FOURIER ORBITAL INTEGRALS OF SPHERICAL FUNCTIONS ON U(3)

Yuval Z. Flicker

The purpose of this work is to prove the identities of Fourier orbital integrals of spherical
functions on the unitary groups in three and two variables, as well as on the general linear
groups in three and two variables, which are stated as Propositions 13, 15, 17 and 18 of [F].
These Propositions make the main local technical requirements for the method of [F], which
determines the cyclic generic cusp forms on U(3) as the image of the endo-lift from U(2).
As the present work is an Appendix to [F], we use its notations and definitions without a
change. We hope that a general technique would eventually be found and would provide a
more conceptual proof.

Part 1. Proof of Proposition 13. Note that

(D66 DG )6

and hence that for f’ € H' we have

W(—b/2i, ') = b/z/dz/FXdX/dn
(G D)D) )G )6 2) (o 1))wes
:¢(b/i)///f’<<i ;’) (é fb) <(1) f))w(zz)dzdndxa (d=n + ai).

To study the argument of the spherical f’, note that when |z] <1, it is

10 1 0y_(1 0 1 0y_(1 0 .
<d 1><0 ab>:< ab)(a% 1>=<o ab)’ if |d] < max(1, |abl),

( abo/d> <(1) ab1/d>5<g abo/d>’ if |d| > max(L, [ab]).
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Of course we use the Bruhat decomposition of <gl (1)> as recorded in the beginning of the

proof of Lemma 12, and note that f’ is K’-biinvariant. Hence ‘g = g. If |2| > 1 then

6w 1)=0 we) b )

E<(1) (Z“?b)z/“b) <g abo/z>5<z 0 ) if |2d + ab| < max(|z], [ab/2)):

0 ab/z
(a0 (6 we)

= <d+gb/z 1/(dfab/z)> (S abo/z> <(1) (ab/z)/gz“ab))
- (ng“b ab/(23+ab)>, if |2d + ab| > max(|z], |ab/2]).

It is also useful to recall that d =n+ai,n € F,a € FX, —i =1 € E*, and so d + ab/z =
n+ aR(b/z) + ai(l + 1(b/z)), where for each z € E the elements R(xz) and I(z) in F are
uniquely determined by x = R(z) + il(z). We shall abbreviate below I for I(b/z), and write
n for n + aR(b/z). Our method of integration of the triple integral over a, n, and z, which
defines W(—b/2i, f', 1)) above, will be to fix z(€ E), and integrate over a € F* and n € F first.

13.1 Lemma. Suppose that |z| > 1. If |1+ I| < |b/z?|, then

JoJor ()G ) (o 5)) o= ety (77 1))

k>1

If |1+ I| > |b/2?] then the integral is equal to

S (O ) Sy (TS ).

k>1

Proof. We shall cut the domain of integration into 3 domains (the third will further be cut
into two), and integrate over each subdomain.

(1) The first domain consists of the a, n with |d + ab/z| < 1 and |ab/z| < |z|. Then |n| < 1
and |a(1+I)| <1 (we take i with |i| = 1). Define k by |w|=% = |22 /ab|. This k can take any
value such that (|w="| =) [22/ab| > |22(1 + I)/b|. The integral is

> (% 9)

|7=—k|>|22(1+1)/b]
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(2) The second domain consists of the a, n with |d + ab/z| < |ab/z?| and |z| < |ab/z|. Define
kE by |m=F| = |ab/2%|(> 1). Then |a| < |77 F| and |a(1 + I)| < |7 *|(= |ab/22|), hence
|14 I| < |b/2?|. The integral over this subdomain is then

> (%)

[1411<]b/22]

(3) The third domain consists of the a, n with |d + ab/z| > max(1, |ab/22|). We distinguish
between two subcases.

