ(hn) 6= 0 then there is s such that the

Ms-module πPs contains an irreducible π′s×π′′s , where π′′s is an GL(r−s, F )-module

with a nonzero GL(r − s,R)-fixed vector (since f
(r−s)
0 is spherical), and π′s is an

GL(s, F )-module with a nonzero J-fixed vector (by Corollary ??). Suppose that π
is irreducible. Then it follows from Frobenius reciprocity that π is a constituent of
some unramified induced I(z). Hence π has an Iwahori fixed vector by Lemma ??.
(iii) In particular, if π is an irreducible tempered PGL(r, F )-module and trπ(fn −
hn) 6= 0, then π is elliptic, hence (by [?]) ramified (does not have a nonzero K-fixed
vector), and trπ(hn) = trπ(hn − fn) 6= 0. But then π has (by (ii)) a nonzero
J-fixed vector, and by [?] the tempered π is of the form Str ⊗ωir for some i.
(iv) Since hn is supported on the x in G with v(x) ≡ n(mod r), we have

tr(Str ⊗ωir)(hn) = ωir(πππ
n) tr Str(hn) = ζ−inr tr Str(hn).

(v) By [?], for each maximal parabolic Ps we have (Str)Ps = π′s × π′′s where π′s, π
′′
s

are Steinberg GL(s, F ), GL(r − s, F )-modules. In particular π′′s does not have a
GL(r − s,R)-fixed vector unless r − s = 1. Hence from now on we take s = r − 1
and P = Ps. We have

tr Str(hn) = tr(Str)P (hn,N ) = tr(Str)P (hn,s,N ),

and

(Str)P = (ν1/2 ⊗ Str−1)× ν(1−r)/2.

Here ν(a) = |a| is the valuation character on F×. Note that if Φ(x, hn) 6= 0

then ν1/2(detx′) = q−n/2, which is the inverse of the factor relating F (f
(r)
n ) and

F (f
(s)
n )F (f

(r−s)
0 ); see the proof of Proposition ??. Hence

tr Str(hn) = (−1)s−1 tr Sts(un,s),

by Lemma ??. This is equal to (−1)s−1 times

s−1∑
i=0

ζnis tr Sts(fs,i) = tr Sts(fs,0) = 1.

Using (iv) we conclude that

trπ(fn − hn + (−1)s−1
r∑
i=1

ζnir fr,i) = 0

for all tempered G-modules π. The density theorem of [?], Appendix (see also [?],
(19.2), for the special case of GL(r) which is used here; note that the proof holds
also in positive characteristic), implies that

Φ(x, fn − hn + (−1)s−1un,r) = 0

for all (regular) x. Hence

′Φ(x, fn) = −(−1)s−1′Φ(x, un,r) = (−1)r−1′Φ(x, un,r)

on the regular elliptic set; there ′Φ(x, un,r) is 0, unless v(x) ≡ n(mod r) where
r(−1)r−1 is obtained.
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According to Proposition ??, the function Φ(x, fn) is supported on the n-admissible
x. Hence Φ(x, fn) = 0 for any nonelliptic regular x sufficiently close to the elliptic
set. By the germ expansion of orbital integrals (which follows from the uniqueness
of the Haar measure, see [?]), ′Φ(x, fn) extends to a continuous function on the
entire elliptic set. Since un,r is a discrete function, the last displayed identity holds
for all elliptic x, not necessarily regular. The proposition follows. �

By the reduction argument explained following Corollary ??, we have

Corollary 8.10. The integral Φ(x, f
(r)
n ) is zero unless x is n-admissible, where

Φ(x, f
(r)
n ) is equal to e′v(x)Φ(x′′, χ′′v) in the notations of Proposition ??.

Proof. This follows from Proposition ?? and the relation

|Zx(G)/Z| = [v(Zx(G)) : v(Z)] = e′(x)/r

where Zx(G) is the centralizer of x in G, and, as usual v(X) = deg(detX). �

Denote by f = f
(r)
n the spherical function on G = GL(r, F ) with Satake trans-

form

f∨(z) = qn(r−1)/2(zn1 + · · ·+ znr ).

Denote by h = h
(r)
n the Z-valued spherical function on G which takes the value 0

at g ∈ G unless g ∈M(r,R) ∩G and v(g) = n, in which case

h(g) = (1− q)(1− q2) · · · (1− qdimk(ker g)−1);

here g ∈ M(r, k), k = R/m, is the reduction of g modulo πππM(r,R), and ker g is
the kernel of the endomorphism of kr defined by g.

Lemma 8.11. We have f
(r)
n = h

(r)
n .

Proof. It suffices to show that f∨ = h∨, and this follows by induction on r from
the following claim. Denote by 1H the characteristic function of H = GL(t, R) in
GL(t, F ). Let P = MN be the standard parabolic subgroup of G of type (1, r− 1).
Then we claim that for any x = ( a 0

0 b ) with a ∈ F×, b ∈ GL(r − 1, F ), we have

(h(r)
n )

N
(x) = qn(r−1)/2h(1)

n (a)1GL(r−1,R)(b) + qn/2h(r−1)
n (b)1R×(a).

Note that the unipotent radical N of P consists of the matrices u = ( 1 uuu
0 1 ),

uuu = (u1, . . . , ur−1) ∈ F r−1. The modular function is

δP (x) = qv(b)−(r−1) deg(a).

By definition of h the value of hn(xu) (and so of (hn)N (x) too) is zero unless
0 6= a ∈ R, b is a matrix in GL(r − 1, F ) with entries in R, and deg(a) + v(b) = n.
In this last case

(h(r)
n )

N
(x) = q(v(b)−(r−1) deg(a))/2

∫
F r−1

h(r)
n (xu)

∏
1≤i<r

dui.

As usual, the measures dui are normalized to assign R the volume one.

If a ∈ R× and v(b) = n, then h
(r)
n (xu) is zero unless uuu ∈ Rr−1, in which case

h
(r)
n (xu) = h

(r−1)
n (b), and h

(1)
n (a) = 0, so the claim follows in this case.
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If deg(a) = n and b ∈ GL(r − 1, R), then h
(r)
n (xu) is zero unless uuu ∈ πππ−nRr−1,

in which case h
(r)
n (xu) = h

(1)
n (a). Since h

(r−1)
n (b) = 0, and the volume of πππ−nRr−1

is qn(r−1) the claim follows in this case also.

If deg(a) > 0 and v(b) > 0, then h
(r)
n (xu) is zero unless uuu ∈ a−1Rr−1, in which

case dimk ker(xu) is equal to dimk(ker b) − 1 if auuu does not lie in the span of the
rows of b, and to dimk(ker b) if auuu does lie in the span of the rows of b. Hence, by

the definition of h
(r)
n , we have∫
F r−1

h(r)
n (xu)duuu = (1− q) · · · (1− qdimk(ker b)−2)V1

+(1− q) · · · (1− qdimk(ker b)−1)V2.

Here
V1 = vol({uuu ∈ a−1Rr−1; auuu 6∈ span (rows of b)})

and
V2 = vol({uuu ∈ a−1Rr−1; auuu ∈ span (rows of b)}).

The second volume is equal to

qrk(b)+(r−1)(deg(a)−1),

hence the first volume is equal to

q(r−1) deg(a) − qrk(b)+(r−1)(deg(a)−1),

where rk(b) is the rank of the matrix b. Consequently
∫

F r−1

h
(r)
n (xu)duuu is zero. Since

h
(1)
n (a) = 0 and h

(r−1)
n (b) = 0 the claim follows in this case too, and the lemma is

proven. �

Lemma ?? above as well as Proposition 8.12 below are due to Drinfeld (the
exposition is influenced by Laumon).

Let γ be an elliptic element of G. Its centralizer Z(γ,G) in G is isomorphic to
GL(r′, F ′) where F ′ = F [γ] ⊆ M(r, F ) and r′ = r/[F ′ : F ]. Denote by R′ the ring
of integers in F ′, and by q′ the cardinality of the residue field k′ of R′. Fix the
Haar measure dgγ on Z(γ,G) ' GL(r′, F ′) to assign GL(r′, R′) the volume one.

Proposition 8.12. The value Φ(γ, f) of the orbital integral of f = f
(r)
n at the

elliptic element γ ∈ G is zero unless v(γ) = n, in which case

Φ(γ, f) = (1− q′) · · · (1− q′r
′−1)[k′ : k].

Proof. The function f is supported on the set of γ with v(γ) = n, whence the first
assertion. Assuming that v(γ) = n > 0, and denoting by deg′ : F ′ → Z the discrete
valuation on F ′, we have that deg′(γ) > 0, hence γ lies in the maximal ideal m′

of R′. Consequently the minimal polynomial of γ lies in R[X], and its reduction

modulo the maximal ideal m = πππR of R is X [F ′:F ]. It follows that there exists
g ∈ G with g−1γg ∈ M(r,R). Choose a set Γ in {g ∈ G′; g−1γg ∈ M(r,R)} of
representatives for the double classes

Z(γ,G)\{g ∈ G; g−1γg ∈M(r,R)}/K, K = GL(r,R).

Then
Φ(γ, f) =

∑
η∈Γ

vol(Z(γ,G) ∩ ηKη−1\ηKη−1, dg/dgγ)f(η−1γη).



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 69

Identify G/K with the set of lattices (free rank r R-modules) L in F r by gK 7→
gRr. The subset {g ∈ G; g−1γg ∈ M(r,R)}/K of G/K is mapped to the set of
lattices L in F r with γL ⊂ L. The set Γ is then isomorphic to a set of representatives
of the Z(γ,G)-orbits in the set of lattices L in F r such that γL ⊂ L. Given L = ηRr

in Γ we have

ηKη−1 = {g ∈ G; gL = L}.
Moreover

dimk(ker(η−1γη)) = dimk(ker[γ : L/πππL→ L/πππL]) = dimk(L/(γL+ πππL));

we write d(L) for this number. Since the volume of K, and so of η−1Kη, is one,
one obtains

Φ(γ, f) =
∑
L∈Γ

(1− q) · · · (1− qd(L)−1)/ vol({g ∈ Z(γ,G); gL = L}, dgγ).

Fix an isomorphism of F r with F ′r
′

as F ′-vector spaces. Each lattice L in F r

defines an R′-lattice R′L in R′r
′
. Since Γ consists of representatives of GL(r′, F ′)-

orbits, these representatives L can be chosen to satisfy R′L = R′r
′
. Thus Γ will

consist of a set of representatives for the GL(r′, R′)-orbits in the set of lattices L

in F r with L ⊂ R′r′ , R′L = R′r
′
, and γL ⊂ L.

Now the reciprocal of the volume of {g ∈ Z(γ,G); gL = L} is the index of the
subgroup {g ∈ GL(r′, F ′); gL = L} in GL(r′, R′), since the volume of GL(r′, R′) is
taken to be one. This is also the number of elements in the GL(r′, R′)-orbit of L.
Hence

Φ(γ, f) =
∑
L

(1− q) · · · (1− qd(L)−1),

where L ranges over the set of lattices in F r with L ⊂ R′r
′
, R′L = R′r

′
, and

γL ⊂ L.
The R-algebra R[γ] ⊂ R′ is free of rank [F ′ : F ] as an R-module. It is local with

maximal ideal R[γ] ∩m′ = (πππ, γ). The residue field is R[γ]/(πππ, γ) = k.
More generally, let A ⊂ R′ be an R-algebra, free of rank [F ′ : F ] as an R-module,

local with maximal ideal mA = A ∩m′, whose residue field A/mA is k. Put

Φ(A) =
∑
L

(1− q)(1− q2) · · · (1− qd(A,L)−1),

where L ranges over the set of lattices L in F r such that L ⊂ R′r
′
, R′L = R′r

′
,

and AL ⊂ L, and where d(A,L) = dimk(L/mAL). Note that Φ(γ, f) = Φ(R[γ]).
Moreover the sum over L is finite since for any sufficiently large positive integer t
we have m′t ⊂ A, since an ideal in a local ring contains a power of the maximal
ideal, and consequently

m′tR′r
′

= m′tR′L = m′tL ⊂ AL ⊂ L ⊂ R′r
′
.

Let t be the least positive integer with m′t ⊂ A. We claim that

Φ(A) = (1− q′)(1− q′2) · · · (1− q′r
′−1)[k′ : k]

for all A; the proposition follows once this is proven. The proof is by induction on
t. First assume that t = 1. Then m′ ⊂ A, and m′R′r

′ ⊂ L ⊂ R′r′ for each L in the
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sum which defines Φ(A). Writing V = L/m′L ⊂ k′r′ one obtains

Φ(A) =
∑
V

(1− q)(1− q2) · · · (1− qdimk V−1),

where V ranges over the finite set of k-vector subspaces of k′r
′

with k′V = k′r
′
.

This is equal to ∑
W ′ 6=0

(−1)r
′−w′q′(r

′−w′)(r′−w′−1)/2D(W ′),

where W ′ ranges over the set of k′-vector subspaces in k′r
′
, w′ = dimk′W

′, and for
any k-vector space W 6= 0

D(W ) =
∑
V 6=0

(1− q)(1− q2) · · · (1− qdimk V−1);

here V ranges over the set of nonzero k-vector subspaces of W . Indeed, for any
k-vector space V ∑

W ′

(−1)r
′−w′q′(r

′−w′)(r′−w′−1)/2

is 1 if k′V = k′r
′
, and 0 otherwise, where W ′ ranges over the set of k′-vector spaces

such that k′V ⊂W ′ ⊂ k′r′ .
Recall that the number of v-dimensional vector spaces in a w-dimensional vector

space is
(1− qw−v+1)(1− qw−v+2) · · · (1− qw)

(1− q)(1− q2) · · · (1− qv)
.

Consequently, if w = dimkW , the sum

D(W ) =

w∑
v=1

(1− qw−v+1)(1− qw−v+2) · · · (1− qw)

1− qv

is equal to w = dimkW . Hence

Φ(A) =
∑
W ′

(−1)r
′−w′w′q′(r

′−w′)(r′−w′−1)/2[k′ : k],

where the sum ranges over all nonzero k′-vector subspaces W ′ of k′r
′
; note that

w′ = dimk′W
′, hence dimkW

′ = w′[k′ : k]. Using again the formula for the
cardinality of the Grassmanian, we obtain

Φ(A) =
r′∑

w′=1

(−1)r
′−w′w′q′(r

′−w′)(r′−w′−1)/2 (1− q′r′−w′+1) · · · (1− q′r′)
(1− q′) · · · (1− q′w′)

[k′ : k]

= (1− q′)(1− q′2) · · · (1− q′r
′−1)[k′ : k],

as required.
To complete the inductive proof of the claim, if t ≥ 2 is the least integer with

m′t ⊂ A (but m′t−1 6⊂ A), put A1 = A + m′t−1. We proceed to show that
Φ(A1) = Φ(A). Note that Φ(A1) is well-defined since A1 ⊂ R′ is an R-subalgebra
which is free of rank [F ′ : F ] as an R-module, it is local with maximal ideal
mA1

= mA + m′t−1 = A1 ∩m′, and its residue field is equal to that of A, namely
to k.

Consider the map L 7→ L1 = A1L = AL + m′t−1L, from the set of lattices L
in F r such that L ⊂ R′r

′
, R′L = R′r

′
, and AL ⊂ L, to the set of lattices L1 in

F r such that L1 lies in R′r
′
, R′L1 = R′r

′
, and A1L1 ⊂ L1. This map is clearly
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surjective. The fiber at L1 is isomorphic, via the map L 7→ V = L/mAL, to the

set of k-vector subspaces V in Ṽ1 = L1/mAL1, whose image under the surjection

π : Ṽ1 → V1 = L1/mA1
L1 is V1, namely π(V ) = V1. Consequently

Φ(A) =
∑
L1

(1− q) · · · (1− qd1−1)ε(π : Ṽ1 → V1),

where L1 ranges over the set of lattices in F r with L1 ⊂ R′r
′
, R′L1 = R′r

′
, and

A1L1 ⊂ L1, and where

ε(π : Ṽ1 → V1) =
∑
V

(1− qd1) · · · (1− qd−1);

here V ranges over the set of k-vector subspaces of the d̃1-dimensional space Ṽ1 =
L1/mAL1 whose image under the surjection π is the d1-dimensional space V1 =

L1/mA1
L1; put d for dimk V . Then d1 ≤ d ≤ d̃1.

Put W1 = kerπ. The map V 7→ (W = W1 ∩ V, f : Ṽ1 → Ṽ1/V
∼←W1/W1 ∩ V ),

from the set of k-vector subspaces V in Ṽ1 with πV = V1, to the set of pairs (W, f)

where W is a k-vector subspace of W1 and f : Ṽ1 →W1/W is a k-linear map whose
restriction to W1 is the natural surjection W1 � W1/W , is a bijection. Hence the
number of such V is the number of k-subspaces of dimensional d− d1 in a space of

dimension d̃1 − d1, times the number of elements in a k-space of dimension

(dim Ṽ1 − dimW1) · (dim Ṽ1 − dimV ) = (d̃1 − (d̃1 − d1)) · (d̃1 − d) = d1(d̃1 − d),

namely

(1− qd̃1−d+1) · · · (1− qd̃1−d1)

(1− q) · · · (1− qd−d1)
qd1(d̃1−d).

Consequently ε(π : Ṽ1 → V1)

=

d̃1∑
d=d1

(1− qd1) · · · (1− qd−1)(1− qd̃1−d+1) · · · (1− qd̃1−d1)

(1− q) · · · (1− qd−d1)
qd1(d̃1−d)

is equal to one, and so Φ(A) = Φ(A1), completing the inductive proof of the claim,
and the proposition. �
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Part 4. Higher Reciprocity Laws

In this part we use the construction of the moduli scheme of elliptic modules,
the trace formula and various forms of the fixed point formula to obtain various
applications such as the purity theorem, or Ramanujan conjecture for the cuspidal
representations of GL(r) over a function field with a cuspidal component, and
the reciprocity law, relating such representations with irreducible r-dimensional
representations of the Weil group, as well as a local analogue.

9. Purity theorem

The purpose of this section is to prove Ramanujan’s conjecture for cuspidal rep-
resentations π of GL(r,A) over a function field, which have a cuspidal component,
namely that all unramified components of such a π are tempered, namely that all
of their Hecke eigenvalues have absolute value one. This is deduced from a form
of the trace formula of Arthur, as well as the theory of elliptic modules developed
above, Deligne’s purity of the action of the Frobenius on the cohomology, standard
unitarity estimates for admissible representations, and Grothendieck’s fixed point
formula. Once we assume and use Deligne’s (proven) conjecture on the fixed point
formula, in the following sections, we no longer need the complicated full trace
formula, but the simple trace formula suffices. Thus this section is for pedagogical
purposes only, to show what can be done without Deligne’s conjecture.

Recall (section 4) that for any fixed congruences subgroup U∞ of D×∞, uni-

formizer πππ of F∞, and a congruence subgroup U = UI in G(Â), we have a finite étale

Galois covering M̃r,I = U\M̃r = Spec B̃U of Mr,I = U\Mr = SpecBU with Galois

group Γ = 〈πππ〉U∞\D×∞. Fix v in SpecA and put Fv = A/v. Let X̃I = M̃r,v,I(Fp)
be the set of Fp-points on the fiber M̃r,v,I = M̃r,I ×SpecA SpecFv of M̃r,I at v. The

Galois group Γ and the adèle group G(Af ) act on the set lim←−X̃J . These two actions

commute. The group F×, embedded diagonally in the direct product Γ × G(Af ),

acts trivially. Moreover, X̃I = U\lim←−X̃J . By Corollary ?? the set X̃ = X̃I decom-

poses as the disjoint union of sets Ỹ parametrized by (F, v)-types (F ′, v′), which
by Proposition ?? are of the form

Ỹ = (Γ× U\G(Af )/SvNv)/D
′×;

recall that D′× naturally embeds in (D′ ⊗F F∞)× = D×∞. The set X = XI =
Mr,v,I(Fp) is the disjoint union over the types (F ′, v′) of the sets

Y = (U\G(Af )/SvNv)/D
′×.

Let S, S̃ be sets, h : S̃ → S an epimorphism, and Γ a finite group. Suppose that

Γ acts simply transitively on h−1(s) for every s in S. Let Ã be an automorphism

of S̃ and A of S such that Ah = hÃ, and gÃ = Ãg for every g in Γ. Given s in S

choose s̃ in h−1(s) and define g in Γ by Ãs̃ = gs̃. Let β(s) be the conjugacy class
of g.

Lemma 9.1. The map s 7→ β(s) is a well defined map from the set SA of A-fixed
points in S, to the set X(Γ) of conjugacy classes in Γ.

Proof. Let s̃′ be any element of S̃ with h(s̃′) = s. Define g′ in Γ by Ãs̃′ = g′s̃′. For

some x in Γ we have s̃′ = xs̃. Then g′xs̃ = g′s̃′ = Ãs̃′ = Ãxs̃ = xÃs̃ = xgs̃, and
g, g′ define the same conjugacy class. �
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In our case we put Fn = 1 × Frnv . It acts on X and on X̃. It commutes with
the action of Γ. Lemma ?? defines a map x 7→ γ∞ from the set XFn of Fn-fixed

points in X, to the set of conjugacy classes in Γ. If x̃ in Ỹ is represented by
g = (g∞, z, g

′′
v , g

v) with g∞ in Γ and Fx̃ = γ∞x̃, then

(g∞, z + n, g′′v , g
v) = (γ∞g∞γ, z + v(γ), (u′′v)−1g′′vγ, (u

v)−1gvγ)

for some γ in D′× and u = u′′v × uv in U . Hence γ∞ = g∞γ
−1g−1
∞ , and the image

x in Y of x̃ is mapped to the conjugacy class of γ−1 in Γ. We write γ(x) for γ.
Let (ρ, V ) be an irreducible D×∞-module whose central character ω has finite

order. Then there is a congruence subgroup U∞ of D×∞ such that ρ is trivial on
U∞. Multiplying ρ by an unramified character we may assume that the value at πππ
of the central character of ρ is one. Hence we can view ρ as a representation of the
finite group Γ. Denote by tr ρ(γ) the character of ρ at γ. The values taken by tr ρ
are clearly algebraic.

We shall use the Grothendieck fixed point formula (Theorem ??) in the `-adic
cohomology of the scheme X = Mr,v,I = Mr,v,I ×Fv Fv, where Mr,v,I is an affine,

hence separated scheme of finite type over the finite field Fv, and Fv is an algebraic
closure of Fv. The coefficients are taken in the smooth Q`-sheaf L(ρ) determined

(see subsection (5.1.4)) by the `-adic representation (ρ, V ), where V = Qnρ` , of
the finite Galois group Γ. Thus let H∗ρ = H∗ρ (v, U, U∞) be the alternating sum∑
i(−1)iHi

c(X,L(ρ)) of the Q`-adic cohomology spaces of X with compact support

and coefficients in the smooth Q`-sheaf L(ρ). Both the Hecke algebra HI , which is
generated by the characteristic functions of the double cosets UgU (g in G(Af )),
and the Frobenius 1 × Frv, act on the cohomology H∗ρ (as explained in subsection
5.1). The Galois group Γ acts on V via ρ, hence also on H∗ρ . Hence H∗ρ is a virtual

(Γ×HI)/F×- and 〈1×Frv〉-module over Q`. As in section 5 we denote by Frv ×1 the
geometric Frobenius, which acts on the cohomology as the inverse of the arithmetic
Frobenius 1 × Frv (see subsection (5.1.9)). We put again Fn = 1 × Frnv , and also

F
n

= Frnv ×1. The Grothendieck fixed point formula (Theorem ??) asserts

Lemma 9.2. For any integer n 6= 0 we have tr[F
n|H∗ρ ] =

∑
x∈XFn tr ρ(γ(x)−1).

Denote the center of G∞ by Z∞; it is isomorphic to the center of D×∞, and to
F×∞. Recall that the central character ω of the irreducible ρ is assumed to be of
finite order, in particular unitary. Let π∞(ρ) be the square-integrable G∞-module
which corresponds (see, e.g., [?], [III]) to the D×∞-module ρ. Let f∞ be a locally-
constant complex valued function on G∞ with f∞(zx) = ω(z)−1f∞(x) for all x in
G∞, z in Z∞, which is compactly supported on G∞ modulo Z∞. We require that
at each regular x in G∞ the orbital integral Φ(x, f∞) be zero, unless x is elliptic
where ′Φ(x, f∞) = (−1)r−1 tr ρ(x−1). Then f∞ is a pseudo coefficient (see [?] and
Definition ??) of the irreducible G∞-module π∞(ρ). Below we take π∞(ρ) to be
cuspidal, in which case f∞ can be taken to be a normalized matrix-coefficient of
π∞(ρ), which is compactly supported modulo Z∞.

The computations of the structure of the set XF
n

of fixed points of the geometric
Frobenius F

n
in X yield

Proposition 9.3. For any n 6= 0 the trace tr[F
n|H∗ρ ] is equal to

(−1)r−1
∑
γ

|Zγ(G(Af ))/Zγ(G(F ))| · ′Φ(γ, f∞)Φ(γ, fn,v)Φ(γ, χv)
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= (−1)r−1
∑
γ

|Zγ(G(A))/Zγ(G(F ))Z∞| · Φ(γ, f∞fn,vχ
v).

The sums range over all elliptic conjugacy classes γ in G(F ); Zγ(G) is the central-
izer of γ in G.

Proof. The first equality follows from Lemma ??, Proposition ?? and Corollary ??.
The second equality follows from the relation

′Φ(γ, f∞) = |Zγ(G∞)/Z∞|Φ(γ, f∞)

for an elliptic γ in G∞. Note that if γ contributes a nonzero term to the first sum,
then it is elliptic in G∞, hence in G(F ), and n-admissible in Gv. �

For use in section 10 we record here a variant. Let f∞ be a compactly supported
locally constant Q`-valued function on G(Af ). It defines a correspondence on X

and an automorphism of Hi
c(X,L(ρ)) as in (5.1.8), denoted here again by f∞.

Proposition 9.4. There exists a positive integer n0 = n0(f∞) such that for every
n ≥ n0 we have

(9.1) tr[f∞ · Fn|H∗ρ ] = (−1)r−1
∑
γ

|Zγ(G(A))/Zγ(G(F ))Z∞|Φ(γ, f∞fn,vf
∞).

The sum ranges over the set of elliptic conjugacy classes γ in G(F ).

Proof. This follows from Deligne’s conjecture (Theorem ??), Proposition ?? and
Corollary ??. �

Remark 9.1. We fix an embeddings and an isomorphism Q ↪→ Q` ' C and regard
the right sides of the formulae in Lemma ??, Proposition ?? and Proposition ?? as
complex numbers.

Our next aim is to show that the sum of Proposition ?? appears as one of the
sides in the Selberg trace formula of Proposition 9.6 below. Let F be a global
function field. Fix a character ω of finite order of the center Z∞ of G∞, where ∞
denotes a fixed place of F . At each place w of F choose the Haar measure dgw
on Gw = G(Fw) which assigns G(Rw) the volume one. Denote by dg the product
measure ⊗dgw on G(A). Put (r(g)ϕ)(h) = ϕ(hg) (h, g in G(A)) for a function
ϕ on G(A), and (r(fv)ϕ)(h) =

∫
Gv
fv(g)ϕ(hg)dg for any fv in the algebra Hv of

compactly supported Q`-valued locally constant functions fv on Gv.
Let L2(G) be the span of the complex valued functions ϕ on G(F )\G(A) with

ϕ(zx) = ω(z)ϕ(x) (z in Z∞, x in G(A)) which are absolutely square-integrable on
Z∞G(F )\G(A), and are eigenvectors of r(Hv) for almost all v. Then r(G(A))ϕ is
an admissible G(A)-module for each ϕ in L2(G). Each irreducible constituent of
the (G(A), r)-module L2(G) is called an automorphic G(A)-module.

A cuspidal function ϕ on G(F )\G(A) is one satisfying
∫
N(F )\N(A)

ϕ(nx)dn = 0

for every x in G(A) and every proper F -parabolic subgroup P = MN of G with
unitpotent radical N . The space L0(G) of cusp forms (= functions) decomposes
as a direct sum with finite multiplicities of irreducible G(A)-modules, called cusp-
idal G(A)-modules. These multiplicities are equal to one by the “multiplicity one
theorem” for GL(r).

Suppose that π∞(ρ) is a cuspidal G∞-module with central character ω. Thus
for each matrix coefficient f∞ of π∞(ρ), and each proper parabolic subgroup P
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of G∞ over F∞ we have
∫
N
f∞(xny)dn = 0 for all x, y in G∞, where N denotes

the unipotent radical of P . Let L2
ρ(G) denote the subspace of L2(G) where G(A)

acts as a multiple of π∞(ρ). It is well known that L2
ρ(G) is a subspace of the

space of cusp forms, hence it decomposes as a direct sum of inequivalent irreducible
G(A)-modules π = ⊗πw with π∞ = π∞(ρ).

Let f = ⊗fw be a complex valued locally constant function on G(A) with the
following properties. We take f∞ to be a normalized matrix-coefficient of π∞(ρ).
Hence f∞ transforms by ω−1 on Z∞, it is compactly supported modulo Z∞, and
for every irreducible G∞-module π′∞ with central character ω, trπ′∞(f∞) is 0 unless
π′∞ is π∞(ρ), where trπ′∞(f∞) = 1. At each w 6=∞ the component fw is taken to
be compactly supported. At almost all places w it is taken to be the characteristic
function of G(Rw). The convolution operator r(f) acts on L2

ρ(G); it is an integral

operator with kernel Kf (x, y) =
∑
γ f(xγy−1). The sum ranges over all γ in G(F ).

The operator r(f) is of trace class. Its trace is given by
∫
G(A)/G(F )Z∞

Kf (x, x)dx.

Lemma 9.5. The set of conjugacy classes γ in G(F ) for which there exists x in
G(A) with f(xγx−1) 6= 0 is finite; it depends only on the support of f .

Proof. The map sending γ to the ordered set (a1, . . ., ar) of coefficients in the charac-
teristic polynomial of γ, is a bijection from the set of semisimple conjugacy classes in
G(A)/Z∞ to the quotient of Ar−1×A× by the relation (a1, . . ., ar) ≡ (a1z, . . ., arz

r)
(z in F×∞). The image of G(F ) is discrete. The image of the support of f is compact.
There are only finitely many conjugacy classes with the same semisimple part. �

Proposition 9.6. Put f = f∞fvf
v,∞. Suppose that fv is the spherical function

fn,v of Definition ??, and that n is sufficiently large with respect to (the support of)
f∞ and fv,∞ = ⊗w 6=v,∞fw. Then the trace tr r(f) of r(f) on L2

ρ(G) is equal to∑
π

trπ(f) =
∑
γ

c(γ)Φ(γ, f),

where

c(γ) = |Zγ(G(A))/Z∞Zγ(G)|.
On the left the sum ranges over all irreducible G(A)-modules π in L2

ρ(G). On the
right the sum ranges over all elliptic conjugacy classes γ in G(F ), such that γ is
n-admissible in Gv and elliptic in G∞.

Proof. (i) Since r(f) is a trace class operator on L2
ρ(G) = ⊕π, and each π occurs

with multiplicity one in this sum, it is clear that its trace is given by the left side
of the identity of the proposition. We need to prove the identity of the proposition.
Both sides of the proposed identity depend only on the orbital integral Φ(x, fv)
of fv at x. Indeed, this is clear for the right side. For the left side, suppose that
Φ(x, fv) is zero for all x in Gv. Then, using the uniqueness of the Haar measure
([?]), standard properties of closure of orbits (recorded, e.g., in [?], end of p. 160),
and the compactness of supp fv, one concludes (cf. [?], Theorems 6.9/10, p. 54/55)
that there are finitely many hi in Cc(Gv), and gi in Gv, with fv =

∑
i(h

gi
i − hi)

on Gv. Hence trπv(fv) vanishes if Φ(x, fv) is zero for all x. Consequently we may
replace fv by any other function which has the same orbital integrals.

(ii) By virtue of Corollary ?? it suffices to prove the identity of the proposition
where the component fv is replaced by (1) any discrete function on Gv, and (2) a
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function on Gv which vanishes on the elliptic set whose orbital integrals are equal
to those of fn,v on the nonelliptic set.

(iii) To deal with the first case, suppose that f = f∞fvf
v,∞, where fv is discrete.

Denote by G′ the multiplicative group of the division algebra D′ of dimension r2

central over F , which is split at each place w 6= v,∞ and is defined by invvD
′ = 1/r

(and inv∞D′ = −1/r). Then G′w = G′(Fw) is isomorphic to Gw = G(Fw) for all
w 6= v, ∞, and G′v (resp. G′∞) is an anisotropic inner form of Gv (resp. G∞). To
prove the identity we use the correspondence from G′ to G; see, e.g., [?], III, when
the characteristic is zero, and note that the analogous results can be transferred to
the case of positive characteristic on using [?].

Remark 9.2. Note that the problem in establishing the identity of Proposition ??
in our case is the evaluation of the contributions parametrized by the singular γ
on the right. In characteristic zero this follows from the explicit computations of
some sequel of [A]. The proof here, in the context of GL(r) only, is valid in all
characteristics, and uses the correspondence to deduce the identity of Proposition
?? from the trace formula for the anisotropic group G′.

We first recall that there is a bijection from the set of conjugacy classes γ′ in
G′v (resp. G′∞) to the set of elliptic conjugacy classes γ in Gv (resp. G∞): γ′ and
γ correspond if γ′ and γ have the same characteristic polynomials. Also there is
a bijection, defined in the same way, from the set of conjugacy classes in G′(F ) to
the set of elliptic conjugacy classes in G(F ) which are elliptic at v and ∞.

Next we recall the definition of transfer of functions from Gw to G′w. If w 6= v,∞,
thenG′w ' Gw and fw onGw defines a function f ′w onG′w via this isomorphism. The
locally constant compactly supported function f ′v on G′v and fv on Gv are called
matching if fv is discrete (its orbital integrals vanish on the regular nonelliptic
set), and Φ(γ, fv) = Φ(γ′, f ′v) for every regular elliptic γ in Gv (γ′ indicates the
corresponding class in G′v). A basic result asserts that for every f ′v (resp. discrete
fv) there exists a matching fv (resp. f ′v), and that Φ(γ′, f ′v) = (−1)rv(γ)Φ(γ, fv) for
every pair (γ, γ′) of matching elements. Here rv(γ) = dim(Aγ/Zv), where Aγ is a
maximal split torus in the centralizer Zγ(Gv) of γ in Gv (in particular rv(γ) = 0 if
γ is elliptic regular). An analogous definition is introduced also for locally constant
compactly supported modulo Z∞ functions f ′∞ on G′∞ and f∞ on G∞.

Finally we recall that the correspondence is a bijection from the set of equivalence
classes of irreducible G′v-modules π′v to the set of equivalence classes of square-
integrable Gv-modules πv. It is defined by trπv(fv) = trπ′v(f

′
v) for all matching

(fv, f
′
v). Similarly we have the correspondence π′∞ 7→ π∞. Fix a G′∞-module ρ such

that the corresponding G∞-module π∞(ρ) is cuspidal. Globally there is (see, e.g.,
[?] or [?], III) a bijection from the set of cuspidal G′(A)-modules π′ = ⊗π′w with
π′∞ = ρ, to the set of cuspidal G(A)-modules π = ⊗πw with π∞ = π∞(ρ) such that
πv is square-integrable. It is defined by πw ' π′w for all w 6= v,∞, and π′v 7→ πv at
v. In particular for corresponding global functions f = ⊗fw and f ′ = ⊗f ′w we have∑

π

trπ(f) =
∑
π′

trπ′(f ′).

The first sum ranges over all cuspidal G(A)-modules whose component at ∞ is
the cuspidal π∞(ρ) (and its component at v is necessarily square-integrable). The
second sum ranges over all cuspidal G′(A)-modules π′ whose component at ∞ is ρ.
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We are now ready to prove the identity of the proposition for our function f .
The trace formula for the anisotropic group G′(A) and the function f ′ asserts that∑

π′

trπ′(f ′) =
∑
γ′

c(γ′)Φ(γ′, f ′),

where

c(γ′) = |Zγ′(G′(A))/Zγ′(G
′(F ))Z∞|.

The sum over π′ is the same as in the identity of the proposition. The sum on
the right ranges over all conjugacy classes γ′ in G′(F ). Since f ′ = ⊗f ′w matches
f = ⊗fw, the sum on the right of the trace formula is equal to the sum on the right
of the identity of the proposition. Indeed, Φ(γ, f) is zero unless γ is elliptic and
corresponds to some γ′ in the trace formula, in which case Φ(γ, f) = Φ(γ′, f ′). The
volume factors c(γ′) and c(γ) are equal since Zγ′(G

′) is an inner form of Zγ(G),
hence the two groups have equal Tamagawa numbers. This completes the proof of
the identity of the proposition in the case that the component fv of f is discrete.

(iv) It remains to prove the identity of the proposition where fv vanishes on the
elliptic set and its orbital integral is equal to that of fn,v on the nonelliptic set, where
n is sufficiently large. We first note that the set S of x in Gv whose semisimple part
is n-admissible but not elliptic is open and closed in Gv. Since the orbital integral
of fv is supported on S, by virtue of (i) we may replace fv by its product with the
characteristic function of S. Namely we may assume that fv is supported on S. In
particular, if f(xγx−1) 6= 0 for some x in G(A) then the semisimple part γ′ of γ is
n-admissible, but not elliptic, in Gv.

(v) Suppose that γ is an element of G(F ) such that f(xγx−1) 6= 0 for some x in
G(A). We shall show that if n is sufficiently large (depending on fw (w 6= v)),
then the semisimple part γ′ of γ is elliptic in G(F ). Indeed, we have Zγ′(F ) =∏
i GL(ri, Fi), 1 ≤ i ≤ t, with

∑
i ri[Fi : F ] = r. Write γ′ = (γ1, . . . , γt) with

γi in GL(ri, Fi), correspondingly. Put xiw = degw(NFi/F γi) for each valuation w
of F . Since the fw (w 6= v) are fixed, for every i, j and w 6= v the difference
xiw−xjw lies in a finite set (of integers). This difference is equal to zero for almost
all w (depending on ⊗w 6=vfw), and by the product formula on F we have that∑
w(xiw − xjw) = 0 for all i and j. Hence xiv − xjv lies in a fixed finite set for all i

and j. The choice of fv in (iv) guarantees that γ′ is n-admissible, hence that there
is some i for which xiv attains the value n, while xjv attains the value zero for all
j 6= i. Consequently, if n is sufficiently large and f(xγx−1) 6= 0 for some x in G(A),
then γ′ is elliptic in G (i.e., t = 1).

(vi) We shall prove the identity of the proposition for f with fv as in (iv) on using
the computation of ∫

G(A)/GZ∞

∑
γ∈G

f(xγx−1)

 dx
in [A]. The theorems of [A] are stated only for number fields. We shall use them
in our function field case, or alternatively, complete the proof of the number field
analogue of the identity of the proposition. Our proof then depends on verifying
that the statements of [A] hold in the positive characteristic case. It seems that
this can be done on making only minor changes to the techniques of [A]. However,
this we do not do here.
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Note that our definition of a semisimple element as before Definition ?? coincides
with that of [?], top half of p. 921. In characteristic zero, a semisimple element
as defined as before Definition ?? is necessarily diagonalizable. This is the usual
definition of semisimplicity, which is implicitly recorded in [?], end of p. 920.
However, only the properties recorded in [?], p. 921, are used in the work of [A].
They are the ones used to define semisimplicity in our case of positive characteristic,
as before Definition ??.

Other changes are: the exponential function e of [?], p. 945, should be replaced
by e(x) = 1+x; the positive definite bilinear form 〈., .〉 by a nondegenerate bilinear
form; ψ by a nontrivial character on A/F , and the lattice Z in R (on p. 946) by
a lattice in F∞. However, as noted above, we shall use, but not prove here, the
positive characteristic analogue of [A]. As explained in the next section 10, using
Deligne’s conjecture permits us not to use the work of [A], which we use here to
establish Ramanujan’s conjecture without using Deligne’s conjecture.

Let O be the set of equivalence classes of γ in G, where γ and γ′ are said to be
equivalent if their semisimple parts are conjugate (in G). Put Jϑ(f) =

∫
kϑ(x, f)dx,

where kϑ(x, f) = KG,ϑ(x, x) is defined to be
∑
δ∈ϑ f(x−1δx), for any ϑ ∈ O. Since

f∞ is a cusp form, [?], Theorem 7.1, p. 942, asserts the convergence of the sum∑
ϑ∈O

∫
|kϑ(x, f)|dx (the cuspidality of f∞ easily implies the vanishing of the terms

KP,ϑ(x, x), P 6= G, which appear in the definition of kTϑ (x, f) in [?], p. 938, and
the independence of kTϑ (x, f) of the auxiliary parameter T ). To compute the Jϑ(f)
we shall use the formal, geometric computations of [A2,3].

Denote by γϑ = (γ1, . . . , γt) (∈ Zγϑ(F )) a semisimple element in ϑ, in the nota-
tions of (v). If t 6= 1, then the argument of (v) shows that for a sufficiently large
n the kernel Kϑ(x, x) = KG,ϑ(x, x) is identically zero. Thus we may assume that
γϑ is elliptic, namely t = 1. For a general ϑ the term Jϑ(f) is expressed in [?],
Theorem 8.1, p. 206, as a linear combination of functions JM (γ′, f), γ′ ∈ ϑ ∩M ,
which are defined in [?], (6.5), p. 254, and [?], Theorem 5.2, p. 245. Here M is a
standard Levi subgroup of G; denote its center by AM . Fix a finite set S of places
of F such that fw = f0

w for all w outside S. The definition of JM (γ′, f) involves a
limit over a → 1, a ∈ AM (FS) =

∏
w∈S AM (Fw), of “corrected” weighted orbital

integrals (see [?], (2.1), p. 234):

JL(aγ′, f) = |D(aγ′)|1/2
∫
Z∞Gaγ′ (FS)\G(FS)

f(x−1aγ′x)vL(x)dx.

Here L is an element in the set L(M) of Levi subgroups of G which contain M ([?],
p. 228). Since aγ′ is regular for a generic a ∈ AM (FS), the argument of (v) shows
that for a large n the integral JL(aγ′, f) is zero unless M = G. Then [?], (8.2),
asserts that Jϑ(f) is a linear combination over the conjugacy classes γ′ in ϑ∩G(FS)
of the orbital integrals JG(γ′, f) of f at γ′. If such γ′ is not semisimple then the
orbital integral JG(γ′, f∞) vanishes since f∞ is a cusp form. Then [?], (8.2), implies
that Jϑ(f) = aG(S, γ)JG(γ, f), where γ = γϑ is elliptic (semisimple) in ϑ. But [?],
(8.1), p. 206, implies that aG(S, γ) = aGγ (S, 1) = |Z∞Gγ\Gγ(A)| = c(γ) in our
notations, and the identity of the proposition follows. �

Remark 9.3. The “corrected” weighted orbital integrals were first introduced in [?]
in the context of GL(3) (and GL(2)), where

∑
ϑ J

T
ϑ (f) is explicitly computed and

related to the limit values of the corrected weighted orbital integrals on regular
classes. In (vi) above we use the generalization to GL(n) of [A2,3].
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Corollary 9.7. Suppose that F is a function field, fv,∞ is χv, f∞ is a normalized
matrix-coefficient of the cuspidal π∞(ρ), and n is large with respect to fv,∞ and
f∞. Then ∑

i

(−1)r−1+i tr[(Frnv ×1)|Hi
c(X,L(ρ))]

=
∑
π

trπ(f) =
∑
π

n(π, U)qn(r−1)/2
v

∑
i

zi(πv)
n.

The sum over π is finite. It ranges over all irreducible constituents of L2
ρ(G) such

that π∞ = ⊗w 6=∞πw has a nonzero vector fixed under the action of U = UI .
Further, n(π, U) is the integer

∏
w 6=v,∞ trπw(fw).

Proof. The first equality results from the expressions for tr[F
n|H∗ρ ] and

∑
π trπ(f)

in terms of G(A) orbital integrals on the group G(F ). The conditions on n guar-
antee that we deal with elliptic conjugacy classes only. Since fn,v is spherical
we have that πv = πv((zi(πv))) if trπv(fn,v) 6= 0. But then tr(πv(z))(fn,v) =

q
n(r−1)/2
v

∑
i zi(πv)

n by the definition of fn,v. Note that there are only finitely
many cuspidal G(A)-modules with fixed ramification at all places, and in particu-
lar π in L2

ρ(G) with n(π, U) 6= 0. The corollary follows. �

We shall now use Corollary ?? to prove the following purity theorem, or Ra-
manujan conjecture, for certain cusp forms of GL(r, F ).

Theorem 9.8. Let π = ⊗πw be an automorphic G(A)-module whose central char-
acter is unitary and whose component π∞ at ∞ is cuspidal. Then for every place v
where πv is unramified we have that each Hecke eigenvalue zi,v = zi(πv) (1 ≤ i ≤ r)
of π has complex absolute value equal to one.