(3a) If |1 + I| < |b/2?|, since |z| > 1 we have that |d + ab/z| = |n|. Define k by |w=F| =
|d + ab/z|?|22/ab|(> 1). Then (|p%w*| =)|ab/2?| < ||, namely || < |[w~*|. As i ranges over
1 < |i| < |7~*]|, the integral over this subdomain is

= ()

k>0
[1+1]<[b/22]

At this stage the lemma follows in the case that |1 + I < |b/22].
(3b) If |1 + I| > |b/2?|, define k by |mw=%| = |d + ab/z|*/|a(1 + I)|(< |(dz + ab)?/ab]). Again
we split into two subdomains.
(3b(i)) If |n] < |a(1 + I)| then |d + ab/z| = |a(1 + I)| = |d + ab/z|?|w|F. Hence

7 =* = |d + ab/z| = |a(1 + )],

and |a| = |7=*/(1+ I)|, |a| < |m|7F.
(3b(ii)) If |a| > |a(l + I)| = |d + ab/z|?|xw|F = |a|?|xw|*, then 1 < |#| < |7#=%| and |a| =
|727® /(1 + I)|. Integrating over the subdomains (3b(i)) and (3b(ii)) we obtain

S et (TR0 ),

k>0
[14+1]>]b/22]

The lemma now follows also in the case where |1 + I] > |b/22|. O

Next we consider the complementary case, where |z| < 1. Recall that in this case the

. . (1 0\, d 0.
argument of f’ in the integrand is <0 b if |d| < max(1,|ab|), and 0 ab/d if |d| >
max(1, |abl).

13.2 Lemma. Suppose that |z| < 1. If |b| > 1 then the integral over a and n of Lemma 13.1

et rn=uretr (1))

k>1
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If [b] < 1 then it is equal to

(o D))z (707 1)

Proof. We split the domain of integration into three.
(1) On |ab| < 1, |d| < 1, we have |n| < 1, |a] < 1, and we define k by |7*| = |ab|. The integral

over lhiS Sudemain iS
k>0

|7w—k > —1

(2) On |ab| > 1, |d| < |ab| (hence |b| > 1) we define k by |7w=%| = |ab|(> 1). Then |n| < |77F|,
and the integral over this subdomain is

2o (1)

bl >1

(3) On |d| > max(1, |ab|), define k by |w~F| = |d%/a|(> |b|), if |b| < 1, and then the integrand

—k
is f’ <<7r O/b (1)>>, and by |m=%| = |d%/ab|(> 1) if |b] > 1, and then the integrand is

—k
I <<7r 0 ) ) To integrate this again we split the domain in two.

0 1
(3i) On |n| > |a| we have |n| > 1 and |n| > |ab|. If |b] < 1 then |7=%| = [n%/a| > |n|. Hence
la| = [n?m*| and 1 < |n| < |w~*|. The integral over this subdomain is
—k
k . / iy /b 0
> @-or (7" 1)
k>0,/b|<1

If |b| > 1 then |[w=%| = |n%/ab| > |n|, and so |a| = [n?w*/b| and 1 < |n| < |w~*|. The integral
in this case is .
k-1 _ ! " 0
> @ -or (%))
k>0,[b]>1
(3ii) On |n| < |a| we have |a| > 1 and |b] < 1. Define k by || = |a|. The integral is

ser((7 )

k>0
|b|<1

Both claims of the lemma, for |b| > 1 and |b| < 1, follow at once. O



13.3 Lemma. If |b| <1 then (b, f',1) is equal to

(0o ) resar (75 1) e (U 0)

+Y (1 +a )1 =g )" <<7r_:/b ?)) :

k>3

Proof. Note that |b/2i| = |b| and v (b) = 1. By Lemma 13.2, the contribution from |z| <1 is

r(Co ) e (70" 1)

On |z| > 1 we have that |1 + Im (b/z)] = 1 > |b/2%|. Hence Lemma 13.1 implies that the
contribution from the domain of |z| > 1 is

/[f <<Z /b 0>>+Z 1+q ") f ’((“_kOZ?/b (1)>>1b(2z)dz.

If |z = q¢™, m > 1, then f|z|:qm ¥(2z)dz is 0 unless m = 1 where —1 is obtained. The lemma
follows now at once. 0

This completes the proof of Proposition 13 in the case where |b| < 1.
13.4 Lemma. If |b| > 1 then ¥ (b, f', 1) is equal to

(% D)o rmer (3 )] S0

Proof. On the domain |z| <1, since ¢(z) = 1 Lemma 13.2 asserts that the contribution to the
integral ¢ (b/i)V(—b/2i, f', ) is

() ra+a+chtr (7 1)

k>1
On |z| > 1, Lemma 13.1 contributes the sum of the following two integrals:
(i ray+a Y (70 0) | v
q q 0 1 z)az,

l2]>1 k>1
[141]<|b/22]
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and the integral over z with |z| > 1 and |1 + I| > |b/22]:

(i) / f’<<(1+é)z2/b 2)) (14q° kz;lq’“f << 1;[) /b 2)) $(22)dz.

On |z| <1 < |b| we have |b/z| < |b/2%| and so |1 + I| < |b/2?|. Hence the sum of (i) and (ii)
is the product of (i) and

(iv) / $(22)dz.

I1+1|<|b/2z]

Put o' = b/2i. The inequality
|b/zz| > |1+ b'/z+b /Z| = [(z + V') (z + v ) —b'b ]/b'b | |6'b/ 27|

is equivalent to
I(1+2/8)(1+2/b) — 1] < 1/|V).
The solutions of this inequality are described by 1 + z/b' = (1 + u/b'), where u € R/,
e € /(1 +V7'R') with €€ = 1, namely z = b 4 eb’ 4 eu. Hence (iv) is equal to
B0/i) S0). )
When |(1+a/b')(14+7Z/b)— 1| > 1 we have |z| > [b'| > 1, and [9(2z)dz = 0. When

L+ 2/6)(1+2/8) = 1] = =], [p/|7* < |77| <1,

we have that 1+ 2/b' = e(1 — wiu) with e € R”X/(1 + w/R'), € = 1, and |u| = 1 if j > 1,
in which case z = —b' + b’ — eb/m/u, but when j = 0 we have that z = —b’ + eb’ — eb’u with
e€ RR*/(1+nR'),ee =1, and u € R' — (1 + wR’). Note that the domain in (iii) is of the
form |z| > 1 and [b'nw/| = |(1 + I)2%/b| > 1. Integrating over z we obtain, when j > 1, the
product of ¢ (—b/i) > ¢(eb/i) with

o0, if|p'wi]>q
/1[)(2z)dz N {—1, if |o'm7| = q.

When 5 = 0, the integral is

/ Y(22)dz = p(—20') Y (26D / W(—eb'u)du

R'—(1+mR')

' > g,

07
N { —p(=b/i) . peb/i), V| =q.
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In conclusion we must have |1 + I| |22/b] = ¢ to have a non zero integral over z, and then
[(22)dz is —p(—b/i) >_(b/2i). Indeed, for |b| > 1 we have

BOE > h(2eb) = > > 1(2e1€D)

e€ER'* /(1+b=1R') e€ER'* /(1+(m =1 /L)R'); er€(1+(m—1/b)R')/(1+b'R')

=— > (2eb).

e€ER X [(1+(mw—1/b)R)

It then follows that (b, f’, 1)) is the difference of (i) x > (b) and the term

P N)) ez (0 )| X

k>1
obtained from the integral of (iii) with |(1 + I)22/b| = |w~1|. This difference is equal to the
expression of the lemma. O

Proof of Proposition 15. Using the Bruhat decomposition for an element in U(3) recorded in
the proof of Lemma 12, we have

1 00\ /1 -1 3%
go=[1 100 1 -1
s 11/ \o o 1
1 2 2\ [0 1\ (3 0\ /1 2 2\ /1 -1 3
=(0 1 2 -1 1 01 2|0 1 -1
00 1/ \1 0/ \oO 2/ \0 0 1/\0 0 1

The change x — x — 2b of variables; the fact that f € H is spherical and in particular left