Proof. We first tensor π with an everywhere unramified character to assure that
the central character ω of π, which we now denote by π′, is of finite order. Let U
be a sufficiently small congruence subgroup of G(Af ) (the place ∞ is fixed in the
statement of the theorem), with component Uv = GL(r,Rv) at the place v, such
that π′ has a nonzero U -fixed vector. Then π′ appears in the set over which the
sum

∑
π trπ(f) of Corollary ?? is taken. Here f = fv,∞f∞fvn is determined by U ,

π∞, n as in Corollary ??. We rewrite this identity of Corollary ?? as follows: for
every sufficiently large n, depending on U and ρ (or π′∞), we have∑

j

cju
n
j =

∑
i,πv

di[q
(r−1)/2
v zi(πv)]

n.

The two sums are finite. On the right the sum ranges over all components πv
at the fixed place v of the automorphic G(A)-modules π with a nonzero U -fixed
vector and component π′∞ at ∞ (these are the π which appear in the identity
of Corollary ??). The coefficients di are positive integers. On the left the uj
are the eigenvalues of the action of the Frobenius Frv ×1 on the Q`-vector spaces
Hi
c(X,L(ρ)) (0 ≤ i ≤ 2(r−1)). Since the coefficients di are all positive we conclude

the following

Lemma 9.9. For every Hecke eigenvalue zi(πv) of π at v there exists a Frobenius

eigenvalue uj, such that q
(r−1)/2
v zi(πv) = uj.
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Proof. The sums of the last displayed formula are finite (since Hi
c(X,L(ρ)) is finite

dimensional, and there exist only finitely many cuspidal G(A)-modules with fixed
ramification at all places), and this formula holds for all sufficiently large n; hence
the lemma follows by linear independence of characters. �

To complete the proof of the theorem we need two additional facts.

Lemma 9.10. Each eigenvalue uj of the action of the (geometric) Frobenius Frv ×1

on the space Hi
c(X,L(ρ)) (0 ≤ i ≤ 2(r−1)) is algebraic, and each complex absolute

value of uj is of the form q
c/2
v , where c is an integer.

Proof. This follows from Deligne’s theorem [?] on the integrality of the action of
the Frobenius on the cohomology. �

Lemma 9.11. The complex absolute value |zi(πv)| of each Hecke eigenvalue zi(πv)
of an unramified component πv of a cuspidal G(A)-module π with a unitary central

character, satisfies q
−1/2
v < |zi(πv)| < q

1/2
v .

Proof. Since π is cuspidal, each of its local components is nondegenerate. By virtue
of [?], (9.7), each such component is equal to a representation induced from the
product of a square-integrable representation of a Levi subgroup and an unramified
character. If the component πv is unramified then it is equivalent to an irreducible
I((zi)). Since the central character of the cuspidal π is unitary, π is unitary, and
each of its components is unitary. By virtue of [?] an irreducible I((zi)) is unitary

if and only if for each i there exists a j with z−1
i = zj and q

−1/2
v < |zi| < q

1/2
v for

every i. This is the required assertion of the lemma. �

The theorem is now an immediate consequence of Lemma ?? which compares
the integrality result of Lemma ?? with the estimate of Lemma ??. �

Remark 9.4. Note that the proof of Theorem ?? does not show that each Frobenius
eigenvalue uj is related to a Hecke eigenvalue as in Lemma ??, since the first sum

in Corollary ?? is alternating, and an eigenvalue of Frv ×1 on Hi
c(X,L(ρ)) may

cancel an eigenvalue on Hj
c (X,L(ρ)) if i+ j is odd.

Remark 9.5. Field of Definition. As in the paragraph following Proposition ??,
denote by L0(G) the space of cusp forms on G(A) which transform under the
center Z∞ of G(F∞) according to a character ω. It is well known (see [?]) that
for each compact open subgroup K of G(A) there exists a compact subset K ′ of
G(A) such that each K-invariant cusp form ϕ in L0(G) is supported on Z∞ ·G(F ) ·
K ′. In particular, the space L0(G)K of K-invariant functions ϕ in L0(G) is finite
dimensional. Denote by Q(ω) the field generated by the values of the character
ω. It is clear that L0(G) and L0(G)K are defined over Q(ω). Let V denote the
finite set of places v of F such that Uv = G(Rv) is not contained in K. For every
v outside V , the Hecke operators r(fv) (fv in Hv) are defined over Q(ω), and they
commute with each other. Hence they are simultaneously diagonalizable, and their
eigenvalues generate a finite extension of Q(ω). The eigenspaces are defined over
the fields generated by the eigenvalues. Let π = ⊗πv be an irreducible G(A)-module
unramified outside V . Denote by Q(πv) the field generated by the Hecke eigenvalues
of πv, for v outside V . We conclude that if π is a cuspidal G(A)-module, then the
compositum Q(π) of Q(πv) (v outside V ), which we call the field of definition of
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π, is a finite extension of Q(ω). It is equal to the compositum of Q(πv) for all v
outside V ′, where V ′ is any finite set containing V .

Let ρ be an irreducible D×∞-module with finite image, which corresponds to a
cuspidal G∞-module π∞(ρ). Let L(ρ) be the smooth Q`-adic sheaf on the geometric
generic fiber Mr,I = Mr,I ×A F of the moduli scheme Mr,I associated with ρ (see

(5.1.4)). Let H∗ρ be the virtual Gal(F/F ) × HI -module
∑
i(−1)iHi

c(Mr,I ,L(ρ))
associated with ρ (see (5.1.8)).

Corollary 9.12. Suppose that σ is an irreducible `-adic representation of Gal(F/F )
which occurs in the virtual module H∗ρ . Then there exists a finite extension Q(σ) of
Q such that the eigenvalues of σv(Frv) lie in Q(σ) for all v where σ is unramified.

Proof. The proof of Theorem ?? implies that for almost all v, the (Frobenius)
eigenvalues of σv(Frv) lie in the field Q(π) of definition of a cuspidal G(A)-module
π whose component π∞ is the cuspidal G∞-module π∞(ρ), and π has a nonzero
vector fixed by the action of the congruence subgroup UI . Since there are only
finitely many such π, we may take Q(σ) to be the field generated by these finitely
many number fields Q(π). �
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10. Existence theorem

In the proof of Theorem ?? we use the Grothendieck fixed point formula of
Theorem ??, which applies to the cohomology Hi

c(Xv,L(ρ)) of the geometric fiber
Xv = Xv ⊗Fv Fv of the special fiber Xv = Mr,I ⊗A Fv (of the moduli scheme
Mr,I), which is a separated scheme of finite type over Fv. This formula applies only
to powers of the (geometric) Frobenius endomorphism Frv ×1, and the conclusion
of Theorem ?? concerns only the (Hecke) eigenvalues of the action of the Hecke
algebra Hv of Uv-biinvariant functions on Gv, on this cohomology; as usual we put
Uv for GL(r,Av).

Our next aim is to study the irreducible constituents which occur (with nonzero
multiplicities) in the virtual Gal(F/F )×HI -module

H = H∗ρ =

2(r−1)∑
i=0

(−1)iHi
c(X,L(ρ)),

where X is the geometric generic fiber Mr,I ⊗A F of the moduli scheme Mr,I .
Our subsequent results depend on Deligne’s conjecture (Theorem ??), proven by
Fujiwara and Varshavsky. These results assert that each HI -module which appears
in H is automorphic in a sense shortly to be explained, and every automorphic
G(A)-module with a nonzero UI -fixed vector and component π∞(ρ) at∞ occurs in
the space H. Moreover, if σ̃ ⊗ π̃f is an irreducible constituent of H as a (virtual)

Gal(F/F )×HI -module, then it occurs with multiplicity one, and the tensor product
of π̃f with ν−(r−1)/2 (where ν(x) = |x| for x in A×) corresponds to the Gal(F/F )-
module σ̃, in a sense again to be explained shortly.

The proof depends on the usage of Hecke correspondences in the fixed point
formula, to separate the HI -modules which appear in H. The scheme X is smooth,
but not proper. Had X been smooth and proper, the Lefschetz fixed point formula
of Theorem ?? would apply with any Hecke correspondence. However this is not
the case, and Deligne’s conjecture (Theorem ??) asserts that although Xv is not
proper, the fixed point formula would hold with an arbitrary Hecke correspondence,
provided that it is multiplied by a sufficiently high power of the Frobenius. This
theorem will be used in conjunction with the Trace Formula (Proposition ??) where
the test function fv,∞ outside v and ∞ is arbitrary, and the spherical component
fv at v depends on a parameter m which is sufficiently large with respect to fv,∞

and f∞. Further, we use (in Lemma ??(1)) the congruence relations of Theorem
??.

To state the results which depend on Deligne’s conjecture (Theorem ??), we
introduce (as in the first paragraph of 5.2.2) the following notations. Let πf be an
irreducible G(Af )-module, and U = UI an open compact congruence subgroup of
G(Af ), defined by a nonzero proper ideal I of the ring A. We denote by πIf the

(finite dimensional) vector space of U -fixed vectors in πf . It is naturally an HI -
module. The map πf 7→ πIf is a bijection from the set of irreducible G(Af )-modules
which have a nonzero UI -fixed vector, to the set of irreducible HI -modules in which
the unit element of HI acts as the identity.

Remark 10.1. This bijection extends to an equivalence of categories, where “irre-
ducible” is replaced by “algebraic”.



DRINFELD MODULI SCHEMES AND AUTOMORPHIC FORMS 83

Definition 10.1. An HI -module πIf is called cuspidal if there exists a G∞-module

π∞ whose product πf ⊗ π∞ with the G(Af )-module πf which corresponds to πIf is

a cuspidal G(A)-module.

To relate cuspidal G(A)-modules with irreducible Galois representations, we need
additional definitions.

Definition 10.2. A continuous representation σ : Gal(F/F ) → GL(r,Q`) of the
Galois group of F of dimension r is called constructible if for almost every place v of
F the restriction σv of σ to the decomposition group Gal(F v/Fv) at v is unramified,
namely trivial on the inertia subgroup.

If σv is unramified then it factorizes through the Galois group Gal(Fv/Fv) of
the (finite) residue field Fv of Fv; the group Gal(Fv/Fv) is generated by the Frobe-
nius substitution ϕ : x 7→ xqv , and also by its inverse, the (geometric) Frobenius
automorphism Frv : x 7→ x1/qv (qv is the cardinality of Fv). Note that the field
Fv is perfect. Suppose that σv is semisimple. Then the isomorphism class of σv
is determined by the eigenvalues (or the conjugacy class) of the matrix σv(Frv) in
GL(r,Q`), or the characteristic polynomial P (t;σv) = det[t− σv(Frv)] in t.

For any irreducible unramified Gv-module πv with Hecke eigenvalues zi(πv) (1 ≤
i ≤ r), we write P (t;πv) for the product

∏r
i=1(t−zi(πv)). In this section we consider

only representations over Q`, with ` 6= p.

Definition 10.3. A continuous `-adic r-dimensional representation σ of Gal(F/F )
and an admissible irreducible G(A)-module π = ⊗vπv correspond if σ is con-
structible and P (t;σv) = P (t;πv) for almost all v.

As usual we put

X = Mr,I ×A F , Xv = Mr,I ×A F v, Hi
c = Hi

c(X,L(ρ)).

Theorem 10.1. Let ρ be an irreducible representation of D×∞ with finite image
which corresponds to a cuspidal G∞-module π∞(ρ). Let I be a nonzero ideal of A
which is contained in at least two maximal ideals, and U = UI the corresponding
congruence subgroup of G(Af ). Put H+ = ⊕iHi

c (r − 1− i even) and H− = ⊕iHi
c

(r − 1 − i odd). Denote by m+ = m+(σ̃ ⊗ π̃If ) (resp. m− = m−(σ̃ ⊗ π̃If )) the

multiplicity of an irreducible constituent σ̃⊗ π̃If of H+ (resp. H−) as a Gal(F/F )×
HI-module, and put m = m+ −m−. Then (1) m(σ̃ ⊗ π̃If ) is equal to zero or one.

(2) If m(σ̃ ⊗ π̃If ) is one then the corresponding G(A)-module π̃ = π̃f ⊗ π∞(ρ) is

cuspidal (in particular automorphic), and the dimension of σ̃ is r. Put ν(x) = |x|
(x in A×).
(3) If m(σ̃ ⊗ π̃If ) is one then π̃ ⊗ ν−(r−1)/2 corresponds to σ̃.

(4) For every cuspidal G(A)-module π = πf ⊗ π∞ with π∞ = π∞(ρ) and πIf 6= {0}
there exists a Gal(F/F )×HI-module σ̃⊗ π̃If with m(σ̃⊗ π̃If ) = 1 such that πIf ' π̃If .

Combining (3) and (4) we deduce the following Corollary, which is used in a
crucial way to establish in section 11 the higher reciprocity law.

Corollary 10.2. For every cuspidal G(A)-module π = ⊗vπv such that π∞ is cusp-
idal and its central character is of finite order, there exists a continuous irreducible
r-dimensional `-adic constructible representation σ of Gal(F/F ) which corresponds
to π.
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Proof. This follows from Theorem ?? on taking ρ which corresponds to π∞ and a
sufficiently small congruence subgroup U = UI of G(Af ) such that πIf 6= {0}. �

Proof of Theorem. The cohomology space Hi
c(Xv,L(ρ)) is a Gal(Fv/Fv) × HI -

module for every maximal ideal v of A not containing I. As noted in (5.1.7),
the constructibility of the sheaf L(ρ) implies that for almost all places v 6= ∞
(in F ) which do not divide I, the restriction of Hi

c(X,L(ρ)) to the decomposition
group Gal(F v/Fv) at v is trivial on the inertia subgroup and is isomorphic, as a
Gal(Fv/Fv) × HI -module, to Hi

c(Xv,L(ρ)). We prove the theorem on applying
Deligne’s conjecture to the Hi

c(Xv,L(ρ)) for the set of these v.
For any i (0 ≤ i ≤ 2(r − 1)) denote by σ̃i ⊗ π̃Ii,f the irreducible constituents, re-

peated according to their multiplicities, of the Gal(F/F )×HI -module Hi
c(X,L(ρ)).

The spaces Hi
c(X,L(ρ)) and Hi

c(Xv,L(ρ)) are isomorphic as Gal(F v/Fv) × HI -
modules for almost all v, and the restriction σ̃i,v of σ̃i to the decomposition group

Gal(F v/Fv) factorizes through the quotient Gal(Fv/Fv).
Let f∞ be an element of HI . It is a compactly supported U -biinvariant Q`-

valued function on G(Af ). Then f∞ defines a correspondence on Xv, and an

automorphism of Hi
c(Xv,L(ρ)) as in (5.1.8), which will also be denoted here by

f∞. For every such f∞ and integers m and i ≥ 0, we have

(10.1) tr[(Frmv ×1) · f∞;Hi
c(Xv,L(ρ))] =

∑
tr π̃i,f (f∞) tr σ̃i,v(Frmv );

on the right the sum ranges over the irreducible constituents σ̃i⊗π̃i,f of Hi
c(X,L(ρ))

as a Gal(F/F )×HI -module.
Suppose in addition that f∞ = fv,∞f0

v , where fv,∞ is a function on G(Avf )

(where Avf is the ring of adèles without components at v and∞), and f0
v is the unit

element of the Hecke algebra Hv with respect to Uv = G(Av).
Proposition ?? implies that for every f∞ as above there exists an integer m0

such that for every integer m ≥ m0, the alternating sum

(10.2)

2(r−1)∑
i=0

(−1)r−1−i tr[(Frmv ×1) · f∞;Hi
c(Xv,L(ρ))]

of the left sides of equation (??), is equal to the geometric side

(10.3)
∑
{γ}

|Zγ(G(A))/Zγ(G(F ))Z∞| · Φ(γ, f∞ · f∞ · fm,v)

of the trace formula. Here, as in Proposition ??, f∞ is a normalized matrix-
coefficient of the cuspidal G∞-module π∞(ρ) which corresponds to the D×∞-module
ρ. As usual, fm,v denotes the spherical function on Gv defined in (8.1). The sum
in Eq. (??) ranges over the set of conjugacy classes of the elliptic γ in G = G(F ).

The trace formula of Proposition ?? asserts that Eq. (??) is equal to

(10.4)
∑
π

trπv(fm,v) trπ∞(f∞) trπ∞(f∞)

for all m ≥ m0 = m0(f∞f∞). The sum ranges over all cuspidal G(A)-modules
π = ⊗wπw. Note that (i) if the component π∞ satisfies trπ∞(f∞) 6= 0, then π∞ is
the cuspidal π∞(ρ), and trπ∞(f∞) = 1; (ii) if trπ∞(f∞) 6= 0, then π∞ = ⊗wπw
(w 6=∞) has a nonzero U -fixed vector. Consequently, the sum of Eq. (??) is finite
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since there are only finitely many cuspidal G(A)-modules π with a nonzero U -fixed
vector and the component π∞(ρ) at ∞.

Denote by uj,v(σ̃i) the eigenvalues of the matrix σ̃i,v(Frv). By virtue of Eq. (??)
the alternating sum of Eq. (??) is equal to

(10.5)

2(r−1)∑
i=0

(−1)r−1−i
∑

σ̃i⊗π̃i,f

tr π̃i,f (f∞)

∑
j

uj,v(σ̃i)
m

 .
Denoting as usual the Hecke eigenvalues of πv by zj,v(πv) (1 ≤ j ≤ r), we rewrite
Eq. (??) in the form

(10.6)
∑
π

trπ∞(f∞)

 r∑
j=1

(q(r−1)/2
v zj,v(π))m

 .
Denote by π̃∞ a G(Af )-module (up to equivalence) which contribute to Eq. (??).

Let σ̃+ = σ̃+(π̃∞) be the sum of the σ̃i over the π̃∞ ⊗ σ̃i which occur in H+, and
define σ̃− = σ̃−(π̃∞) similarly, using H−. Denote the corresponding eigenvalues by
uj,v(σ̃

+(π̃∞)) and uj,v(σ̃
−(π̃∞)). Then Eq. (??) can be rewritten in the form

(10.7)
∑
π̃∞

tr π̃∞(f∞)

∑
j

uj,v(σ̃
+(π̃∞))m −

∑
j

uj,v(σ̃
−(π̃∞))m

 .

Fix an element aaa in Q×r` /Sr. Denote by (ai; 1 ≤ i ≤ r) its multiset (set with
repetitions) of components. Since the sums Eq. (??) and Eq. (??) are finite and
equal for all m ≥ m0(f∞), we conclude that

(10.8)
∑
π

trπ∞(f∞) =
∑
π̃∞

tr π̃∞(f∞);

on the left π ranges over the set of π in Eq. (??) such that the image of (zj,v(π))

in Q×r` /Sr is q
(1−r)/2
v aaa. On the right π̃∞ ranges over a set of π̃∞ in Eq. (??) with

uj,v(σ̃
∗(π̃∞)) in {aj}. In Eq. (??) the function f∞ is an arbitrary element of HI of

the form fv,∞f0
v . Since the sums of Eq. (??) are finite we conclude that for every

π̃∞ = π̃v,∞ ⊗ π̃v there is a necessarily unique automorphic π = π∞ ⊗ πv,∞ ⊗ πv
with π̃v,∞ ' πv,∞. Since we may vary v we conclude that π̃∞ ' π∞ and that
π̃ = π̃∞ ⊗ π∞(ρ) is automorphic. Moreover, for almost all v and for all m we have

(10.9)
∑
j

uj,v(σ̃
+(π̃))m −

∑
j

uj,v(σ̃
−(π̃))m =

r∑
j=1

(q(r−1)/2
v zj,v(π))m.

In summary, as a virtual Gal(F/F )×HI -module, H+ −H− is the sum over all
cuspidal G(A)-modules π = πf ⊗ π∞(ρ) with πIf 6= {0} of σ ⊗ πIf , where σ = σ(π)

is a virtual representation of Gal(F/F ). Thus σ =
∑
j≥0mjσj , where the σj are

irreducible and the (finitely many) mj are nonzero integers. Put σ∗ for σ⊗ν(r−1)/2,

where ν is the character of Gal(F/F ) which corresponds to ν(x) = |x| (x in A×) by
class field theory. Put P (t;σ(π)∗v) =

∏
j P (t;σj(π)∗v)

mj . We conclude the following
intermediate result.

Lemma 10.3. There is a finite set V of places of F , including ∞ and the divisors
of I, such that the σj = σj(π) are unramified at each v outside V and P (t;σ(π)∗v) =
P (t;πv) for all v outside V and for all π.
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To complete the proof of the theorem we need to show that each σ is irreducible,
namely that m0 = 1 and mj = 0 for j > 0.

Lemma 10.4. (1) Let σ̃⊗ π̃If be an irreducible constituent of the Gal(F/F )×HI-

module Hi
c for some i (0 ≤ i ≤ 2(r − 1)). Then for almost all v, each Frobenius

eigenvalue uj,v(σ̃
∗) of σ̃∗ is equal to some Hecke eigenvalue zk,v(π̃f ) (k = k(j))

of π̃f . (2) The complex absolute value of each conjugate of the algebraic number
zk,v(π̃f ) is one.

Proof. (1) is Theorem ?? (congruence relations); (2) is Theorem ?? (Hecke purity).
�

Combining the two parts of Lemma ?? we obtain the following Frobenius purity
result.

Lemma 10.5. For each v outside V and σj as in Lemma ??, each conjugate of
each Frobenius eigenvalue ui,v(σ

∗
j ) of σ∗j has complex absolute value one.

Consequently the Q`-adic sheaf S(σ∗j ) on the curve C (F = Fq(C)), which is as-

sociated (see [?], section 10) to the constructible irreducible Q`-adic representation
σ∗j of Gal(F/F ), is (smooth on an open dense subscheme C(σ∗j ) of C and) pure of
weight zero in the terminology of Deligne [?] (see also [?]; Sommes trig., pp. 177/8).

To prove the irreducibility of σ we use basic properties of L-functions. For any
virtual representation σ of Gal(F/F ) which is unramified outside V put

L(s, σv) =
∏
i

(1− q−sv ui(σv))
−1 and L(s, V, σ) =

∏
v/∈V

L(s, σv).

The absolute convergence of the product L(s, V, σ∗j ) in the right half plane Re(s) > 1
follows from Lemma ??. Then

L

s, V,(∑
i

miσi

)
⊗

∑
j

m′jσ
′
j

 =
∏
i,j

L(s, V, σi ⊗ σ′j)mim
′
j .

Now Grothendieck proved that the product L(s, V, σ) is a rational function in qs on
identifying it (see [?], section 10) with an L-function L(s, S(σ, V )/X) of a smooth
Q`-adic sheaf S(σ, V ) over the scheme X = SpecA− V . If S is a smooth sheaf on
a scheme Xd of dimension d over Fq then the L-function is a product

L(s, S/Xd) =
∏

0≤j≤2d

Pj(s, S/Xd)
(−1)j+1

,

where Pj(s, S/Xd) are polynomials associated with Hj
c (Xd ×Fq Fq, S). The results

of Deligne [?] assert that if S = Si is pure of weight i then the zeroes of Pj(s, Si/Xd)
occur for half-integral Re s ≤ (i+ j)/2.