0 1
invariant under J = -1 , and using the Iwasawa decomposition C' = ANK¢ on
1 0
C and again the invariance of f under K¢ on the right, the integral W(b, f,1) to be studied
becomes
E(%)/ dy/ dz/ /X@b(—y)dxdxa,
E F Ex JF
where
1 0 0\ [/1/2b 0 11 3 a~! 0\ /1 x
X=f y 1 0 1 0 1 1 1 1
z g 1 0 2b 0 0 1 0 a 0 1

Here z = %yy +it, t € F, and dz indicates di, so that [ dz ranges over F. Similarly = ranges
over the z in E with 2 +Z = 0. Hence 1 (b)¥(b/2, f,v) is equal to

1 0 0 c 0 1
/dy/ dz/ dc/ dd | f y 1 0 1 0
E FoJE F z g 1 0 1/c 0

o~ 2
= ] &
<
—~
<
N—
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Here z + %z = yy, ¢ = 1/ab, d + d = aa, and so once y and ¢ (whence a) are chosen, z and d
range on a space naturally isomorphic to F'.

Using the Bruhat decomposition recorded in the proof of Lemma 12, we determine the
K-double coset of the matrix which appears in the argument of f. Since z + 7z = yy, if |2] < 1
then |y| < 1, and if |2| > 1 then |z| > |y|, and similarly for d + d = a@. Suppose first that
|z| > 1. Then

1 0 0 c 0 1 a d
y 1 0 1 0 1 @
>3 1) \o 12/ \o o 1
z 0 1 gy/z 1/z c 0 1 a d
= Z/z 0 1 y/z 1 0 1 @
0 1z) \o o 1 o 1/2)/ \o o0 1
ze 0 1 a+7y/cz d+ (1+acy)/ccz
= 1 0 1 a+y/cz
0 1/z¢) \ o 0 1
1 acz+7Yy dcczz+acyz+7z cz 0
=lo 1 acz +y 1
0 0 1 0 | /ez
cz 0
= 1 if |edz +ay + 1/¢| < max{|cz|, 1/|cz|};
0 1/ez

if, moreover, |d| < 1, then these identities hold with a, d replaced by 0, and ¢ by 1/b. In the
complementary case we obtain

1 0 0 cz 0
= a+7y/cz 1 0 1
d+ (acy+1)/ccz a+y/ez 1 0 1/cz
cdz +ay +1/c 0
= 1
0 1/(cdz + ay + 1/c)

if |edz + ay + 1/¢| > max{|cz|,1/|cz|} (or > max{|cd|,1/|cd|}). If |d| > 1, transposing we
obtain an analogous situation, hence

cd 0

Il
—_

o if |cdz + ay + 1/¢| < max{|ed|,1/|cd|}.
0 1/cd

Since the expression cdz + ay + 1/¢ does not change if (y, z, ¢) is interchanged with (a,d, c),
in the complementary case the same expression as for |z| > 1 is obtained, with z replaced by
d in max{|cz|,1/|cz|}. To check the compatibility of the statements, we prove



15.1 Lemma. Suppose that |z| > 1 and |d| > 1. Then
ledz + ay + 1/¢| < max{|cz|,1/|cz|} if and only if it is < max{|cd|, 1/|cd|},

in which case |cz| |ed| = 1.

Proof. Suppose that |cdz +ay + 1/¢| < |cz|, |cz| > 1. Then |edz| = |ay + 1/c|, and |c?dz| =
lacy + 1|. If |acy| > 1 then |cdz| = |ay|, and |¢| = |ay|/|dz| < 1/|ay| since |z| > 1 implies
|z > |y|? and |d| > 1 implies |d| > |a|?; hence |acy| cannot be > 1. On the other hand,
if [c?dz| < 1 then |c?d| < 1 and |c?z] < 1, and so |ac| < 1 and |yc| < 1; also |acy| = 1,
hence |a| > 1 and |y| > 1, and so |[d| > |a|?, |z| > |y|?, and 1 > |c2dz| > |c2a2y?| = 1 is a
contradiction. Hence |c2dz| = 1 as required.