In our case the sheaf S0 = S(σ∗j , V ) associated with any σ∗j as in Lemma ?? is
pure of weight zero, over a curve X1 = C(σ∗j ), thus d = 1. Hence we conclude

Lemma 10.6. For every σj as in Lemma ??, the rational function L(s, V, σ∗j ) has

no pole in Re s > 1 and no zero in Re s > 1
2 .

On the other hand we introduce the functions

L(s, πv ⊗π′v) =
∏
i,j

(1− q−sv zi(πv)zj(π
′
v))
−1, L(s, V, π⊗π′) =

∏
v/∈V

L(s, πv ⊗π′v),
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for any cuspidal G(A)-modules π, π′ which are unramified outside V . It is easy to
see that the infinite product converges in some right half plane (Re s > c(> 1)). By
virtue of [?], Proposition ??, we further have

Lemma 10.7. The product L(s, V, π ⊗ π′) is a rational function in qs which is
regular in Re s > 1. It has a pole at s = 1, which is necessarily simple, if and only
if π′ is the contragredient π∨ of π.

Note also that if σ is the trivial representation of Gal(F/F ) then L(s, V, σ) has
a pole at s = 1. If σ is irreducible and its contragredient is denoted by σ∨, then
σ ⊗ σ∨ contains a copy of the trivial representation, hence L(s, V, σ ⊗ σ∨) has a
pole at s = 1.

Now suppose that σ ⊗ πIf occurs in Lemma ??, where σ =
∑
jmjσj , the σj are

irreducible and the mj are integral. Then

L(s, V, π⊗π∨) = L
(
s, V,

(∑
j

mjσ
∗
j

)
⊗
(∑

j

mjσ
∨
j
∗
))

=
∏
i,j

L(s, V, σ∗i ⊗σ∨j ∗)mimj .

The order of the pole of the left side at s = 1 is one, while the order of pole of
the right side at s = 1 is at least

∑
im

2
i , since L(s, V, σ∗i ⊗ σ∨j ∗) does not vanish at

s = 1 for all i, j, by Lemma ??. We conclude that mi = 0 for i > 0 and m2
0 = 1

(on rearranging indices). But then it is clear that m0 = 1, for example from the
Eq. (??). This completes the reduction of the theorem to Deligne’s conjecture
(Theorem ??).
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11. Representations of a Weil group

Let F = Fq(C) be the field of functions on a smooth projective absolutely ir-

reducible curve C over Fq, A its ring of adèles, F a separable algebraic closure of
F , G = GL(r), and ∞ a fixed place of F , as in section 1. This section concerns
the higher reciprocity law, which parametrizes the cuspidal G(A)-modules whose
component at ∞ is cuspidal, by irreducible continuous constructible r-dimensional
`-adic (` 6= p) representations of the Weil group W (F/F ), or irreducible rank r
smooth `-adic sheaves on SpecF which extend to smooth sheaves on an open sub-
scheme of the smooth projective curve whose function field is F , whose restriction
to the local Weil group W (F∞/F∞) at ∞ is irreducible. This law is reduced to
Theorem 10.1, which depends on Deligne’s conjecture (Theorem ??). This reduc-
tion uses the converse theorem ??, and properties of ε-factors attached to Galois
representations due to Deligne [?] and Laumon [?]. We explain the result twice.
A preliminary exposition in the classical language of representations of the Weil
group, then in the equivalent language of smooth `-adic sheaves, used e.g. in [?].
Note that in this section we denote a Galois representation by ρ, as σ is used to
denote an element of a Galois group.

11.1 Weil groups. Let F be a local nonarchimedean field withring R of integers,
residue field F, separable closure F . Let F denote the residue field of the integral
closure R of R in F . Then F is an algebraic closure of the finite field F. The
kernel I of the natural epimorphism Gal(F/F ) → Gal(F/F) is called the inertia
subgroup of Gal(F/F ). The Galois group Gal(F/F) is isomorphic to the profinite

completion Ẑ = lim
← nZ/n of Z. It is topologically generated by the arithmetic

Frobenius automorphism ϕ : x 7→ xq of F, where q is the cardinality of F. Since
ϕ is bijective, we can and do introduce also the (geometric) Frobenius morphism
Fr = ϕ−1. The Weil group W (F/F ) is the group of g in Gal(F/F ) whose image in
Gal(F/F) is an integral power of Fr. LetW (F/F) denote the group 〈Frn;n in Z〉 ' Z.
Then there is an exact sequence

1→ I →W (F/F )→W (F/F) ' Z→ 0.

The Galois group Gal(F/F ) is a topological group, in the topology where a
system of neighborhoods of the identity is given by Gal(F/F ′), where F ′ ranges
through the set of finite extensions of F in F . Then Gal(F/F ) = lim

←
Gal(F ′/F ) is

a profinite group, hence compact. The Weil group W (F/F ) is given the topology
where a fundamental system of neighborhoods of the identity is the same as in
I. The group Gal(F/F ) is the profinite completion of W (F/F ). The subgroup of
W (F/F ) corresponding to the finite extension F ′ of F is identified with W (F/F ′).
Let deg : F � Z denote the normalized additive valuation.

Local class field theory implies that there is a commutative diagram of topological
groups:

1 −→ I −→ W (F/F ) −→ W (F/F) −→ 1
↓ ↓ ↓ o

1 −→ R× −→ F× −→
deg

Z −→ 0,

such that the reciprocity homomorphism W (F/F ) � F× is surjective, and its
kernel consists of the commutator subgroup ofW (F/F ). It is normalized so that the
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(geometric) Frobenius is mapped to a uniformizer in R. Consequently the quotient
W (F/F )ab is isomorphic to F×, and there is a natural bijection between the sets
of continuous one-dimensional representations of W (F/F ), and of GL(1, F ). An
unramified representation of W (F/F ) is one which is trivial on the inertia subgroup
I. An unramified character of W (F/F ) corresponds to an unramified character of
F×.

Let F be a function field in one variable over Fp, and F = Fq its subfield of

constants (= algebraic closure of Fp in F ). Let F be a separable closure of F ,

F the algebraic closure of F in F , and Gal(F/F )0 the kernel of the restriction
homomorphism from Gal(F/F ) to Gal(F/F). The global Weil group W (F/F ) is
defined by the diagram

1 −→ Gal(F/F )0 −→ W (F/F ) −→ W (F/F) ' Z −→ 0
o ↓ ↓ ↓

1 −→ Gal(F/F )0 −→ Gal(F/F ) −→ Gal(F/F) ' Ẑ −→ 0.

Global class field theory yields an isomorphism of W (F/F )ab with the idèle class
group A×/F×, and in particular a natural isomorphism from the set of continuous
one-dimensional representations of W (F/F ), to the set of automorphic represen-
tations of GL(1,A). Let v be a place of F , and v a place of F over v. The
(decomposition) subgroup Dv of W (F/F ), consisting of all w with w v = v, is
isomorphic to the local Weil group W (F v/Fv), where the completion F v of F at v
is a separable closure of Fv. The quotient of W (F v/Fv) by the inertia subgroup Iv
is isomorphic to the subgroup W (Fv/Fv) ' Z of Gal(Fv/Fv) ' Ẑ, generated by the
Frobenius. The quotient Fv = Rv/v is the residue field of Fv. The local and global
Weil groups are related by the diagram

1 −→ Iv −→ W (F v/Fv) −→ W (Fv/Fv) ' Z −→ 0
↓ ↓ ↓

1 −→ Gal(F/F )0 −→ W (F/F ) −→ W (F/F) ' Z −→ 0.

The vertical arrow on the right is multiplication by [Fv : F]. The local and global
class field theories are related by the commutative diagram

W (F v/Fv)ab −→ W (F/F )ab

o ↓ ↓ o
F×v −→ A×/F×.

11.2 `-adic representations. Let ` 6= p be a rational prime, Eλ a finite field
extension of Q`, and Vλ an r-dimensional vector space over Eλ. The topology on

the group AutVλ ' GL(r, Eλ) is induced by that of EndVλ ' Er
2

λ . A λ-adic

representation of F is a continuous homomorphism ρ : W (F/F ) → AutVλ. The
restriction to W (F/F ) of a λ-adic representation ρ̃ : Gal(F/F ) → AutVλ of the
Galois group Gal(F/F ) is a λ-adic representation. But not every representation of
W (F/F ) extends to a representation of Gal(F/F ). Since W (F/F ) is topologically
finitely generated over the profinite (and consequently compact) group Gal(F/F )0,
every continuous `-adic representation ρ : W (F/F )→ GL(r,Q`) factorizes through
GL(r, Eλ) for some finite extension Eλ of Q` in Q`. Indeed, this follows from



90 YUVAL Z. FLICKER

Lemma 11.1. For every compact subgroup K of H = GL(r,Z`) there is a finite
extension Eλ of Q` in Q` such that K lies in GL(r, Eλ).

Proof. Here Z` is the ring of integers in Q`, and by Mr we denote the ring of r× r
matrices. The congruence subgroup Hi = I+ `iMr(Z`) (i ≥ 1) is an open (normal)
subgroup of H. Hence Ki = K ∩Hi is an open subgroup of K, and so the quotient
K/Ki is discrete and compact, and finite. If Ki is contained in GL(r, E) for some
finite extension E of Q`, then K lies in GL(r, E′), where E′ is generated over E
by the coefficients of a set of coset representatives in K for K/Ki; since K/Ki is
finite, so is [E′ : Q`]. Suppose that K is not contained in GL(r, E) for any finite
E over Q`, then Ki is not contained in GL(r, E) for any finite E/Q` and any i.
There exists a sequence n1 < n2 < . . . of positive integers, and elements gi in Kni ,
satisfying
(1) if σ(gi) 6= gi then σ(gi) 6≡ gi mod `ni+1 , for any σ in Gal(Q`/Q`);
(2) the field generated over Q` by the entries in the matrix gi has degree ≥ i over
Q`.
Indeed, g1 can be chosen arbitrarily; once g1, . . . , gi−1 (and n1, . . . , ni−1) are chosen,
since gi−1 has only finitely many conjugates, ni (> ni−1) can be chosen to satisfy
(1) and gi can be chosen in Kni to satisfy (2).

Put h = g1g2 · · · ; the product converges to an element h in K since ni →∞. For
an automorphism σ of Q` over Q` which fixes h one has g1g2 · · · = σ(g1)σ(g2) · · · .
Denote by j the least i ≥ 1 with σ(gi) 6= gi (it is clear from (2) that there is such
j < ∞). Then gjgj+1 · · · = σ(gj)σ(gj+1) · · · . Hence σ(gj) ≡ gj mod `nj+1 , but
σ(gj) 6= gj ; this is a contradiction to (1) which proves the lemma. �

Definition 11.1. A λ-adic representation ρ of F is called unramified at the place
v of F if ρ(Iv) = {1} for some, hence for every, place v of F which extends v.

In this case the restriction of ρ to Dv = W (F v/Fv) factorizes through Dv/Iv '
〈Frv〉, and the image ρ(Frv) of the (geometric) Frobenius is well-defined. The
conjugacy class of ρ(Frv) in GL(r, Eλ) is independent of the choice of v; it is denoted

by ρ(Frv). For any v over v let V
ρ(Iv)
λ be the space of ρ(Iv)-fixed vectors in Vλ.

The characteristic polynomial

Pv,ρ(t) = det[1− t · ρ(Frv) | V ρ(Iv)
λ ]

is independent of the choice of v.

Definition 11.2. A λ-adic representation of F is called constructible if it is un-
ramified at almost all v.

It would be interesting to show that every semisimple, in particular irreducible,
λ-adic representation of F is constructible. However this is not yet known, and
from now on by a λ-adic representation ρ of F we mean one which is constructible,
namely one such that ρv is unramified for almost all v.

Example 11.1. There does exist a two-dimensional indecomposable reducible non-
semisimple `-adic representation ρ which is ramified at each place of F . To see this,
denote the distinct monic irreducible polynomials on the curve C defining F =

Fq(C) by p0, p1, . . .. Put xn for a root of the equation x`
n

= p0p
`
1 · · · p`

i

i · · · p`
n−1

n−1 ,

and fix a primitive `n-th root ζn of 1 for all n, say with ζ`n = ζn−1. For each
σ in Gal(F/F ), where F is a separable closure of F , define χ`(σ) and α`(σ) in
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Z` by σζn = ζ
χ`(σ)(mod `n)
n and σxn = ζ

α`(σ)(mod `n)
n xn (for all n ≥ 0). Then

ρ : Gal(F/F )→ GL(2,Z`), ρ : σ 7→
(
χ`(σ) α`(σ)

0 1

)
, has the required properties when

` 6= p. Of course, χ` is the cyclotomic character of Gal(F/F ), and the construction
holds also in characteristic 0: if F = Q take p0, p1, . . . to be the rational primes.
The semisimplification of ρ is the direct sum 1⊗ χ`; it is nowhere ramified.

Let ρ : W (F/F ) → AutVλ be a λ-adic representation of the function field F ;
then ρv = ρ|W (F v/Fv) is unramified for almost all v. Put L(t, ρv) = Pv,ρ(t

deg v)−1,
where deg v = logp qv is the degree of the residue field of Fv over Fp. This L(t, ρv)
is a power series in Eλ[[t]], and so is the Euler product L(t, ρ) =

∏
v L(t, ρv). Note

that L(t, ρv) and L(t, ρ) lie in Rλ[[t]] if ρ is a representation of Gal(F/F ), since
then the image of ρ lies in a conjugate of GL(n,Rλ).

Proposition 11.2. (i) L(t, ρ) is a rational function in t; (ii) it is a polynomial in
t if ρ has no nonzero Gal(F/F )0-fixed vector; (iii) there exists a monomial ε(t, ρ)
in t such that L(t, ρ) satisfies the functional equation L(t, ρ) = ε(t, ρ)L(1/qt, ρ∨),
where ρ∨ is the contragredient (ρ∨(w) = tρ(w)−1) of ρ. The local and global L-
functions satisfy (iv) L(t, ρ) = L(t, ρ′)L(t, ρ′′) if 0 → V ′ → V → V ′′ → 0 is
an exact sequence of representations, and (v) L(t, ρF ) = L(t, ρK) if K is a finite
extension of F in F , ρK : W (F/K) → AutVλ is a λ-adic representation of K,
and ρF is the induced ρF = Ind(ρK ;W (F/F ),W (F/K)) representation of F . (vi)
There exists a c = c(ρ) > 0 such that the Euler product L(t, ρ) converges absolutely
in |t| < c.

Proof. This is a theorem of Grothendieck (cf. [?], p. 574). Our (i) follows from the
cohomological interpretation

L(t, ρ) =
∏
i

det[1− t · Fr | Hi
ét(C × Fq, ρ)](−1)i+1

,

where Fr is the geometric Frobenius on the curve C which defines F = Fq(C), and

Fq is an algebraic closure of Fq. (ii) implies the Artin conjecture for function fields,
and (iii) results from the Poincaré duality. For (iv),(v) see [?], p. 530. (vi) follows
from the interpretation of L(t, ρ) as an L-function of a smooth Q`-sheaf over some
scheme; see [?], section 10, or the paragraph preceding Lemma ?? in the proof of
Theorem ?? above, and [?], Theorem 1. �

Remark 11.1. If ρv is one-dimensional, namely a character, then L(t, ρv) = 1 if ρv
is ramified, and L(t, ρv) = (1 − t · ρv(Frv))

−1 if ρv is unramified. Then L(t, ρv)
coincides with the Hecke-Tate local factor for the character of F×v corresponding
to ρv, as Frv is mapped to the uniformizer πππv by the reciprocity epimorphism of
class field theory. If ρ is a character of W (F/F ) then L(t, ρ) coincides with the
Hecke-Tate Euler product for the corresponding character of the idèle class group
A×/F×.

11.3 ε-factors. To compare λ-adic representations ρ of a global field F with
automorphic representations we need to express the global ε-factor as a product of
local ε-factors. The local ε-factor is defined by Theorem 4.1 (and 6.5) in [?], which
we now recall.

Proposition 11.3. There exists a unique E×λ -valued function ε, associating a num-

ber ε(ρ, ψ, dx) to the triple consisting of (i) a λ-adic representation ρ : W (F/F )→
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AutVλ of the local field F ; (ii) a nontrivial E×λ -valued additive character ψ of F ;
(iii) Eλ-valued (see [?], p. 554) Haar measure dx on F , satisfying the following
properties.
(1) ε(ρ, ψ, dx) = ε(ρ′, ψ, dx)ε(ρ′′, ψ, dx) for any exact sequence 0 → V ′λ → Vλ →
V ′′λ → 0 of representations. In particular, ε(ρ, ψ, dx) depends only on the class of

(ρ, Vλ) in the Grothendieck group REλ(W (F/F )) of λ-adic representations of F .
(2) ε(ρ, ψ, adx) = adim ρε(ρ, ψ, dx); in particular, ε(ρ, ψ, dx) is independent of dx
and is denoted by ε(ρ, ψ) for a virtual representation ρ of dimension zero. Note
that dim and det naturally extend to homomorphisms from the Grothendieck group
REλ(W (F/F )) to Z, and to Hom(W (E/E), E×λ ).

(3) If K is a finite extension of F in F , ρK a virtual λ-adic representation of
W (F/K) of dimension zero, and ρF = Ind(ρK ;W (F/F ),W (F/K)) the induced
representation of W (F/F ), then ε(ρF , ψ) = ε(ρK , ψ ◦ trK/F ), where trK/F is the
trace map.
(4) If ρ is a character of W (F/F ) corresponding to the character χ of F× by
local classfield theory, then ε(ρ, ψ, dx) = ε(χ, ψ, dx) is the Hecke-Tate local ε-factor
associated to χ (and ψ, dx).

For a given λ-adic representation ρ of a local field F , the ε-factor ε(ρ⊗χ, ψ, dx)
depends on ρ only via its dimension and determinant, for a sufficiently ramified χ.
More precisely, by [?], we have the following

Proposition 11.4. For any character χ of F× whose conductor a(χ) is sufficiently
large (depending on ρ and ψ), there exists y in F× with χ(1 + a) = ψ(a/y) for all
a in F× with deg(a) ≥ a(χ)/2, and we have

ε(ρ⊗ χ, ψ, dx) = ε(χ, ψ, dx)dim ρ · (det ρ)(y).

Corollary 11.5. If dim ρ = r and χ1, . . . , χr are characters of W (F/F )ab ' F×

whose product is det ρ, for a sufficiently ramified χ we have

ε(ρ⊗ χ, ψ, dx) =

r∏
i=1

ε(χ, ψ, dx)χi(y) =

r∏
i=1

ε(χχi, ψ, dx).

Let F be a function field, dx =
∏
v dxv a Haar measure on A which assigns

AmodF the volume one, and ψ a nontrivial additive character of AmodF . The
restriction of ψ to Fv is denoted by ψv. Put dv for the degree over Fp of the residue

field of Fv, and define the unramified character νt,v of W (F v/Fv) by νt,v(Frv) = tdv .
Put

L(t, ρv) = L(ρv ⊗ νt,v) and ε(t, ρv, ψv, dxv) = ε(ρv ⊗ νt,v, ψv, dxv).
For any λ-adic (constructible) representation ρ of W (F/F ), for almost all v the
factors ε(t, ρv, ψv, dxv) are equal to one, and the product

ε∏(t, ρ) =
∏
v

ε(t, ρv, ψv, dxv)

is independent of the choice of ψ and decomposition dx =
∏
v dxv into local mea-

sures.

Proposition 11.6. For every irreducible λ-adic representation ρ we have the equal-
ity ε(t, ρ) = ε∏(t, ρ).

Proof. This is a main result of [?]. �
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Remark 11.2. The case where ρ has finite image, or it belongs to an infinite compat-
ible system of λ-adic representations, is due to [?], Theorem 9.3; for more historical
comments see [?].

Definition 11.3. Put

Γ(t, ρv) =
L(t, ρv)

ε(t, ρv)L(1/qt, ρ∨v )

and

Γ(t, ρ) =
L(t, ρ)

ε∏(t, ρ)L(1/qt, ρ∨)
.

Note that Γ(t, ρv) = Γ(t, ρv, ψv, dxv) depends on ψv and dxv.

Remark 11.3. In view of Proposition ??, the Grothendieck functional equation of
Proposition ??(iii) asserts that Γ(t, ρ) = 1 for every λ-adic ρ.

11.4 Review of product L-functions of generic representations of GL(n).
Here is a brief review of well-known results, underlying the converse theorem, and
used in applications. Let n > m > 0 be integers. Put k = n−m−1. For v ∈ |X|, let
πv and π′v be admissible representations of Gn = GL(n, Fv) and Gm = GL(m,Fv)
which are parabolically induced from irreducible generic representations. Denote
by W (πv, ψv) and W (π′v, ψv) their Whittaker models. For Wv in W (πv, ψv) and
W ′v in W (π′v, ψv), define

Ψ(t,Wv,W
′
v) =

∫
Nm\Gm

Wv

((
x 0
0 In−m

))
W ′v(x)(q

n−m
2 t)deg(v) degv(x) dx

and Ψ̃(t,Wv,W
′
v)

=

∫
Nm\Gm

dx

∫
M(k×m,Fv)

Wv

((
x 0 0
y Im 0
0 0 1

))
W ′v(x)(q

n−m
2 t)deg(v) degv(x) dy

where M(k×m,Fv) is the space of k×m matrices. Recall that |av|v = q
− degv(av)
v ,

qv = qdeg(v). We write t = q−s (s ∈ C) for comparison with the characteristic 0

case. Then the factor |detx|s−
n−m

2
v becomes (q

n−m
2 t)deg(v) degv(x), where degv(x)

means degv(detx).

Denote antidiagonal(1, . . . , 1) by w or wn. Put W̃ (g) = W (w tg−1). Put wn,m =
diag(Im, wn−m). The following, and the analogue for n = m, is due to [?], [?].

Proposition 11.7. (1) The integrals Ψ(t,Wv,W
′
v) and Ψ̃(t, π∨v (wn,m)W̃v, W̃

′
v) con-

verge absolutely in some domain |t| < c to rational functions in tdeg(v). As Wv

and W ′v range over W (πv, ψv) and W (π′v, ψv) these integrals span fractional ideals
C[t, t−1]L(t, πv×π′v) and C[t, t−1]L(t, π∨v ×π′v∨) in the ring C[t, t−1]. The L-factor
L(t, πv × π′v) is the reciprocal of a polynomial in t with constant term 1.

(2) There exists a unique function ε(t, πv × π′v, ψv) of the form atm
′

(where a =
a(πv, π

′
v, ψv) in C×, m′ = m′(πv, π

′
v, ψv) ∈ Z) such that for all Wv ∈ W (πv, ψv),

W ′v ∈W (π′v, ψv) we have

Ψ(t,Wv,W
′
v)

L(t, πv × π′v)
ε(t, πv × π′v, ψv)ωπ′v (−1)m =

Ψ̃(1/qt, π∨v (wn,m)W̃v, W̃
′
v)

L(1/qt, π∨v × π′v∨)
.

(3) There exists an integer m(πv, π
′
v, ψv) ≥ 0 such that for any characters χv, χ′v

of F×v so that χvχ
′
v has conductor at least m(πv, π

′
v, ψv) we have:
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(i) the functions Ψ(t,Wv⊗χv,W ′v⊗χ′v) and Ψ̃(t, W̃v⊗χv, W̃ ′v⊗χ′v) are polynomial
in t and t−1; (ii) L(t, πv ⊗ χv × π′v ⊗ χ′v) = 1;
(iii) if χi (1 ≤ i ≤ nk) are characters of F× whose product is equal to ωkπω

n
τ , where

ωπ denotes the central character of π and ωτ of τ , then

ε(s, π, τ ⊗ χ, ψ) =

nk∏
i=1

ε(s, χχi, ψ),

where ε(s, χ, ψ) is the ε-factor in the Hecke-Tate functional equation;
(iv) ε(t, πv ⊗ χv × π′v ⊗ χ′v, ψv) = ε(t, χvχ

′
v, ψv)

nm−1ε(t, χvχ
′
vω

m
πvω

n
π′v
, ψv).

(4) If πv, π′v and ψv are unramified of the form πv = I(zi(πv)), π
′
v = I(zj(π

′
v)) then

ε(t, πv × π′v, ψv) = 1 and

L(t, πv×π′v) =
∏
i,j

(1−tzi(πv)zj(π′v))−1, L(t, π∨v ×π′v∨) =
∏
i,j

(1−t/zi(πv)zj(π′v))−1.

Given also unramified characters χv and χ′v then (3; iv) holds.
If in addition Wv, W ′v are the Kv- and K ′v-right invariant vectors whose value

at e is 1 then Ψ(t,Wv,W
′
v) = L(t, πv × π′v) and Ψ̃(t, W̃v, W̃

′
v) = L(t, π∨v × π′v∨).

If πv is also unitarizable then q
−1/2
v < |zi(πv)| < q

1/2
v for all i.

(5) Suppose that πv, τv are irreducible and τv is a cuspidal G′v-module. Then
L(s, πv, τ

∨
v ) has a pole at s = 0 if and only if there is a GL(n − n′, Fv)-module τ ′v

such that πv is a subquotient of I. Here I is the Gv-module I(τv× τ ′v) normalizedly
induced from the representation τv×τ ′v of the parabolic subgroup P of type (n′, n−n′)
which is trivial on the unipotent radical of P and is naturally defined by τv and τ ′v.

Let us fix a place v ∈ |X|. Denote by νv the character νv(x) = |x|v = q
− degv(x)
v ,

where qv = qdeg(v). If a ∈ R, the unramified character νav has Hecke eigenvalue q−av .
Write ρ(a) = ρ ⊗ νav if ρ is an admissible representation of GL(n, Fv). A segment
is a set ∆ = {ρ, ρ(1), . . . , ρ(a − 1)} of cuspidal (in particular irreducible) repre-
sentations of GL(n, Fv), where a ∈ Z>0. The normalizedly parabolically induced
representation ρ× ρ(1)× · · · × ρ(a− 1) = I(ρ⊗ ρ(1)⊗ · · · ⊗ ρ(a− 1)) has a unique
irreducible quotient denoted L(∆).

Two segments ∆ and ∆′ are called linked [?] if ∆ is not a subset of ∆′, ∆′ is not
a subset of ∆, and ∆∪∆′ is a segment. The segment ∆ = {ρ, . . . } is said to precede
∆′ = {ρ′, . . . } if they are linked and there is an integer b ≥ 1 with ρ′ = ρ(b). The
Bernstein-Zelevinski classification [?] for GL(n, Fv) asserts:

Theorem 11.8. (1) Suppose ∆1, . . . ,∆k are segments, and for all i < j, ∆i does
not precede ∆j. Then the induced representation L(∆1)×· · ·×L(∆k) has a unique
irreducible quotient denoted L(∆1, . . . ,∆k).
(2) The representations L(∆1, . . . ,∆k) and L(∆′1, . . . ,∆

′
k′) are equivalent iff the

sequences ∆1, . . . ,∆k and ∆′1, . . . ,∆
′
k′ are equal up to order.

(3) Every admissible irreducible representation of GL(n, Fv) has the form
L(∆1, . . . ,∆k).

The L-factors are computed in [?], sections 8 and 9:

Theorem 11.9. (1) Let πv = L(∆1, . . . ,∆k) and π′v = L(∆′1, . . . ,∆
′
k′) be irre-

ducible representations of GL(n, Fv) and GL(n′, Fv). Then

L(t, πv × π′v) =
∏

1≤i≤k,1≤i′≤k′
L(t, L(∆i)× L(∆′i′)),
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L(t, π∨v × π′v∨) =
∏

1≤i≤k,1≤i′≤k′
L(t, L(∆i)

∨ × L(∆′i′)
∨).

(2) Let ∆ = {ρ, . . . , ρ(a − 1)}, ∆′ = {ρ′, . . . , ρ′(a′ − 1)} be segments with a′ ≤ a.
Then

L(t, L(∆)× L(∆′)) =
∏

0≤i≤a′−1

L(t, ρ(a− 1)× ρ′(i)),

L(t, L(∆)∨ × L(∆′)∨) =
∏

0≤i≤a′−1

L(t, ρ(a− 1)∨ × ρ′(−i)∨).

(3) Let ρ, ρ′ be cuspidal representations of GL(n, Fv) and GL(n′, Fv). Then

L(t, ρ× ρ′) =
∏
z

(1− z−1tdeg(v))−1, L(t, ρ∨ × ρ′∨) =
∏
z

(1− ztdeg(v))−1,

where z ranges over the numbers for which ρ ⊗ zdegv is equivalent to ρ′∨ (and
degv(h) = degv(deth)).

Let πv be an admissible representation of GL(n, Fv) with central character ωπv .
Denote by |πv| the unique unramified character of GL(n, Fv) into R×>0 such that the

central character of πv⊗|πv|−1 is unitary. Thus |πv| = |ωπv |1/n. If ρ is cuspidal then
ρ⊗|ρ|−1 is unitarizable. For a segment ∆ = {ρ, . . . , ρ(a− 1)}, put |∆| = |ρ

(
a−1

2

)
|.

Then |∆| = |L(∆)|, and L(∆) ⊗ |∆|−1 is unitarizable and square integrable. The
representation L(∆1, . . . ,∆k) is tempered when |∆i| = 1 (1 ≤ i ≤ k). It is then
equal to L(∆1)× · · · ×L(∆k), which is irreducible, and unitarizable. An extension
of the last theorem for unitarizable πv by Tadic asserts:

Theorem 11.10. Let πv = L(∆1, . . . ,∆k) be an irreducible unitarizable generic
representation of GL(n, Fv). Then the Hecke eigenvalues z(|∆i|) = |∆i|(πππv) of the

unramified character |∆i| satisfy q
−1/2
v < z(|∆i|) < q

1/2
v (1 ≤ i ≤ k).

Corollary 11.11. Let πv, π′v be admissible irreducible generic representations of
GL(n, Fv) and GL(n′, Fv).
(1) If both are tempered, then the poles of L(t, πv × π′v) and L(t, π∨v × π′v∨) are in
|t| ≥ 1.
(2) If one is tempered and the other is unitarizable then these poles are in |t| >
q−1/2.

Other well-known results of [?], [?], [?] include

Theorem 11.12. Let π = ⊗vπv, π′ = ⊗vπ′v be irreducible automorphic represen-
tations of GL(n,A) and GL(n′,A). Then (1) The global ε-factor ε(t, π × π′) =∏
v εv(t, πv × π′v, ψv) is independent of ψ.

(2) The power series L(t, π×π′) =
∏
v L(t, πv×π′v) (and consequently L(t, π∨×π′∨))

converge to a rational function in t in some domain.
(3) These rational functions satisfy the functional equation

L(t, π × π′) = ε(t, π × π′)L(1/qt, π∨ × π′∨).

(4) If π is cuspidal and n′ < n then the rational functions L(t, π×π′) and L(t, π∨×
π′∨) are polynomials.

From [?], II, (3.7) we have
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Theorem 11.13. Let π = ⊗vπv, π′ = ⊗vπ′v be cuspidal (unitary, irreducible)
representations of GL(n,A) and GL(n′,A). Let S be a finite subset of |X| such
that πv, π′v are unramified at each v /∈ S. Then on |t| ≤ q−1 the partial L-function
LS(t, π×π′∨) has no zeroes, and its poles are all simple. The poles z in |z| ≤ q−1 are
the numbers z with |z| = q−1 such that (n = n′ and) π is equivalent to π′⊗(qz)deg(.).

There is a unique way to complete a partial L-function to an L-function.

Proposition 11.14. Suppose for each place v ∈ |X| and each pair χv, χ′v of
characters of finite order of F×v we have two triples

Li(t, χv, χ
′
v), L∨i(t, χv, χ

′
v), εi(t, χv, χ

′
v, ψv) (i = 1, 2)

such that
(1) for some finite S ⊂ |X| the triples are independent of i = 1, 2 for all v /∈ S (and
all χv, χ′v), and
(2) for all v ∈ S the same holds provided χvχ

′
v is sufficiently ramified. Suppose

(3) for each pair χ = ⊗vχv, χ′ = ⊗vχ′v of characters of finite order of A×/F× the
formal products

Li(t, χ, χ′) =
∏
v

Li(t, χv, χ
′
v), L∨i(t, χ, χ′) =

∏
v

L∨i(t, χv, χ
′
v) (i = 1, 2)

define rational functions, the products εi(t, χ, χ′) =
∏
v ε

i(t, χv, χ
′
v, ψv) are finite

(almost all factors are 1), and the functional equations

Li(t, χ, χ′) = εi(t, χ, χ′)L∨i(1/qt, χ, χ′)

hold. Then εi(t, χv, χ
′
v, ψv)L

∨i(t, χv, χ
′
v)/L

i(t, χv, χ
′
v) is independent of i for every

v. Moreover, if the rational functions Li(t, χv, χ
′
v), L∨i(t, χv, χ

′
v) do not have a

common pole (i = 1, 2), then Li(t, χv, χ
′
v), L

∨i(t, χv, χ
′
v) and εi(t, χv, χ

′
v, ψv) are

independent of i.

Proof. It suffices to show the claim for v ∈ S, by (1). Fix characters of finite order
χv, χ

′
v. At each u 6= v in S fix characters χu, χ′u of finite order with χuχ

′
u sufficiently

ramified for (2) to hold. Let χ, χ′ be characters of A×/F× whose components at
v and u ∈ S are those fixed. Then claim then follows from (3). The “Moreover”
follows from the form of the L and ε. �

Proposition ?? applies in particular when π = ⊗vπv, π′ = ⊗vπ′v are automorphic
irreducible representations of GL(n,A) and GL(n′,A), and

L1(t, χv, χ
′
v) = L(t, χvπv × χ′vπ′v), L∨1(t, χv, χ

′
v) = L(t, χ−1

v π∨v × χ′v−1π′v
∨)

and ε1(t, χv, χ
′
v) = ε(t, χvπv × χ′vπ

′
v, ψv). The assumptions (1), (2), (3) follow

from Proposition ??(4), ??(3), and Theorem ??. The assumption of “Moreover” is
satisfied by Corollary ?? when πv, π

′
v are generic and both are tempered or one is

tempered and the other unitary.

11.5 Correspondence. Section 11.4 completes our summary of the theory of
λ-adic representations ρ of the Weil group W (F/F ) of a local or global field of
characteristic p. These ρ will be related now to cuspidal representations of G =
GL(r). As usual, A denotes the ring of adèles of a function field F of characteristic
p, and each irreducible G(A)-module π is the restricted product ⊗vπv of irreducible
Gv = G(Fv)-modules πv which are almost all unramified. Denote now by C the
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field C or Q` (` 6= p). Suppose that π and πv are realizable in a vector space over
C.

If πv is an irreducible unramified Gv-module in a space over the field C, where
Gv is GL(r, Fv), then there exists an r-tuple z(πv) = (zi) of nonzero elements
zi of C such that πv is the unique irreducible unramified subquotient of the Gv-
module I(z(πv);Gv, Bv) = Ind(δ1/2z(πv);Gv, Bv) normalizedly induced from the

unramified character z(πv) : (bij) 7→
∏
i z

degv(bii)
i of the upper triangular subgroup

Bv. Here degv is the normalized (integral valued) additive valuation on F×v , and

δ((bij)) =
∏
i

qdegv(bii)(i−(r+1)/2)
v =

∏
i

|bii|(r+1)/2−i
v .

Recall that |x|v = q
− degv(x)
v and qv is the cardinality of the residual field of Fv.

The polynomial Pv,π(t) =
∏
i(1− tzi) is uniquely determined by πv, and Pv,π(t) 6=

Pv,π′(t) if πv, π
′
v are irreducible unramified inequivalent Gv-modules.

Denote by Z the center of G = GL(r). Let ω be a unitary character of Z(A)/Z.
Here we write Z for Z(F ). Let L(G)ω be the space of C-valued functions ϕ on
G(A) such that there is an open subgroup U = Uϕ of G(A) with ϕ(zγgu) =
ω(z)ϕ(g) for all z in Z(A), γ in G, g in G(A), and u in Uϕ. Let L2(G)ω be
the subspace of ϕ with

∫
Z(A)G\G(A)

|ϕ(g)|2dg < ∞. Let L0(G)ω be the subspace

of cuspidal functions ϕ in L(G)ω, those with
∫
NP \NP (A)

ϕ(ng)dn = 0 for every

proper parabolic subgroup P of G; here NP denotes the unipotent radical of P .
Then L0(G)ω is contained in L2(G)ω. In fact, by a theorem of Harder, cuspidal
ϕ are compactly supported modulo Z(A). An admissible G(A)-module π = ⊗vπv
with central character ω is called cuspidal if it is a constituent, necessarily a direct
summand, of the representation of G(A) on L0(G)ω by right translation. It is called
here automorphic if it is a constituent of L(G)ω.

Definition 11.4. Let F be a function field, ρ a finite dimensional representation
of W (F/F ) over Eλ, and π an admissible irreducible G(A)-module over Eλ. Then
π and ρ are called corresponding if Pv,ρ(t) = Pv,π(t) for almost all v.

Remark 11.4. (1) If ρ corresponds to π write π = π(ρ) and ρ = ρ(π). By definition
such ρ has dimension r and it is constructible. Moreover, the central character ω
of π corresponds to the determinant det ρ of ρ under the isomorphism A×/F× '
W (F/F )ab.

(2) If ρi corresponds to πi (1 ≤ i ≤ j) then ⊕iρi corresponds to any irreducible
constituent of the G(A)-module I = I(⊗iπi) normalizedly induced from the P (A)-
module ⊗iπi which is trivial on the unipotent radical N of P (A); here P is the
standard parabolic subgroup with Levi subgroup

∏
i GL(ri) if dim ρi = ri. Note

that this definition is compatible with that of the local correspondence given below
in terms of local L and ε-factors, only when I is irreducible.

(3) If ρ corresponds to π and χ is a character of W (F/F )ab ' A×/F×, then ρ⊗χ
corresponds to π⊗χ, and ρ∨ corresponds to π∨ where ρ∨, π∨ are the representations
contragredient to ρ and π.

(4) We defined the correspondence using the geometric Frobenius, as is usually
done. Defining it using the arithmetic Frobenius, the representation ρ would be
replaced by its contragredient.
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Proposition 11.15. Let ρ be an irreducible r-dimensional λ-adic representation
of W (F/F ) whose determinant det ρ is of finite order. Then ρ extends to a repre-
sentation of Gal(F/F ).

Proof. (cf. [?], section 4.10). Let ρ0 denote an irreducible constituent in the restric-
tion of ρ to Gal(F/F )0. Let W0 denote the group of w in W (F/F ) with ρw0 ' ρ0;
here we put ρw0 (g) = ρ0(w−1gw). Then ρ0 extends to a representation of W0, and
ρ = Ind(ρ0;W (F/F ),W0). Since ρ has a finite dimension r, the index m of W0

in W (F/F ) is finite. Let Fr denote an element of W (F/F ) whose image in Z is
1. Then Frm lies in W0, and ρ(Frm) is a scalar, since ρ is irreducible. Suppose

that det ρ has order k. Then 1 = det ρ(Frm)k = ρ(Frmrk). Since the image of
Gal(F/F )0 under ρ is profinite, so is the image of W (F/F ), being a finite exten-
sion of ρ(Gal(F/F )0). But Gal(F/F ) is the profinite completion of W (F/F ), hence
ρ extends to a representation of Gal(F/F ), as required. �

Corollary 11.16. If ρ is an irreducible λ-adic representation of W (F/F ) then
there exists a character χ of W (F/F ) such that ρ ⊗ χ extends to a representation
of Gal(F/F ).

Proof. Given a character χ of W (F/F ) there exists a character χ′ of W (F/F )
which is trivial on Gal(F/F )0 such that χχ′ is of finite order. Indeed, χ can be
viewed as a character of A×/F× by class field theory. Moreover, χ′ can be taken
to factorize via the volume character x 7→ |x| of A×, since the restriction of χ to
the group A0 of idèles of volume 1 has finite order. �

Let ∞ be a fixed place of F . Let Eλ be a finite extension of Q`, where ` 6= p is
a rational prime. We recall Corollary ?? as

Theorem 11.17. For any irreducible cuspidal λ-adic representation π = ⊗vπv
of G(A) whose component π∞ is cuspidal, there exists a unique irreducible λ-adic
r-dimensional representation ρ of W (F/F ) which corresponds to π.

Our subsequent results in sections 11.5-6 depend on this Theorem, which relies
on Deligne’s conjecture (Theorem ??). The main application is the following global
Higher Reciprocity Law relating cuspidal and irreducible λ-adic representations.

Theorem 11.18. The correspondence defines a bijection between the sets of equiva-
lence classes of irreducible (1) cuspidal G(A)-modules π whose component π∞ at ∞
is cuspidal, and (2) r-dimensional continuous `-adic constructible representations ρ
of W (F/F ) whose restriction ρ∞ to W (F∞/F∞) is irreducible. The determinant
det ρ of ρ corresponds by class field theory to the central character of π.

Remark 11.5. By virtue of the Chebotarev density theorem (see, e.g., [?]), the
irreducible ρ is uniquely determined by its restriction to W (F v/Fv) for almost all
v. The rigidity theorem (aka strong multiplicity one theorem, see [?]) for GL(r)
asserts that the cuspidal π is uniquely determined by the set of its components πv
for almost all v. Hence the uniqueness assertion of the Reciprocity Law is clear;
the existence is to be proven.

This global Reciprocity Law will be accompanied by its local analogue, the Local
Reciprocity Law for representations of Gv and W (F v/Fv). We put t = q−s.
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Theorem 11.19. For every local field Fv of characteristic p > 0, and for every
r ≥ 1 there is a unique bijection πv ↔ ρv between the sets of equivalence classes
of irreducible (1) cuspidal Gv-modules πv, and (2) continuous `-adic r-dimensional
representations ρv of W (F v/Fv), with the following properties. (i) If πv ↔ ρv
then (1) πv ⊗ χv ↔ ρv ⊗ χv for every character χv of F×v ' W (F v/Fv)ab; (2)
the central character of πv corresponds to det ρv by local class field theory; (3) the
contragredient of πv corresponds to the contragredient of ρv. (ii) If the GL(n, Fv)-

module π
(n)
v corresponds to ρ

(n)
v , and the GL(m,Fv)-module π

(m)
v corresponds to

ρ
(m)
v , then

Γ(t, π(m)
v , π(n)

v ) = Γ(t, ρ(m)
v ⊗ ρ(n)

v )

for all ψv, dxv. Moreover, this bijection has the property that π and ρ correspond
by Theorem ?? if and only if πv and ρv correspond for all v.

Remark 11.6. By virtue of [?], section 10, there is a unique natural extension of this
local correspondence to relate the sets of equivalence classes of (A) irreducible Gv-
modules πv, (B) continuous `-adic r-dimensional representations ρv of W (F v/Fv),
which satisfies (i), commutes with induction, and bijects square-integrable πv with
indecomposable ρv.

Lemma 11.20. (1) Every local cuspidal representation is a component of a global
cuspidal representation. (2) Every irreducible local λ-adic representation with finite
image is the restriction of a global λ-adic representation.

Proof. (1) Given a local field Fw there exists a global field F whose completion is
Fw. Given a cuspidal Gw-module π0

w there exists a cuspidal G(A)-module π whose
component at w is π0

w. This is easily seen by means of the trace formula with a test
function f whose component at w is a matrix coefficient fw of π0

w, which is nonzero
on a single G(A)-orbit of an elliptic regular conjugacy class in G(F ); see, e.g., [?],
III. In fact, for each place u 6= w and square-integrable Gvi-modules π0

vi (1 ≤ i ≤ m;

vi 6= u,w), π can be taken to have the components π0
vi , in addition to π0

w, and its
components πv for v 6= u,w, vi can be taken to be unramified. Moreover, m can be
taken to be 0.

(2) If Ew/Fw is a finite Galois extension of local fields then there exists a finite
Galois extension E/F of global fields such that Fw is the completion of F at a place
w and Ew = E ⊗F Fw, and Gal(E/F ) ' Gal(Ew/Fw). Consequently if ρw is an
irreducible representation of Gal(Ew/Fw), then there exists a representation ρ of
Gal(E/F ) whose restriction to the decomposition subgroup Gal(Ew/Fw) is ρw. �

11.6 Smooth sheaves. We continue with a more detailed description of the
correspondence, in the equivalent language of `-adic sheaves. As usual ` denotes a
rational prime number prime to the cardinality q of the base field Fq. Let C be a
curve over Fq, or more generally, a scheme of finite type.

Denote by S`(C) the set of isomorphism classes of smooth `-adic sheaves on C.
If C is connected and v is a geometric point of C, then S`(C) is isomorphic to the
set of isomorphism classes of continuous finite dimensional representations of the
fundamental group π1(C, v) over a finite extension Eλ of Q`, see [?].

In particular each smooth `-adic sheaf on C has constant rank equal to the
dimension of the corresponding representation of π1(C, v). Denote by Sr` (C) the
subset of isomorphism classes of smooth `-adic sheaves on C of rank r.
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There is a canonical continuous surjective homomorphism π1(C, v)→ Gal(Fq/Fq)
' Ẑ, where the Galois group of Fq is generated by the Frobenius substitution
ϕ : x 7→ xq. The inverse image of Z is the Weil group W (C, v). It is a dense sub-
group of π1(C, v). Every `-adic representation of π1(C, v) is uniquely determined
by its restriction to W (C, v). Denote the geometric Frobenius automorphism by
Fr = ϕ−1.