In the complementary case we have |cdz +ay + 1/¢| < 1/|cz|, with |cz| < 1. Then |ccdzZ +
acyz + z| < 1, and |z| = |cedzZ + acyz|, or 1 = |cédz + cay|. If |cedz| > 1 then |cédz| = |acy],
and |c| = |ay|/|dz| < 1/|ay|, a contradiction. If |cédz| < 1 then |acy| = 1, and so 1 > |c2dz| >
|c2a?y?| = 1. Hence |cd| |cz| = 1, and the lemma follows. O

To simplify the notations in the course of the proof of the next lemma we make

t 0
Definition. Write f(t) for f 1
0 1/t

The next lemma computes the integral of Proposition 15.
15.2 Lemma. If |b| < 1 then U(b, f,1) is equal to

FOYH(@P+20-1) f 0 )+ (g 203 —20) F (0 T+ (L4q7 )3 (1—g P f (0.
>3

When |b| > 1 it is equal to the product of |b|, > (b), where |b|, = |b5|};/2 = [b|*/2, and

FO+ (P +a-DfE )+ 1+ A —=¢2))) ¢ f(nF).

k>2

Proof. We shall partition the domain over which the integral which represents
P(b)W(b/2, f,1) is taken, into six subdomains, which will be further partitioned, and on which
the value of f was computed in the lines prior to Lemma 15.1. We will integrate first over a

and d, and only later over y and 2. It is useful to observe that there is d with d + d = 0 which

depends on d — d, such that
@+a—+ab—‘i‘ i+ P (2 N (24
ab Y ~lab sz \p Y b I
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(1) On the domain where |z| > 1, |z/ab| > 1 (recall that ¢ = 1/ab) and |dz/ab + ay + ab| <
|2/ab|, the function f takes the value f(z/ab). Define k by |w=F| = |z/ab|(> 1). Then k > 0,
|d| <1 and |Z/b+ y| < |w~*|. The integral over a and d in this domain yields

> f(mF).

k>0
|21>1, |7/bty|< |7k

(2) Suppose |z| > 1 and |dz/ab + ay + ab| < |ab/z|, where |ab/z| > 1. Here the function f

again takes the value f(z/ab). Define k by |7 %] = |ab/z|(> 1), then k > 1, |d| < |w~2k|, and

|Z/b+ y| < 1. The integral over a and d in this domain is

Yo PR

k>0
[z]>1,1Z/b+y|<1

z \b
the value of f is f (% + ay + ab). We further partition as follows.
(3') On |d| < |22(Z + y)|? define k by |7~ = |2(Z +y)|. Then k > 1 and [2/b+y| > |7 .
The integral over a and d is

(3) Suppose that |z| > 1, |z/ab] > 1, and |d + ab . ab (2 +y) (% +§) | > 1. On this domain

S E b+ ).

E>1
|21>1, 7% =K< Z/bty|
(3") On |d| > %2 (% + y)|> we have d| > 1, and the value of f is f(zd/ab) = f(mw~%) if we
define £ by |zd/ab| = |w¢|. Then |d| > =% (% + y)|*, and d| < |7w=2¢|/|Z/b+ y|?, as well as
|d| < |7~*| (as |z/ab| > 1). We split again: ) )
(3)) On || < |7w=24/|z/b+y|? we have |m—¢| > |z/b+y|?, and d ranges over 1 < |d| < |7 ~¢|.
Integrating over this subdomain we obtain

> (¢° = 1) f(m~").

£>1
lz|>1, |7 —¢|>1Z/b+y|2

(35) On [~ > |m=2|/|z/b+y|* define k by |m~*| = | =*|/ly+%/b|. There |7 ~*| < |y+7/b],
and d ranges over 1 < |d| < |w~2*|. Integrating over a, d in this subdomain we obtain

S @ - DR+ /).

E>1
lz1>1, |7~k |<[Z/b4y]

(4) The next domain is where |z| > 1 and

ab

z

i+ 2.

z

dz

1< < |= +ag+ab
ab

=15
~lab

ol &
—
Sl RN
+
<
~——
—

S

z
i)
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It is cut into two. The value of f here is f(% + ay + ab).
(4') On |d| < (12} |Z + y|)* we have |z/b+y| > 1. Define k by || = |ab/z| |2/b+ y|. Then
|7=%| > [2/b+y| > 1, and |d| < |m|~2?¥. Integrating over a and d we obtain

S P f(wHE /b + ).

E>1
l21>1, |7—F|>Z/b+y|>1

(4) On |d| > (2] |Z +y|)? we have |d| > |ab/z[? > 1. Then |d| > |ab/2|>A, where we put A =
1(1,2/0 +9) 1> (| (u, v)|| = max{|ul, |v]}). Define £ by |w~*| = |zd/ab| (> |ab/z|A = |d/z~*|A).
Hence |d| < |w=2¢|A~". Note that |a| = |zd|/|bm~¢| by definition of £. Since |7 ~%| < |d|, the
integral over a and d is

> (@1 z/b+ )72 = ) fF(mh).

= >(1(Lz/b+y) 17> 1|2 > 1

(5) On the domain where |z| < 1 and |d| < ||(1, (ab)?)||, the value of f is f(@b) = f((ab)~1).
Here d = d — d.

(5") If |z] < 1 and |d| < 1, then |a| < 1, |d| < 1, and we define k by |7~ %| = |a|~ > 1.

(5]) On the subdomain where |ab| < 1 we have |w~*| > |b|, and obtained is

Zf —*/b) 1f|b|<1ande Y if b > 1.

k>0 E>0
lz]<1 |z[<1

(55) On the subdomain where |ab| > 1 we have 1 < |w=%| < |b|, hence |b| > 1, and writing
|w—¢| = |w*b| obtained is
> [T

1< 4|<[b]

(5”) On |z| < 1 and |d| > 1 we have |d| < |abl?.
(57) If |d| < |a|? then 1 < |a| = |7 ~*| and |b| > 1. Then k > 1, |d| < |7 ~2*|, and we obtain

> @ f(mF).

E>1
|z]<1,[b|>1

(59) If |d| > |a|? and |a| > 1, define k by |7~ %| = |a| > 1; then k& > 0, and |7~ 2¢| < |d| <
|w=2k| |b|?, and |b| > 1. Obtained is

Y P =1 f(r ).

k>0
|z]<1,[b|>1
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(54) If |d| > |a|? and |a| < 1, then 1 < |d| < |ab|? = |~ |2 defines k(> 1), and we obtain

Yoo @ -DfEE).

E>1
lz]<1, |7~k |<b)

(6) On |z| <1, |d| > 1 and |d| > |ab|?,the value of f is f(d/ab).

(6') If |d| < |a|? then |a| > 1 and |b| < 1. Define k by |7 ~%| = |a| = |d/a| > 1, then k > 1, and

obtained is

> P f(ETRD).

E>1
[2]<1,[b|<1

(6") If |d| > |a|? then k is defined by 1 < |d| = |aw~*| < |d/a| |7x~F| =

|d| > |ab]? = |d/7~%|?|b]?, we also have that 1 < |d| < |w=2¥/b%|. We obtain

Yo (@ =DfETB Y (@ D).

E>1 E>1
|2]<1,[b|<1 |z]<1,[b|>1

—2k|_ Since

kg

This complete the first stage of the proof of our lemma. The next step will be to add up to
various contributions depending on the value of z, and b. There are four such sums.
(A) On |z| > 1 and |Z/b+ y| < 1 there is a contribution from (1), (2), (3}) and (4”), and the

sum 1is

Zf —k: +Zq2kf —k _+_Zq _1 —k: +Z 2k—1 _

k>0 k>1 k>1 k>2

=)+ (@ +)fm)+ ) (@ + N f(aF).

k>2

) f(me™F)