Let |C| denote the set of closed points of C. Let ρ ∈ S`(C) be a smooth `-adic
sheaf of rank r on C. The fiber ρv of ρ at a closed point v in |C| can be viewed
as an r-dimensional vector space over Eλ with an action of the Frobenius Frv =

Frdeg(v). Denote by z1(ρv), . . . , zr(ρv) the eigenvalues of the (arithmetic) Frobenius
substitution, and by ui(ρv) = zi(ρv)

−1 those of the (geometric) Frobenius.
Define the local L-factor of ρ at v to be

L(t, ρv) = det(I − tdeg(v) Frv |ρv)−1 =
∏

1≤i≤r

(1− zi(ρv)−1tdeg(v))−1.

Define the global L-function of ρ to be L(t, ρ, C) =
∏
v∈|C| L(t, ρv). It is a formal

power series in t with coefficients in Eλ.
More generally one defines L(t, ρv) and L(t, ρ, C) in the same way when ρ is a

constructibe `-adic sheaf on C. The definition can be made also when C denotes
any connected scheme of finite type over Fq.

Recall Grothendieck’s

Theorem 11.21. Let ρ be a constructible (in particular smooth) `-adic sheaf on
a scheme C of finite type over Fq. Let Hi

c(ρ) (0 ≤ i ≤ 2 dimC) be the étale
cohomology spaces with compact support of ρ over SpecFq. Then the power series
L(t, ρ, C) is equal to the rational function in t∏

0≤i≤2 dimC

[det(I − t · Fr |Hi
c(ρ))](−1)i+1

.

Fix as usual an isomorphism of Q` with C.
A smooth sheaf ρ ∈ S`(C) is called pure of weight n if for all v ∈ |C| the

eigenvalues of the geometric Frobenius Frv in the fiber ρv have absolute value
qn deg(v)/2.

We say that ρ is mixed of weight ≤ n if it has a filtration whose successive
quotients are pure of weights ≤ n. Recall Deligne’s

Theorem 11.22. If ρ is mixed of weight ≤ n then Hi
c(ρ) is mixed of weight ≤ n+i,

for all i ≥ 1. If C is smooth and proper over Fq, and ρ is pure of weight n, then
Hi
c(ρ) is pure of weight n+ i, for all i ≥ 1.

Suppose s ∈ C is such that qs ∈ C ' Q` is an `-adic unit. Then it defines a
smooth `-adic sheaf Q`(s) of rank one over SpecFq, and by pullback, on any scheme
C of finite type over Fq. If ρ ∈ S`(C) then ρ(s) = ρ ⊗Q` Q`(s) lies in S`(C). For

any s ∈ C we have that ρ(s) is a smooth `-adic sheaf on C ⊗Fq Fq with an action
of Fr, that is a representation of the Weil group W (C, v) at any geometric point v
of C.

In view of Theorems ?? and ??, the following follows from the fact thatH2 dimC
c (ρ⊗

ρ′∨ ⊗Q`(dimC + s)) is the dual of Hom(ρ′(−s), ρ).

Corollary 11.23. Let C be a scheme of finite type and geometrically connected
over Fq. Let ρ ∈ S`(C) be a mixed `-adic sheaf of weight ≤ n and ρ′ ∈ S`(C) an
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irreducible pure `-adic sheaf of weight ≤ m. Then L(t, ρ ⊗ ρ′∨, C) has no zero in

|t| < q
1
2 (m−n+1)−degC . It has poles precisely at the points of the form q− dimC−s

with Re s = 1
2 (n−m) such that ρ′(−s) is a subsheaf of ρ. The order of such a pole

is equal to the multiplicity of ρ′(−s) in ρ.

To deal with the ramified places, we now take C to be a smooth projective
geometrically connected curve over Fq. As usual, F denotes its function field, Fv
the completion at a closed point v ∈ |C|, Ov the ring of integers in Fv, Fv the
residue field. A smooth `-adic sheaf ρv on SpecFv can be viewed as an `-adic
representation of the Galois group Gal(F v/Fv) of Fv. Its direct image under the
open immersion SpecFv ↪→ SpecOv is a constructible `-adic sheaf. Denote by ρv
its fiber at the closed point v. It can be viewed as a vector space over Eλ with

action of Gal(Fv/Fv), that is, with an action of the Frobenius Frv = Frdeg(v). The
local L-factor of ρv is

L(t, ρv) = det[I − tdeg(v) · Frv |ρv]−1.

We say that ρv is unramified if it extends to a smooth `-adic sheaf on SpecOv. An
`-adic sheaf χv on SpecFv is invertible if it is a character of the Galois group of Fv.
From the definition of L(t, ρv) we obtain

Lemma 11.24. Let ρv be a smooth `-adic sheaf over SpecFv. Let χv be an invert-
ible `-adic sheaf on SpecFv. If ρv and χv are unramified then

L(t, ρv ⊗ χv) = det[I − tdeg(v) · Frv |ρv ⊗ χv]−1.

If ρv is unramified but χv is ramified, and more generally if χv is sufficiently ram-
ified with respect to ρv, then L(t, ρv ⊗ χv) = 1.

Denote now by S`(F ) the set of isomorphism classes of smooth `-adic sheaves ρ
on SpecF which extend to a smooth sheaf on an open subscheme of the curve C.
This is the set of isomorphism classes of smooth `-adic sheaves ρ on SpecF whose
direct image under SpecF ↪→ C is a constructible sheaf on C which is smooth on
a nonempty open subset. Such a ρ defines a smooth sheaf on SpecFv. The fiber of
the constructible sheaf ρ at each closed point v ∈ |C| is equal to ρv. We obtain the
local L-factors L(t, ρv) at all closed points v ∈ |C|. Theorems ?? and ?? imply

Proposition 11.25. Let ρ ∈ S`(F ) be an `-adic sheaf which is smooth and pure
of weight n ∈ Z on a nonempty open subset of the curve C. Then at each closed
point v ∈ |C| each pole of the rational function L(t, ρv) has absolute value of the

form q−
1
2 (n−m) for some integer m ≥ 0.

Given ρ in S`(F ) we now have the global L-function L(t, ρ) =
∏
v∈|C| L(t, ρv)

on the entire curve C. It is a power series in t, which is a rational function by
Grothendieck’s theorem ??. Denote by ρ∨ the dual in S`(F ) of ρ. The functional
equation of Grothendieck, derived from Poincaré duality, relates their L-functions
(cf. [?], Théorème VI.6, pp. 155-156).

Theorem 11.26. We have L(t, ρ) = ε(t, ρ)L(1/qt, ρ∨) for all `-adic sheaves ρ in

S`(F ), where ε(t, ρ) =
∏

0≤i≤2 det[−t · Fr |Hi
c(ρ)](−1)i+1

is the product of a nonzero
constant and a power of t.

There is a product formula for ε(t, ρ), due to Langlands, Deligne, and Laumon,
recorded already in Proposition ??, which we repeat in Theorem ??.
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Let ψ be a nontrivial additive character of AmodF , where A denotes the ring
of adèles of F . Its restriction to Fv ↪→ A (v ∈ |C|) is a nontrivial additive character
of Fv. The choice of ψ amounts to a choice of a nontrivial meromorphic differential
form on the curve C. As in [?] and [?], 3.1.5, there is a local factor ε(t, ρv, ψv) for
each closed point v of C and a smooth `-adic sheaf ρv on SpecFv. It is a product
of a nonzero constant and a power of t. In some simple cases it is given by

Lemma 11.27. Let ρv be a smooth `-adic sheaf of rank r and χv an invertible
`-adic sheaf on SpecFv, v ∈ |C|. If ρv is unramified then ε(t, ρv ⊗ χv, ψv) =
ε(t, χv, ψv)

r−1ε(t,det(ρv)⊗χv, ψv). It is equal to 1 if χv and ψv are also unramified.
The same equality holds for any ρv provided χv is sufficiently ramified as a function
of ρv.

Then for ρ ∈ S`(F ), the local ε-factors ε(t, ρv, ψv) are 1 for all v ∈ |C| except
for finitely many v, so their product is well defined. As a consequence of his theory
of Fourier transform, Laumon [?] proved

Theorem 11.28. We have ε(t, ρ) =
∏
v∈|C| ε(t, ρv, ψv) for all `-adic sheaves ρ in

S`(F ).

Let∞ denote a fixed closed point of C. Denote by Ar(F,∞) the set of irreducible
cuspidal representations π of G(A) whose component π∞ at ∞ is cuspidal. Denote
by Sr` (F,∞) the set of equivalence classes of irreducible smooth `-adic sheaves ρ on
SpecF , whose direct image under the morphism SpecF → C is a constructible sheaf
on C which is smooth on an open subset V of the curve C, whose rank (dimension
of the associated representation of π1(V, v)) is r, and the deduced smooth `-adic
sheaf on SpecF∞ (representation of Gal(F∞/F∞)) is irreducible.

We next conclude from Theorem ?? (or ??) the following local

Theorem 11.29. Given π ∈ Ar(F,∞) and π′ ∈ Ar′(F,∞), let ρ ∈ Sr` (F,∞) and

ρ′ ∈ Sr′` (F,∞) be the corresponding `-adic sheaves. Then for each v ∈ |C| we have

L(t, πv × π′v) = L(t, ρv × ρ′v), ε(t, πv × π′v, ψv) = ε(t, ρv × ρ′v, ψv).

Proof. Let S denote the set of places v ∈ |C| where πv or π′v, hence also ρv or ρ′v,
are ramified. It follows from Theorem ?? and Lemmas ?? and ??, that for any
characters χ, χ′ of A×/F× ' W (F/F )ab of finite order, at each place v /∈ S we
have

L(t, χvπv × χ′vπ′v) = L(t, ρv ⊗ ρ′v ⊗ χvχ′v),

L(t, χ−1
v π∨v × χ′v−1π′v

∨) = L(t, ρ∨v ⊗ ρ′v∨ ⊗ χ−1
v χ′v

−1),

ε(t, χvπv × χ′vπ′v, ψv) = ε(t, ρv ⊗ ρ′v ⊗ χvχ′v, ψv).
By the same references, these equalities hold at each place v ∈ S as long as χvχ

′
v

is sufficiently ramified.
The products of these local factors satisfy the functional equations

L(t, χπ × χ′π′) = ε(t, χπ × χ′π′)L(1/qt, χ−1π∨ × χ′−1π′−1)

and

L(t, ρ⊗ ρ′ ⊗ χχ′) = ε(t, ρ⊗ ρ′ ⊗ χχ′)L(1/qt, ρ∨ ⊗ ρ′∨ ⊗ χ−1χ′−1).
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Proposition ?? then implies that at each place v ∈ |C| we have

L(t, πv × π′v)
ε(t, πv × π′v, ψv)L(1/qt, π∨v × π′v∨)

=
L(t, ρv ⊗ ρ′v)

ε(t, ρv ⊗ ρ′v, ψv)L(1/qt, ρ∨v × ρ′v∨)
.

By Proposition ??, the poles of L(t, ρv⊗ρ′v) and L(1/qt, ρ∨v ×ρ′v∨) occur at different
places, and their absolute values are powers of q1/2.

Let v be a place where πv is ramified. Let τ be a cuspidal representation of a
standard Levi subgroup M(Fv) of GL(r, Fv) with central character of finite order,
such that πv is a constituent of the representation of GL(r, Fv) normalizedly induced
from τ on the associated standard parabolic subgroup P (Fv). By Lemma ?? there
is a cuspidal representation π′ of M(A) with central character of finite order and
cuspidal component at ∞, with π′v = τ∨. As πv is unitarizable and generic, and π′v
is tempered, Corollary ?? asserts that L(t, πv × π′v) and L(1/qt, π∨v × π′v∨) do not
share a pole. Hence

L(t, πv × π′v) = L(t, ρv ⊗ ρ′v)

and the poles of L(t, πv × π′v) = L(t, πv × τ∨) have absolute values powers of q1/2.
By Theorems ?? and ?? we conclude that πv is tempered.

If π′ ∈ Ar′(F,∞) and r′ ≤ r, we have that π′v is also tempered. By Corollary ??
L(t, πv × π′v) and L(1/qt, π∨v × π′v∨) do not share a pole. Hence for each v ∈ |C| we
obtain the equalities of L and ε factors asserted in the theorem. �

11.7 Local and global correspondence. The local correspondence will now be
deduced from Theorem ?? (or ??), which asserts the existence of the correspondence
π 7→ ρ. This local correspondence will be used to state in detail and prove the global
correspondence of Theorem ??.

Let Fv be a local field of characteristic p > 0. Fix a prime ` 6= p. Recall that
we fix an isomorphism Q` ' C. Let Sr` (Fv)

+ denote the set of isomorphism classes
of `-adic sheaves of rank r on SpecFv whose determinant is of finite order. Let
Sr` (Fv) be the subset of irreducible such sheaves. We use the notations Sr` (Fv)

+

and Sr` (Fv) also for the sets of isomorphism classes of the representations σ of

Gal(F v/Fv) associated (see [?], 1.1(c)) with the sheaves ρ. Write σF-ss for the
Frob-semisimple ([?], section 8) representation attached to the representation σ.

Lemma 11.30. (1) Let ρv be a nonzero `-adic sheaf on SpecFv. It is irreducible
iff the local L-function L(t, ρv ⊗ ρ∨v ) has poles only on |t| = 1 and has a simple pole
at t = 1.
(2) Let ρv and ρ′v be two irreducible `-adic sheaves on SpecFv. They are isomorphic
iff L(t, ρ′v ⊗ ρ∨v ) has a simple pole at t = 1.

Proof. Let σ0(Str) be the unique ([?]) Frob-semisimple indecomposable `-adic rep-
resentation of Gal(F v/Fv) such that grMj σ

0(Str) is Q`(−(j+r−1)/2) if j−r−1 is

even and |j| ≤ r − 1, and 0 otherwise. The Tate twist Spr(1) = σ0(Str)((r − 1)/2)
is called the special representation of dimension r of Gal(F v/Fv). It is indecompos-
able, and a successive extension of one-dimensional representations

Q`((1− r)/2), Q`((1− r)/2 + 1), . . . ,Q`((r − 1)/2),

with Q`((r− 1)/2) as the unique irreducible submodule, and with Q`((1− r)/2) as
the unique irreducible quotient module.
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The Frob-semisimplification σF-ss of any `-adic representation σ of dimension r
of Gal(F v/Fv) whose determinant is of finite order can be written as a direct sum

⊕n≥1 ⊕1≤r′≤r ⊕τ ′∈Sr′` (Fv)(Spn(1)⊗ τ ′)m(n,τ ′)

for some uniquely determined integers m(n, τ ′) ≥ 0 ([?], (3.1.3)(ii)), which are
almost all 0. Its L-function is

L(t, σ) = L(t, σF-ss) =
∏
n≥1

∏
1≤r′≤r

∏
τ ′∈Sr′` (Fv)

L(t,Spn(1)⊗ τ ′)m(n,τ ′)

=
∏
n≥1

∏
1≤r′≤r

∏
τ ′∈Sr′` (Fv)

L(tq(n−1)/2, τ ′)m(n,τ ′).

If τ ′ ∈ Sr′` (Fv) then L(t, τ ′) is 1 unless r′ = 1 and τ ′ is an unramified character
χ of finite order, in which case L(t, χ) has no zeroes, its poles are on the circle
|t| = 1, and there is a poles at t = 1 iff χ = 1. Applying the last displayed formula
to σ = σ1 ⊗ σ2 it follows that for σi ∈ Sri` (Fv), i = 1, 2, we have that L(t, σ1 ⊗ σ2)
is not identically 1 iff r1 = r2 and there is an unramified character χ of finite order
with σ2 ' σ∨1 · χ.

By [?], (1.6.11.2), we have

Spa(1)⊗ Spb(1) = ⊕0≤j<min(a,b) Spa+b−1−2j(1).

Hence for σ1, σ2 ∈ Sr` (Fv) with σF-ss
1 , σF-ss

2 decomposing as above, we have

L(t, σ1 ⊗ σ2) =
∏

n1,n2≥1

∏
1≤r′1,r′2≤r

∏
τ ′1∈S

r′1
` (Fv), ,τ ′2∈S

r′2
` (Fv)

∏
0≤j<min(n1,n2)

L(tq(n1+n2)/2−1−j , τ ′1 ⊗ τ ′2)m1(n1,τ
′
1)m2(n2,τ

′
2)

=
∏

n1,n2≥1

∏
1≤r′≤r

∏
τ ′∈Sr′` (Fv)

∏
χ

∏
j

L(tq(n1+n2)/2−1−j , χ)m1(n1,τ
′)m2(n2,τ

′∨χ)

where χ ranges over the set of unramified characters of Fv of finite order. Since
Spn(1)∨ ' Spn(1) ([?], (1.6.11.3)), for σ ∈ Sr` (Fv) we obtain that L(t, σ ⊗ σ∨)
equals∏
n1,n2≥1

∏
1≤r′≤r

∏
τ ′∈Sr′` (Fv)

∏
χ

∏
0≤j<min(n1,n2)

L(tq(n1+n2)/2−1−j , χ)m1(n1,τ
′)m2(n2,τ

′∨).

Write σ′ for σF-ss. Then σ′⊗σ′∨ is the Frob-semisimple representation associated
with σ ⊗ σ∨ and L(t, σ ⊗ σ∨) equals L(t, σ′ ⊗ σ′∨). If this L-function has a simple
pole at t = 1 then we deduce from the last displayed formula that σ′ is irreducible,
hence σ is irreducible, as required. Indeed, if σ′ is irreducible, then its restriction –
and so also that of σ – to the inertia subgroup of Gal(F v/Fv), factors via a finite
quotient. In this case σ′ is the semisimplification of σ. Thus when σ′ is irreducible,
so is σ, and σ′ = σ. Conversely, if σ is irreducible then it factors via a finite
quotient, hence it is Frob-semisimple. �

Denote by Ar(Fv) the set of equivalence classes of cuspidal (by which we mean
irreducible admissible such) representations of GL(r, Fv). Fix a nontrivial character

ψv : Fv → Q×` . We have
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Theorem 11.31. There exists a unique series, indexed by r ≥ 1, of bijections
Ar(Fv)→ Sr` (Fv), πv 7→ ρ(πv), satisfying, for all πv in Ar(Fv), (1) ρ(π∨v ) = ρ(πv)

∨;
(2) det ρ(πv) corresponds to the central character ωπv of πv by local class field
theory; (3) for any character χv of F×v of finite order, ρ(πvχv) = ρ(πv)χv; (4) for

every r′ ≥ 1 and π′v in Ar
′
(Fv) we have L(t, ρ(πv) ⊗ ρ(π′v)) = L(t, πv × π′v) and

ε(t, ρ(πv)⊗ ρ(π′v), ψv) = ε(t, πv × π′v, ψv).

Proof. By induction on r, suppose πv 7→ ρ(πv), satisfying (1)-(3) and (4) for r′ ≤ r,
has been constructed in ranks < r, where r ≥ 2. We define it for r. For that, we
view Fv as the completion of a function field F of a smooth projective absolutely
irreducible curve C, at a place v ∈ |C|. Given a cuspidal representation πv of
GL(r, Fv) with central character of finite order, there exists – by Lemma ?? – a
cuspidal representation π ∈ Ar`(F,∞) of GL(r,A), with central character of finite
order, whose component at v is our πv. By Theorem ?? our π corresponds to an
`-adic sheaf ρ(π) ∈ Sr` (F,∞). By Theorem ?? L(t, ρ(π)v ⊗ ρ(π)∨v ) = L(t, πv × π∨v ).
By Lemma ?? (1) above, ρ(π)v is irreducible. If π′ ∈ Ar(F,∞) is another cuspidal
representation whose component at v is π′v = πv, then L(t, ρ(π′)v ⊗ ρ(π)∨v ) =
L(t, π′v × π∨v ). By Lemma ?? (2), ρ(π′)v is equivalent to ρ(π)v. We thus defined a
map πv 7→ ρ(πv) = ρ(π)v of Ar(Fv) into Sr` (Fv).

Given πv ∈ Ar(Fv) and π′v ∈ Ar
′
(Fv) with r′ ≤ r, we can view them as compo-

nents of π ∈ Ar(F,∞) and π′ ∈ Ar′(F,∞). By Theorem ?? we have

L(t, ρ(πv)⊗ ρ(π′v) = L(t, πv × π′v), ε(t, ρ(πv)⊗ ρ(π′v, ψv) = ε(t, πv × π′v, ψv).
In particular we have L(t, ρ(π′v)⊗ρ(πv)

∨) = L(t, π′v×π∨v ). So Lemma ?? (2) implies
that the map Ar(Fv)→ Sr` (Fv), πv 7→ ρ(πv), is injective. Clearly it satisfies (1)-(3).

The map πv 7→ ρ(πv) is bijective, due to a counting argument recorded as The-
orem 15.17 in [?]. The map with these properties (1)-(4) is unique by [?]. �

We now repeat Theorem ??.

Theorem 11.32. For every positive integer r, the correspondence defines a bijec-
tion Ar(F,∞)→ Sr` (F,∞), π 7→ ρπ. Moreover, π ∈ Ar(F,∞) and the correspond-
ing ρ ∈ Sr` (F,∞) are ramified at the same places.

Proof. The case of r = 1 is class field theory, so we assume r ≥ 2. In particular
we can identify characters of F×\A× of finite order with `-adic sheaves of rank
1 and finite order. This identification respects L and ε factors at all places. By
Chebotarev density theorem, to π corresponds at most one ρ. By rigidity theorem
for GL(r) there is at most one cuspidal π corresponding to a given ρ. We may
consider only π whose central character is of finite order, and ρ whose determinant
is of finite order (thus (det ρ)⊗m ' Q` for some integer m > 0).

The map Ar(F,∞) → Sr` (F,∞), π 7→ ρπ, has already been constructed using
the moduli scheme of elliptic modules, its étale `-adic cohomology with compact
support and coefficients in a sheaf, Deligne’s conjecture and the trace formula. In
particular we have the Ramanujan conjecture too: each unramified component of
π ∈ Ar(F,∞) is tempered. What remains to be seen is that the map π 7→ ρπ is
surjective.

Let ρ ∈ Sr` (F,∞) be an irreducible `-adic sheaf. Denote by S the finite set of
places v ∈ |C|, v 6=∞, where ρ is ramified. At each v /∈ S, v 6=∞, denote by zzz(ρv)
the r-tuple of its Frobenius eigenvalues (z1(ρv), · · · , zr(ρv)), where the zi(ρv) are
viewed as complex numbers ordered to satisfy |zi(ρv)| ≥ |zi+1(ρv)| (1 ≤ i < r). The
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corresponding Gv-module πv = I(zzz(ρv)), normalizedly induced from the unramified
character (of the upper triangular Borel subgroup) defined by zzz(ρv), is unramified,
and possibly reducible (if zi(ρv) = qvzi+1(ρv) for some i (1 ≤ i < r)).

Lemma 11.33. The Gv-module πv = I(zzz(ρv)) is nondegenerate.

Proof. Let w0 be a nonzero GL(r,Rv)-fixed vector in the space of πv (w0 is unique
up to a scalar). Let W0 denote the Whittaker function associated to πv and ψv
(which is taken to be unramified) in [?]. Putting F (πv(g)w0) = W0(g), we obtain
a nonzero morphism F of Gv-modules from πv to the space Ind(ψv;Nv, Gv) of
Whittaker functions. To show that πv is nondegenerate, we need to show that
F is injective. But this follows from a result of [?], which asserts that πv has
a unique irreducible nondegenerate subquotient π0

v , which is in fact the unique
subrepresentation of πv. Namely the irreducible nondegenerate subrepresentation
π0
v of πv is a subrepresentation of any subrepresentation of πv. Now if F : πv →

Ind(ψv;Nv, Gv) had a nontrivial kernel K, it would contain π0
v , and there results

an embedding of the degenerate Gv-module πv/K in the space Ind(ψv;Nv, Gv)
of Whittaker functions. This is a contradiction to the assumption that F is not
injective, and the lemma follows. �

Remark 11.7. Had we arranged the eigenvalues so that |zi(ρv)| ≤ |zi+1(ρv)|, then
πv would have the nondegenerate constituent π0

v as a unique quotient. In this case
the embedding of π0

v in Wv = Ind(ψv;Nv, Gv) extends to a morphism of πv into
Wv whose kernel is the subrepresentation Kv of πv with πv/Kv

∼= π0
v . In particular

the resulting morphism πv →Wv is not injective if πv is reducible.

Now given ρ ∈ Sr` (F,∞), we defined an unramified generic representation πv
of GL(r, Fv) for each v ∈ |C|, v 6= ∞, v /∈ S, where ρ is unramified. At ∞, let
π∞ be the cuspidal representation of GL(r, F∞) associated with the restriction ρ∞
to SpecF∞ by the local correspondence. At each place v ∈ S choose a generic
irreducible representation πv of GL(r, Fv) whose central character ωπv corresponds
to det(ρv). Then π = ⊗vπv (v ∈ |C|) is an admissible irreducible generic represen-
tation of GL(r,A) whose central character ωπ = ⊗vωπv corresponds to det ρ and
its component π∞ is cuspidal.

Let χ = ⊗vχv (v ∈ |C|) be a character of A×/F× of finite order which is highly
ramified at the places v ∈ S. We aim to show for any cuspidal representation
π′ = ⊗v∈|C|π′v in Ar

′
(F,∞), r′ < r, such that π′v (v ∈ S) are unramified, that the

formal power series L(t, χπ × π′) and L(t, χ−1π∨ × π′∨) are polynomials satisfying
the functional equation L(t, χπ×π′) = ε(t, χπ×π′)L(t, χ−1π∨×π′∨). Theorem ??
would then apply to imply the existence of a cuspidal π ∈ Ar(F,∞) corresponding
to ρ, proving the theorem.

By induction the theorem holds for r′, thus π′ corresponds to an `-adic sheaf
ρ′ = ρπ′ ∈ Sr

′

` (F,∞), and π′χ corresponds to ρ′ ⊗ χ, and their L and ε factors are
equal at all places.

At the places v /∈ S ∪ {∞}, the factor πv is unramified. Hence by definition of
πv we have

L(t, χvπv × π′v) = L(t, ρv ⊗ χv ⊗ ρ′v), L(t, χ−1
v π∨v × π′v∨) = L(t, ρ∨v χ

−1
v ⊗ ρ′v∨),

ε(t, χvπv × π′v, ψv) = ε(t, ρv ⊗ χv ⊗ ρ′v, ψv).
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At the places v ∈ S the factor π′v is unramified. Choosing χv sufficiently ramified
with respect to πv and ρv, we have

L(t, χvπv×π′v) = 1 = L(t, ρv⊗χv⊗ρ′v), L(t, χ−1
v π∨v ×π′v∨) = 1 = L(t, ρ∨v χ

−1
v ⊗ρ′v∨),

ε(t, χvπv × π′v, ψv) = ε(t, χv, ψv)
rr′−1ε(t, χvω

r′

πvω
r
π′v
, ψv)

= ε(t, χv, ψv)
rr′−1ε(t, χv det(ρv)

r′ det(ρ′v)
r, ψv) = ε(t, ρv ⊗ χv ⊗ ρ′v, ψv).

The same holds at ∞ as π∞ and π′∞ are cuspidal, by the local correspondence and
the choice of ρ∞ and ρ′∞.

We deduce that L(t, χπ × π′) = L(t, ρ⊗ χ⊗ ρ′),
L(t, χ−1π∨ × π′∨) = L(t, ρ∨ ⊗ χ−1 ⊗ ρ′∨),

and using the product formula for the local factors that ε(t, χπ×π′) = ε(t, ρ⊗χ⊗ρ′).
Transferring from ρ, ρ′ to π, π′ we see that L(t, χπ × π′) and L(t, ρ ⊗ χ ⊗ ρ′) are
rational functions which satisfy L(t, χπ × π′) = ε(t, χπ × π′)L(1/qt, χ−1π∨ × π′∨).

It remains to see that they are polynomials. This follows from Grothendieck’s
cohomological interpretation of the L function:

L(t, ρ⊗ χ⊗ ρ′) =
∏

0≤i≤2

det[I − t · Fr |Hi
c(ρ⊗ χ⊗ ρ′)](−1)i+1

,

L(t, ρ∨ ⊗ χ−1 ⊗ ρ′∨) =
∏

0≤i≤2

det[I − t · Fr |Hi
c(ρ
∨ ⊗ χ−1 ⊗ ρ′∨)](−1)i+1

.

Indeed, since ρ and ρ′ are irreducible of ranks r 6= r′, the Hi
c(ρ ⊗ χ ⊗ ρ′) and

Hi
c(ρ
∨ ⊗ χ−1 ⊗ ρ′∨) vanish for i = 0, 2. Theorem 12.1 now implies that there is

an automorphic representation whose components outside S are the same as those
of χπ, hence up to changing the factors of π at v ∈ S, this π is automorphic,
corresponding to ρ. Its component at ∞ is cuspidal, so π is cuspidal. �

Let us verify that the local and global correspondences are compatible.

Proposition 11.34. Let ρ ∈ Sr` (F,∞) be an irreducible `-adic sheaf on SpecF
of rank r ≥ 2 whose restriction to SpecF∞ is irreducible. Let π ∈ Ar(F,∞) be
the corresponding cuspidal representation of GL(r,A). Its component π∞ at ∞ is
cuspidal. Then the local factor πv of π at v ∈ |C| is the unique generic irreducible
admissible representation of GL(r, Fv) whose central character ωπv corresponds to
det ρv by local class field theory, and such that for any integer r′ < r and any
π′ ∈ Ar′(F,∞), denoting by ρ′ ∈ Sr′` (F,∞) the corresponding `-adic sheaf, we have

L(t, πv × π′v) = 1 = L(t, ρv ⊗ ρ′v), L(t, π∨v × π′v∨) = L(t, ρ∨v ⊗ ρ′v∨),

ε(t, πv × π′v, ψv) = ε(t, ρv ⊗ ρ′v, ψv).

Proof. By Theorem ?? we already know that the component πv of π at v satis-
fies these properties. We need to show the uniqueness of πv. Thus suppose the
irreducible admissible generic representation π′v

′ of GL(r, Fv) satisfies these prop-
erties. Denote by π′′ the irreducible admissible representation of GL(r,A) whose
local component at v is π′v

′ and its other components are the same as those of π.
The representation π′′ has the same central character as π. The Euler product

which defines its L-function is the same as that of π, hence it converges absolutely
at some disc, and for every cuspidal representation π′ ∈ Ar′(F,∞) of GL(r′,A) we
have L(t, π′′ × π′) = L(t, π × π′),

L(t, π′′∨ × π′∨) = L(t, π∨ × π′∨), ε(t, π′′ × π′) = ε(t, π × π′).
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Hence L(t, π′′×π′) and L(t, π′′∨×π′∨) are polynomials which satisfy the functional
equation

L(t, π′′ × π′) = ε(t, π′′ × π′)L(1/qt, π′′∨ × π′∨).

By the simple converse Theorem ?? we see that π′′ is a cuspidal representation
of GL(r,A). It coincides with π at all places except possibly at v. Hence by the
rigidity theorem for cuspidal representations of GL(r,A) we deduce that π′v

′ = πv,
and the required uniqueness follows. �

Using the similarity of the construction of smooth `-adic sheaves of rank r on
SpecFv and the classification of admissible representations of GL(r, Fv) by [?], one
can extend the local correspondence from the case of irreducible and cuspidal case
to that of maps, indexed by r ≥ 1, from the set of isomorphism classes of `-adic
sheaves of rank r on SpecFv (whose determinant is of finite order), to the set of
equivalence classes of irreducible admissible representations of GL(r, Fv) (whose
central character is of finite order). These maps preserve the local L and ε factors
of pairs, are compatible with taking contragredient, twisting with characters of
finite order, and local class field theory. These maps are surjective and two `-adic
sheaves of the same rank on SpecFv have the same image iff they have the same
F -semisimplifications ([?], section 8).

From the last proposition we then conclude

Corollary 11.35. Let ρ ∈ Sr` (F,∞) be an irreducible `-adic sheaf on SpecF of
rank r ≥ 2 whose restriction to SpecF∞ is irreducible. Let π ∈ Ar(F,∞) be the
corresponding cuspidal representation of GL(r,A). Then the component πv of π at
v is the image of ρv under the local correspondence for Fv.

We could have approached the construction of the π corresponding to ρ differ-
ently, namely define π to be ⊗vπv where each πv is defined by the local correspon-
dence from ρv, also when ρv is not unramified or irreducible. For this we would
need to expand the paragraph preceding the last corollary.

Let ∞ be a fixed place of F .

Corollary 11.36. Let ρ be a λ-adic irreducible constructible representation of
W (F/F ) with determinant of finite order. Suppose that the restriction ρ∞ =
ρ|W (F∞/F∞) is irreducible. Then for all v where ρv is unramified, the roots of
Pv,ρ(t) (namely the eigenvalues of the Frobenius) have complex absolute value one.

Proof. The GL(r,A)-module π corresponding to ρ is cuspidal with a cuspidal com-
ponent at ∞. Hence π satisfies the Purity Theorem ??, namely the Hecke eigen-
values of πv are units, as required. �

Let ` be a rational prime, and ρ : W (F/F ) → GL(r,Q`) an irreducible `-adic
representation of the Weil group of F . As noted in Lemma ??, there is a finite
extension Eλ of Q` such that ρ factorizes through GL(r, Eλ). Replacing ρ by
ρ ⊗ χ for some nowhere ramified character χ of W (F/F ), we may assume that
det ρ has finite order, and consequently that ρ extends to an `-adic representation
ρ : Gal(F/F )→ GL(r, Eλ) of the Galois group. Fix a place ∞ of F .

Corollary 11.37. Let ρ : Gal(F/F ) → GL(r, Eλ′) be an irreducible constructible
λ′-adic representation of F , whose restriction to Gal(F∞/F∞) is irreducible, with
determinant of finite order. Then there exists a finite extension Q(ρ) of Q such
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that each of the eigenvalues of ρv(Frv) lies in Q(ρ) for every place v of F such
that ρv = ρ|Gal(F v/Fv) is unramified. Moreover, there exists a finite set V (ρ)
of rational primes excluding the residual characteristic `′ of Eλ′ , and a compatible
(see [?] or [?]) family {ρ` : Gal(F/F ) → GL(r,Q(ρ)`); ` /∈ V (ρ)}, where Q(π)` is
any completion of Q(π) over Q`, with ρ = ρ`′ (in particular Eλ′ is an extension of
Q(π)`′), and such that ρ`,∞ is irreducible for all `.

Proof. Let π be the cuspidal G(A)-module which corresponds to ρ. Put Q(ρ) =
Q(π), where Q(π) is the field of definition of π which is introduced at the end of
section 9. Then Q(πv) = Q(tr ρv(Frmv ); m ≤ 1) lies in Q(ρ) for all v where ρv
is unramified. The field Q(π) is a finite extension of Q since Q(det ρ) is a finite
extension of Q by assumption. This proves the first assertion; the second follows
at once from Theorem ??. �
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12. Simple converse theorem

We prove a simple form of the converse theorem for GL(n) over a function
field F , “simple” referring to a cuspidal component. Thus a generic admissible
irreducible representation π of the adèle group GL(n,A) with cuspidal components
at a finite nonempty set S of places of F whose product L-function L(t, π × π′) is
a polynomial in t and has a functional equation for each cuspidal representation π′

of GL(n − 1,A) whose components at S are cuspidal, is automorphic, necessarily
cuspidal. The usual form of the converse theorem deals with the case where S is
empty. But our simple form is sufficient for applications of the simple trace formula.

12.1 Introduction.

Theorem 12.1. Let X be a smooth projective absolutely irreducible curve over a
finite field Fq. Let F be its function field, A the ring of adèles, n > 2 an integer,
S1 6= ∅ and S2 disjoint finite sets of places of F . Let π = ⊗vπv (v ranges over
the set |X| of places of F ) be a unitarizable irreducible admissible (in particular
πv is unramified for almost all v) locally generic (thus πv is generic for all v)
representation of GL(n,A) whose central character is trivial on F× and whose
components πv, v ∈ S1, are cuspidal. Suppose that for each cuspidal (by which
we mean in particular irreducible and automorphic) representation π′ of GL(n −
1,A) whose component π′v at v ∈ S1 is cuspidal and at v ∈ S2 is unramified, the
formal series L(t, π×π′) and L(t, π∨×π′∨) are polynomials satisfying the functional
equation L(t, π × π′) = ε(t, π × π′)L(1/qt, π∨ × π′∨). Then there exists a cuspidal
representation π′ of GL(n,A) with π′v ' πv for all v /∈ S2.

Extending work of Weil and others, Piatetski-Shapiro discussed in an unpub-
lished manuscript of 1976 a variant of the statement above, named the converse
theorem since when π is cuspidal L(t, π×π′) satisfies the functional equation. This
converse theorem can be used to prove by induction automorphy of a product ⊗vπv
of representations πv of GL(n, Fv). Sometimes the induction assumption is satisfied
only for representations π′ which are cuspidal at the places v ∈ S1. Such a situation
has acquired the label “simple”, as in such a case the trace formula simplifies con-
siderably; see, e.g., [?]. Thus we name Theorem ?? a simple converse theorem. We
discussed it – following Piatetski-Shapiro’s exposition of 1976 – in the unpublished
manuscript of 1983 which dealt mainly with applications underlying the present
work. An extension to include the number field case appeared in [?] of 1994. The
function field case of that appeared in an appendix to [?] of 2002. It was used in
[?] to prove the reciprocity law between irreducible n-dimensional representations
of the Galois group of F , and cuspidal representations of GL(n,A). However, a
treatment of the simple converse theorem for GL(n) has not yet appeared. It is
needed to obtain by relatively simple means a large part of the reciprocity law for
GL(n) over function fields, a worthy aim in view of the intense technical difficulty
of [?]. This section is then written to address this lacuna. The number field case
follows by combining our arguments with those of [?]. But we currently know of
applications only in the function field case.

12.2 Generic representations. Let X be a projective smooth absolutely ir-
reducible curve over a finite field Fq of cardinality q and characteristic p. Let
F = Fq(X) denote the function field of X over Fq. The set |X| of closed points of
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X is naturally isomorphic to the set of places v (isomorphism classes of absolute
values |.|v) of F . For each v in |X| denote by Fv the completion of F by |.|v, by
Rv its ring of integers, by πππv a generator of the maximal ideal in the local ring Rv.
Let qv be the cardinality of the residue field kv = Rv/(πππv). Normalize the absolute

value by |πππv|v = q−1
v . Define the valuation degv : F×v → Z by |x|v = q

− degv(x)
v .

Thus degv(πππv) = 1.
The ring A of adèles of F is the restricted product

∏
v Fv of the Fv (v ∈ |X|) with

respect to the compact subrings Rv. If S is a finite subset of |X| put FS =
∏
v∈S Fv.

Then A =
⋃
S FS ·

∏
v/∈S Rv. Put AS =

∏
v/∈S Fv. Then A = FS ·AS . The group of

idèles of F is A× =
∏
v F
×
v , the restricted product of the multiplicative groups F×v

of Fv with respect to the compact groups R×v . Thus A× =
⋃
S F
×
S ·
∏
v/∈S R

×
v . It is

the multiplicative group of A, and A× = F×S · AS×.
Let B denote the upper triangular subgroup of G = GL(n), N its unipotent

radical, A the diagonal subgroup, P ′ the standard (containing B) parabolic sub-
group of type (n − 1, 1), P its (mirabolic) subgroup of matrices with bottom row

(0, . . . , 0, 1), P = tP ⊂ P
′

= tP ′ the opposite mirabolic and parabolic subgroups
with last column t(0, . . . , 0, 1) and t(0, . . . , 0, ∗). The center of G is denoted by Z.
The index n is used to emphasize if needed. Thus we view Gn−1 as the subgroup
Pn ∩ Pn of Gn, and consequently e.g. Nn−1 ⊂ Pn−1 ⊂ Gn−1 ⊂ Pn ⊂ Gn.

Let ψn : Fv → C× (v ∈ |X|) be a character 6= 1. It defines a character, denoted
again by ψn, of N(Fv), by ψv((ui,j) = ψv(

∑
1≤i<n ui,i+1). We recall some local

definitions and results from [?] (see also [?]), thus we omit the index v.
An admissible representation (π, V ) of G = GL(n, F ) (over C) is called generic

if there exists a nonzero linear form ` on V satisfying `(π(u)ξ) = ψ(u)`(ξ) for all
u ∈ N(F ) and ξ ∈ V . By [?], Theorem C, if π is irreducible and ` exists, then `
is unique up to a scalar. By Theorem D, the space W (π, ψ) of Wξ(g) = `(π(g)ξ),
ξ ∈ π, makes under right translation a G-submodule of the induced representation
Ind(G,N,ψ), such that π → W (π, ψ), ξ 7→ Wξ, is an isomorphism of G-modules.
Theorem B asserts that every cuspidal representation of G is generic (by cuspidal
representation we mean an irreducible one). By Schur’s lemma ([?]), an irreducible
π has a central character. Denote it by ω. Then in fact W (π, ψ) ⊂ Ind(G,ZN,ωψ),
where ωψ is the natural character on ZN .

Consider the restriction map W (π, ψ) ↪→ Ind(P,N, ψ), W 7→ W |P . Theorem
E of [?] asserts that if π is cuspidal then this map factorizes via ind(P,N, ψ) ↪→
Ind(P,N, ψ), and the deduced map W (π, ψ) ↪→ ind(P,N, ψ) is an isomorphism
of P -modules. Here ind indicates compact induction. Thus ind(P,N, ψ) consists
of functions f : P → C such that there exists an open subgroup Uf ⊂ P with
f(upk′) = ψ(u)f(p) (u ∈ N , k′ ∈ Uf ) and a compact subset Sf of N\P with
f(p) 6= 0 (p ∈ P ) implying Np ∈ Sf . Theorem F implies that if π is not cuspidal
then {W |P ; W ∈W (π, ψ)} strictly contains ind(P,N, ψ).

Lemma 12.2. Let π be an irreducible generic representation of G. Denote by
ω the central character of π. Then W (π, ψ) (⊂ Ind(G,ZN,ωψ)) is contained in
ind(G,ZN,ωψ) if and only if π is cuspidal.

Proof. We use the decomposition G = ZPK, where K = GL(n,R). Then suppW
⊂ supp(W |P ) · ZK. If π is cuspidal then supp(W |P ) is compact in P modN
for any W in W (π, ψ), hence suppW is compact in GmodZN . Conversely, if π
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is not cuspidal then the image of W (π, ψ) under W 7→ W |P properly contains
ind(P,N, ψ), hence W (π, ψ) is not contained in ind(G,ZN,ωψ). �

Lemma 12.3. Let πn be an irreducible representation of Gn = GL(n, F ). The
image of the restriction map W 7→W |Gn−1, W (πn, ψn)→ Ind(Gn−1, Nn−1, ψn−1),
contains ind(Gn−1, Nn−1, ψn−1). The image is ind(Gn−1, Nn−1, ψn−1) iff πn is
cuspidal.

Proof. The restriction map W 7→ W |Pn, W (πn, ψn) ↪→ Ind(Pn, Nn, ψn) has image
ind(Pn, Nn, ψn) if πn is cuspidal. The image strictly contains ind otherwise. The
restriction map W 7→ W |Gn−1, ind(Pn, Nn, ψn) → ind(Gn−1, Nn−1, ψn−1), is an
isomorphism of Gn−1-modules, and so is the map with ind replaced by Ind. �

Let ω be a character of F×, hence also of Zn−1 ' F×. The map

Aω : ind(Gn−1, Nn−1, ψn−1)→ ind(Gn−1, Zn−1Nn−1, ωψn−1),

φ 7→ φ, φ(g) =
∫
Zn−1

φ(zg)ω(z)−1dz, is onto. The same applies with ind replaced

by Ind. We conclude:

Lemma 12.4. Let πn be an irreducible representation of Gn. The image of the
map W 7→ Aω(W |Gn−1), W (πn, ψn) → Ind(Gn−1, Zn−1Nn−1, ωψn−1) contains
ind(Gn−1, Zn−1Nn−1, ωψn−1), with equality iff πn is cuspidal. In particular, when
πn is cuspidal, the image of W (πn, ψn) under W 7→ Aω(W |Gn−1) is cuspidal. 2

12.3 The global functions U and V . For the global theory we fix a character
ψ 6= 1 of AmodF . It defines a character, denoted again by ψ, of N(A)/N(F ), as
in the local case, and for each v ∈ |X|, a restriction ψv to Fv and N(Fv). We shall
often write G for G(F ) and Gv for G(Fv) (and for other algebraic groups). An
admissible irreducible representation π of G(A) (over C) is the restricted product
⊗vπv of irreducible admissible representations πv of Gv = G(Fv) which are almost
all unramified (πv is called unramified if its space contains a nonzero Kv = G(Rv)-
fixed vector, which is necessarily unique up to a scalar). Namely the space of π
is spanned by ⊗vξv, ξv ∈ πv for all v and ξv is a fixed Kv-fixed vector ξ0

v 6= 0
for almost all v. If πv is irreducible, unramified and generic, the vector ξ0

v can
be chosen so that W 0

v = Wξ0v
∈ W (πv, ψv) satisfies W 0

v (e) = 1. The Whittaker
model of a locally generic irreducible admissible π is W (π, ψ) ⊂ Ind(G(A), N(A), ψ),
the space spanned by W = ⊗vWv (which takes g = (gv) to

∏
vWv(gv)), where

Wv ∈ W (πv, ψv) for all v and Wv = W 0
v for almost all v. Then each W is smooth

(right invariant under an open subgroup of G(A)) and satisfies W (ug) = ψ(u)W (g)
(g ∈ G(A), u ∈ N\N(A)). If ω = ⊗vωv is the central character of π then W (zg) =
ω(z)W (g) (z ∈ Z(A)).

Lemma 12.5. (1) Let W be a Whittaker function on G(A) (right smooth with
W (ug) = ψ(u)W (g) (u ∈ N(A), g ∈ G(A)). Then there exists a sequence (mv ∈
Z; v ∈ |X|) with mv = 0 for almost all v such that if W (g) 6= 0 for g = bk with
b = (bi,j) in B(A) and k in K =

∏
vKv then for all v and i (1 ≤ i < n) we have

|bi,i/bi+1,i+1|v ≤ qmv .
(2) The sum

U(g) =
∑

p∈N\P

W (pg) =
∑

p∈Nn−1\Gn−1

W (pg)

converges absolutely and uniformly on compact sets in G(A).
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Proof. (1) If not then there are v and i and big enough mv such that |bi,i/bi+1,i+1|v
> qmv , and there is uv ∈ N(Fv) with ψv(uv) 6= 1 such that g−1

v uvgv lies in an
open subgroup of finite index in Kv under which Wv is right invariant. Then
ψv(uv)Wv(gv) = Wv(uvgv) = Wv(gv(g

−1
v uvgv)) = Wv(gv) implies Wv(gv) = 0 and

W (g) = 0.
(2) It follows from (1) that if Y is a compact subset of G(A), and g ranges over
Y , the function h 7→ W (( h 0

0 1 ) g) is compactly supported on the space of h ∈
Nn−1(A)\Gn−1(A), |det(h)| = 1. Since Nn−1\Gn−1 is discrete in this set, the sum
U(g) is finite. �

Lemma 12.6. For any m ∈ Z, the restriction of U ′′(h) = U (( h 0
0 1 )) to the set of

h ∈ Gn−1\Gn−1(A), |deth| = qm, is compactly supported. It is 0 if m is large
enough.

Proof. By reduction theory for Gn−1(A) there is a sequence (m′v ∈ Z; v ∈ |X|)
with m′v = 0 for almost all v, and a compact subset Ω ⊂ Nn−1(A) such that
Gn−1(A) = Gn−1 · S((m′v),Ω), where the Siegel set S((m′v),Ω) consists of the
h = uak in Gn−1(A) with u ∈ Ω, k ∈ K =

∏
vKv, and a = diag(a1, . . . , an−1),

ai ∈ A×, with |ai/ai+1|v ≥ qm
′
v (1 ≤ i < n − 1). It suffices to show that U ′′(h)

is compactly supported on Sm((m′v),Ω) = {h ∈ S((m′v),Ω); |deth| = qm}. It
suffices to show that for h in Sm with U ′′(h) 6= 0, |a1| is bounded. If U ′′(h) 6= 0
there is p ∈ Gn−1 with W

((
ph 0
0 1

))
6= 0. Suppose pn−1,1 6= 0. Consider ph = puak.

The (n − 1, 1) entry of pua is pn−1,1a1. If pua = bk′, k′ ∈ K and b ∈ Bn−1(A),
then |pn−1,1a1|v ≤ |bn−1,n−1|v, and this is bounded by qmv by (1) of Lemma ??,
for all v. Put m′ =

∑
vmv. Then |a1| = |pn−1,1a1| =

∏
v |pn−1,1a1|v is bounded

by
∏
v q

mv = qm
′
. If pn−1,1 = 0 we use the largest i with pi,1 6= 0 to obtain

|pi,1a1|v ≤ |bi,i|v for all v. But W
((

ph 0
0 1

))
6= 0 implies that bi,i|v ≤ qmv(n−i),

hence |a1| is bounded by qm
′(n−i). In particular, if U ′′(h) 6= 0, |deth| =

∏
i |ai|

(1 ≤ i < n) is bounded independently of m. �

Write Uξ for U = UW of Lemma ??(2) if π 3 ξ 7→Wξ ∈W (π, ψ).

Lemma 12.7. For any g ∈ GL(n,A) with W (g) 6= 0 there exists u ∈ N(A) with
U(ug) 6= 0. Hence Uξ 6≡ 0 if ξ 6= 0.

Proof. The ψ-Fourier coefficient of U(g) is∫
N\N(A)

U(ug)ψ(u)du =

∫
N\N(A)

∑
N\P

W (pug)ψ(u)du

=

∫
N\N(A)

∑
h∈Nn−1\Gn−1

W (( h 0
0 1 )ug)ψ(u)du.

Let N ′′ be the unipotent radical of P (nonzero nondiagonal entries only in the last
column). This N ′′ is normal in N . We may and do integrate over N ′′\N ′′(A) first
to get the sum over h ∈ Nn−1\Gn−1 of∫

Nn−1\Nn−1(A)

∫
N ′′\N ′′(A)

W (( h 0
0 1 )u′′ug)ψ(u′′)du′′ψ(u)du.

As Gn−1 normalizes N ′′, putting h′ for diag(h, 1), we have

W (h′u′′ug) = ψ(h′u′′h′−1)W (h′ug),
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and
∫
N ′′\N ′′(A)

ψ(h′u′′h′−1u′′−1)du′′ is 1 if h ∈ Pn−1 and 0 if not. So the sum ranges

only overNn−1\Pn−1. Continuing by induction on n we get
∫
N\N(A)

U(ug)ψ(u)du =

W (g). The first claim follows. For the second, since the map π 3 ξ 7→Wξ is injec-
tive, Uξ 6≡ 0. �

Note that by construction U is left invariant under the parabolic P ′ = ZP of
type (n− 1, 1), and right invariant under an open subgroup of G(A), since W is.

Write wn for antidiag(1, . . . , 1) in Gn. Let αn be wn
(
wn−1 0

0 1

)
=
(

0 1
In−1 0

)
. If

W = Wξ lies in the Whittaker model of π, then W̃ (g) = W (wn
tg−1) lies in the

Whittaker model of the contragredient representation π∨ of π (see [?]). Put

g′ =
(
wn−1 0

0 1

)
tg−1

(
wn−1 0

0 1

)
, ξ′ = π∨

((
wn−1 0

0 1

))
ξ.

Define

Vξ(g) =
∑

p∈Nn−1\Gn−1

W̃ξ′
((

p 0
0 1

)
g′
)
.

For each g ∈ GL(n,A) this sum is finite. For each m ∈ Z the h ∈ Gn−1\Gn−1(A)
with Vξ (( h 0

0 1 )) 6= 0 and |deth| = qm make a compact set, which is empty if m is
small enough, by Lemma ??. Note that if N ′ = N ′n = α−1

n Nnαn, then

Vξ(g) =
∑

p∈N ′\P

Wξ′(αnpg) =
∑

P∈Nn−1\Gn−1

Wξ′
(
αn
(
p 0
0 1

)
g
)
.

Thus Vξ is left invariant under the parabolic P
′

= tP ′ opposite to P ′, and right
invariant under an open subgroup of GL(n,A).

Remark 12.1. The idea of the proof of the converse theorem is to recover the fol-
lowing direct result: U(g) = U(γg) = V (g) for all γ ∈ Gn and g ∈ Gn(A), if U and
V are constructed from the Whittaker function W (g) =

∫
Nn\Nn(A)

ϕ(ug)ψ(u)du

associated with a cusp form ϕ on Gn\Gn(A). The equality U(g) = V (g) would
produce a function left invariant under Pn and Pn, hence under Gn, that is, au-
tomorphic. The direct result follows from Fourier expansion inductively along the
unipotent radicals of Pm, using the assumption that ϕ is cuspidal: Put d[γm] =
diag(γm, In−m). Then

ϕ(g) =
∑

γn−1∈Pn−1\Gn−1

· · ·
∑

γm∈Pm\Gm

· · ·
∑
γ1∈G1

W (d[γ1] . . . d[γn−1]g)

=
∑

γ∈Nn−1\Gn−1

W (d[γ]g) = U(g), and ϕ(g) =
∑
γ

W (diag(1, γ)αng) = V (g).

12.4 The integrals I and Ψ. Recall that for an idèle a = (av) we put deg((av)) =

−
∑
v deg(v) degv(av), where qv = qdeg(v) defines deg(v) and |av|v = q

− degv(av)
v .

Then |a| = qdeg(a). We also write t = q−s for s ∈ C, for comparison with the

number field case. Then |deth|s− 1
2 , the factor which appears over number fields,

becomes q−
1
2 deg(h)t− deg(h), where deg(h) means deg(det(h)).

Let ϕ be an automorphic function on GL(n− 1,A). Put

I(t, ξ, ϕ) =

∫
Gn−1\Gn−1(A)

ϕ(h)Uξ (( h 0
0 1 )) q−

1
2 deg(h)t− deg(h)dh,
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Ĩ(t, ξ, ϕ) =

∫
Gn−1\Gn−1(A)

ϕ(h)Vξ (( h 0
0 1 )) q−

1
2 deg(h)t− deg(h)dh.

These are well-defined formal Laurent series in t and t−1, by Lemma ??.
Using the definition of Uξ and Vξ as series in Wξ, and the property Wξ(ug) =

ψ(u)Wξ(g) (g ∈ GL(n,A), u ∈ N(A)), one computes

Lemma 12.8. For h in Gn−1(A) put Wϕ(h) =
∫
Nn−1\Nn−1(A)

ϕ(uh)ψ(u)du, W̃ϕ(h)

= Wϕ(wn−1
th−1), and

Ψ(t,W,W ′) =

∫
Nn−1(A)\Gn−1(A)

W ′(h)W (( h 0
0 1 )) q−

1
2 deg(h)t− deg(h)dh.

Then I(t, ξ, ϕ) = Ψ(t,Wξ,Wϕ) and Ĩ(t, ξ, ϕ) = Ψ(1/qt, W̃ξ, W̃ϕ). 2

Lemma 12.9. Let π = ⊗vπv be a unitarizable irreducible admissible locally generic
representation of GL(n,A) whose central character is trivial on F×. Let S2 be a
finite set of places of F . Suppose π′ is an irreducible cuspidal representation of
GL(n − 1,A) whose components π′v (v ∈ S2) are unramified and such that the
formal series L(t, π × π′) and L(t, π∨ × π′∨) are polynomials in t satisfying the
functional equation

L(t, π × π′) = ε(t, π × π′)L(1/qt, π∨ × π′∨).

Then for any vector ξ =
∏
v ξv in π = ⊗vπv and form ϕ in the space of π′, we have

I(t, ξ, ϕ) = Ĩ(t, ξ, ϕ).

Proof. By Lemma ??, it suffices to show that Ψ(t,Wξ,Wϕ) = Ψ(1/qt, W̃ξ, W̃ϕ). The
vector ξ in the abstract space π = ⊗vπv can be taken to be a product, ⊗vξv, hence
Wξ((gv)) =

∏
vWξv (gv). The Whittaker function Wϕ lies in the Whittaker model

of π′ = ⊗vπ′v, which is the restricted product of the Whittaker models W (π′v, ψv)
of the components π′v. Hence we may assume that Wϕ has the form W ′ =

∏
vW

′
v

(as Wϕ is a finite linear combination of such functions). For such factorizable Wξ

and W ′ we have

Ψ(t,Wξ,W
′) =

∏
v

Ψ(t,Wξv ,W
′
v), Ψ(t, W̃ξ, W̃

′) =
∏
v

Ψ(t, W̃ξv , W̃
′
v).

Taking the product over v of the local functional equations

Ψ(t,Wξv ,W
′
v)

L(t, πv × π′v)
ε(t, πv × π′v, ψv)ωπ′v (−1)n−1 =

Ψ(1/qt, W̃ξv , W̃
′
v)

L(1/qt, π∨v × π′v∨)

and using the functional equation L(t, π × π′) = ε(t, π × π′)L(1/qt, π∨ × π′∨), the
lemma follows. �

Proposition 12.10. Let S1 be a finite set of places of F , disjoint from S2. Suppose
π is as in Lemma ?? and its components πv are cuspidal at v ∈ S1. Let ξ = ⊗vξv be
a vector in ⊗vπv such that for each v ∈ S2 the component ξv is K ′v = GL(n−1, Rv)-
invariant (and Gn−1 embeds in Gn as usual). Suppose π′ is as in Lemma ?? but
its components π′v (v ∈ S1) are cuspidal. Then for any character ω of F×\A× we
have Uξ(e) = Vξ(e).

Proof. We have the equality I(t, ξ, ϕ) = Ĩ(t, ξ, ϕ) for any ϕ in any π′ which is
unramified at v ∈ S2 and cuspidal at v ∈ S1. The restriction at v ∈ S2 means that
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the ϕ that we have consist of all those which are right invariant under a Gn−1(FS2
)-

conjugate of
∏
vK
′
v (v ∈ S2). So that I and Ĩ be nonzero we then need to take

ξ = ⊗vξv whose component ξv (v ∈ S2) is K ′v-invariant (or a Gn−1(FS2
)-translate

of it).
Let ω be a character of F×\A×, hence also of Zn−1\Zn−1(A). Suppose ϕ satisfies

ϕ(zg) = ω(z)ϕ(g) (g ∈ Gn−1(A), z ∈ Zn−1(A)). For z ∈ F×\A× put ωt(z) =

ω(z)(q−
1
2 t−1)(n−1) deg(z), and

(AωtUξ) (( h 0
0 1 )) =

∫
Zn−1\Zn−1(A)

Uξ (( zh 0
0 1 ))ωt(z)dz.

It satisfies (AωtUξ) (( zh 0
0 1 )) = ωt(z)

−1(AωtUξ) (( h 0
0 1 )) , and

I(t, ξ, ϕ) =

∫
Gn−1Zn−1(A)\Gn−1(A)

ϕ(h)(AωtUξ) (( h 0
0 1 )) (q−

1
2 t−1)deg(h) dh.

The map ξ 7→ Uξ is Gn(A)-equivariant: π(g)ξ 7→ Uπ(g)ξ and Uπ(g)ξ(h) = Uξ(hg). In
particular (AωtUξ|Gn−1(A)) is an automorphic function onGn−1(A), and its restric-
tion to Gn−1(Fv), v ∈ S1, lies in the space ind(Gn−1,v, Zn−1,vNn−1,v;ωt,vψn−1,v)
by Corollary ??, since πv is cuspidal for v ∈ S1. Consequently (AωtUξ|Gn−1(A)) lies
in the space of cusp forms belonging to those cuspidal representations of Gn−1(A)
whose central character is ω−1

t , their components at v ∈ S1 are cuspidal, and their

components at v ∈ S2 are unramified. Since I(t, ξ, ϕ) = Ĩ(t, ξ, ϕ) for any automor-
phic function ϕ on Gn−1(A) which is cuspidal as a function on Gn−1,v (v ∈ S1),
unramified as a function on Gn−1,v (v ∈ S2), with central character ω, we conclude
that ∫

Zn−1\Zn−1(A)

[Uξ (( zh 0
0 1 ))− Vξ (( zh 0

0 1 ))]ωt(z)dz = 0.

This is a power series in t, hence we conclude its coefficients are zero. Thus∫
Zn−1\Z0

n−1(A)

[Uξ (( zh 0
0 1 ))− Vξ (( zh 0

0 1 ))]ω(z)dz = 0

where Z0
n−1(A) is the subgroup of z in Zn−1(A) with deg(z) = 0. Now ω ranges over

the space of characters of the compact group Zn−1\Z0
n−1(A). Hence Uξ (( h 0

0 1 )) =
Vξ (( h 0

0 1 )) for all h in Gn−1(A), and in particular Uξ(e) = Vξ(e). �

12.5 Proof of the simple converse theorem. Recall that Kv denotes the
maximal open subgroup GL(n,Rv) of GL(n, Fv), v ∈ |X|, and K =

∏
vKv, a

maximal compact subgroup of GL(n,A). For an integer mv ≥ 0 denote by K1v(mv)
the subgroup of gv in Kv whose bottom row is (0, . . . , 0, 1) modπππmvv . In particular
K1v(0) is Kv. Put K1((mv)) =

∏
vK1v(mv) where mv ≥ 0 are integers for all v

and mv = 0 for almost all v.

Proposition 12.11. (1) The parabolic subgroup P ′n(F ) of type (n − 1, 1) and its

opposite parabolic P
′
n(F ) = tP ′n(F ) generate the discrete subgroup GL(n, F ) in

GL(n,A). (2) If mv > 0 for some v then the subgroups P ′n(F ) ∩ K1((mv)) and

P
′
n(F ) ∩K1((mv)) generate the subgroup GL(n, F ) ∩K1((mv)) of GL(n, F ).

Proof. See Proposition 9.1 of [?], pp. 194-195. �
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To prove the simple converse theorem we consider first the case where S2 is
empty. Then for every vector ξ = ⊗vξv in π = ⊗vπv we have Uξ(e) = Vξ(e) by
Proposition 12.4.3, hence for every g in GL(n,A) we have Uξ(g) = Uπ(g)ξ(e) =
Vπ(g)ξ(e) = Vξ(g), and so Uξ ≡ Vξ. This function is left invariant under P ′n(F ) and

P
′
n(F ), hence by the group GL(n, F ), by Proposition 12.5.1(1). It is right invariant

under an open subgroup of GL(n,A), and it is cuspidal. The map ξ 7→ Uξ is nonzero
by Lemma ??. It is equivariant and defines a realization of the admissible irreducible
representation π = ⊗vπv of GL(n,A) in the space of automorphic cuspidal functions
on GL(n, F )\GL(n,A).

When S2 is not empty, we choose the vector ξv in the component πv of π such
that Wξv (e) = 1 (v ∈ S2), and such that ξv is fixed by K1v(mv), smallest mv ≥ 0.
Such a vector ξv exists and is unique up to a scalar [?]. In particular such ξv
is fixed under the subgroup GL(n − 1, Rv) of K1v(mv) ⊂ Kv = GL(n.Rv). Put
ξS2 = ⊗v∈S2ξv.

By Proposition ?? for every vector ξS2 = ⊗v/∈S2
ξv in ⊗v/∈S2

πv, if ξ = ξS2 ⊗ ξS2

then Uξ is equal to Vξ at e, hence on the subgroup GL(n,AS2) ·K1((mv; v ∈ S2)) of
GL(n,A). Moreover this function is left invariant under both P ′n(F )∩K1((mv; v ∈
S2)) and P

′
n(F )∩K1((mv; v ∈ S2)), hence under the group GL(n, F )∩K1((mv; v ∈

S2)) = GL(n, F ) ∩GL(n,AS2) ·K1((mv; v ∈ S2)) by Proposition ??.
There exists a vector ξS2 such that ξ = ξS2 ⊗ ξS2

satisfies Wξ(e) 6= 0, since
ξ 7→Wξ is injective and Wπ(g)ξ(h) = Wξ(hg). For such ξS2 , the restriction of Uξ to

K1((mv; v ∈ S2)) GL(n,AS2) is nonzero. Indeed, Uξ is left invariant under P ′n(F ),
hence under Nn(F ). By strong approximation theorem

Nn(F ) · [Nn(A) ∩GL(n,AS2) ·K1((mv; v ∈ S2))]

is dense in Nn(A) (since F · AS2 ·
∏
v∈S2

πππmvv Rv is dense in A). By Lemma ??,

Uξ(e) 6= 0, hence Uξ|GL(n,AS2)K1((mv; v ∈ S2)) is nonzero.
Define UξS2 on GL(n,A) by UξS2 (g) = Uξ(g

0) (ξ = ξS2 ⊗ ξS2
) if g has the

form γg0 with γ ∈ GL(n, F ) and g0 ∈ GL(n,AS2)K1((mv; v ∈ S2)) (this defi-
nition is independent of the choice of γ and g0 since Uξ is left invariant under
GL(n, F ) ∩ GL(n,AS2)K1((mv; v ∈ S2))), and UξS2 (g) = 0 otherwise. The map

ξS2 7→ UξS2 is a nonzero equivariant homomorphism of the admissible irreducible

representation ⊗v/∈S2
πv of GL(n,AS2) into the space of right-smooth functions on

GL(n, F )\GL(n,A) which transform under the center Zn(A) according to the char-
acter ωπ of π. The representation of GL(n,A) on the space generated by these UξS2
is admissible since it is so for each v /∈ S2. It has an irreducible subrepresentation
π′′ which is necessarily automorphic, its components at each v /∈ S2 are in the given
πv, in particular π′′ is cuspidal. 2

Let Fu be a local field of positive characteristic. Put Gu = GL(n, Fu) and
G′′u = GL(n− 1, Fu). For any Gu-module πu and G′′u-module τu we put

Γ(s, πu, τu) =
L(s, πu, τu)

ε(s, πu, τu)L̃(1− s, πu, τu)
.

Corollary 12.12. Let πu be a Gu-module such that there is a global field F whose
completion at some place u is our Fu, and a unitary irreducible cuspidal G(A)-
module π whose component at u is our πu. Let π′u be an irreducible non-degenerate
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Gu-module such that for some set V of places of F not including u we have

Γ(s, πu, τu) = Γ(s, π′u, τu)

for every G′′u-module τu which is the u-component of a unitary cuspidal G′′-module
τ with a cuspidal component at the places of S1. Then π′u is equivalent to πu.

Proof. Put π = πu ⊗ πu and π′ = π′u ⊗ πu. Since π is unitary cuspidal, L(s, π, τ)
is entire and satisfies the functional equation Γ(s, π, τ) = 1 of Theorem ?? for all
unitary cuspidal τ . Our assumption on π′u implies that

Γ(s, π′, τ) = Γ(s, π, τ)

for all τ in Φ. Hence Theorem ?? implies that there exists an automorphic G(A)-
module π′′ = ⊗π′′v with π′′u ' π′u and π′′v ' πv for all v 6= u outside V . The rigidity
theory for GL(n) (see [?]) implies that π′′ ' π since π is cuspidal, and in particular
πu ' π′u, as required. �

Remark 12.2. Corollary ?? applies to any square-integrable Gu-module πu. Indeed,
given Fu there is a global F whose completion at some place u is Fu, and given
πu and a cuspidal πw for some other place w 6= u of F , it is easy to construct a
cuspidal unitary G(A)-module π with these components πu, πw at u,w by means
of the trace formula.
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