(B) On |z| > 1 and [Z/b+ y| > 1 there are contributions from (1), (3), (37), (3%), (4'), (4"),

as follows:
e+ D> T ETREb )
k>0 1<|n—#|<|Z/b+y]
+ Y (@Y - DF(ETREb+ )
|7e =k >z /b+y

+ o (=D + Y PR FETRE )

1< =k |<|Z/b+y] | =*|>]z/b+y

+ Y @ APy (TR E b+ y)

|m =k >q|Z/b+y|

=fE/b+y)+ > (@ +¢* D f(m "z /b+y))

1<k |<[Z/b+y]

+(@+ QLY G+ Y (@ (e

|k [>q|Z/b+y]

= fEh+y) + D (@ + PN (/b + ).

k>1

“HE/b+y)
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(C) On |z| <1 and |b] < 1 there are contributions from (59), (57), (6"), and (6”):

S rE )+ Y P ) Y @)+ (@ - 1) (e k /b)
k>0 k>1 k>1 k>1

- [b|=1 lbl<1

=[O )+ @+ fO T+ Y A+ g (/D).

(D) On |z| <1 and |b] > 1 there are contributions from (57), (55), (57), (5%), (5%), (6”):

dfETF+ > FET DY PR > (b = 1) f (e Fb)

k>0 1< |7 =k |<|b| k>1 k>0
+ > (@ -DfET D (@ =) f(rE)
1<|m*|<]b| k>1
=f+(@+f@+ D @+ ET DY @R (EF
@<|mF|<[b |+ > o]
D+) ¢+ ") ().
k>1

We are now in a position to compute ¥ (b, f,1) and we start with the case of |b] < 1.
There are two contributions to the integral over z (and y), the first being the expression of
(C), which is the integral over |z| < 1 (where ¢(y) = 1). On the domain of |z| > 1 there is
a contribution only from (B), since |z| > 1 and |[Z/b+ y| < 1 imply |y| = |z/b] > 1, hence
lby| = |z| > |yy| and 1 < |y| < || < 1. When |z| > 1 and [Z/b+ y| > 1, then |Z/b| > |y| and
so [Z/b+y| = |z/b] > 1 (clearly if |y| < 1; if |y| > 1 then |2/b] > |z| > |y|). If |y| > 1 then we
may take |y| = ¢'(= qg), since f|y|:q,m Y (y)dy = 0 for m > 2. Note that f|y|:q, Y(y)dy = —1.
We get three contributions from (B), corresponding to: |y| < 1, |y| = ¢’ and |Z] < ¢'?, and
ly| = ¢’ and |Z| > ¢'? (here Z = z — Z). They are:

/ [F(Z/b)+ > (L+q g f(m~"2/b)]dz

|2>1 t21
_ / +Z 1+q 1 zef _2_£b_1)]d,§
12|<q'? >1
- /[f(z’/b)+Z(1+q—1)q2ff(7r—€z/b)]dz
|Z|>q'2 >1
= (= D[f (=) + 1 +q ) P fo )

>1

+ (@ =) =) @2/ + Y (L D fO a2,

>1
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The sum of this and the expression for (C) is the expression given in the lemma for the value
of (b, f,1) at |b] < 1.

It remains to compute the value of 1 (b)¥(b/2, f,4) for |b| > 1. This is the sum of three
expressions. The first is the integral over |z| < 1, and this is given by (D). The contribution
over |z| > 1 and |Z/b+ y| < 1 is obtained from (A); it is

P+ 1 +qH S g f(n] / ().
k21 2> 1,|5/b4+y|<1

The contribution over |z| > 1 and [Z/b+ y| > 1 is obtained from (B):

FEO+y)+ D (L+q )P f(m @b+ y))]y (y)dz.
2> 1,[7/b+y|>1 k21
We shall name these three terms: the first, second and third.

Concerning the second term, where |z| > 1, [Z/b+y| < 1, or |Z+by| < |b], or |Z+yy+ by +
by| < |b], we have |Z| < |b| and |(1 + y/b)(1 +7/b) — 1] < 1/|b|, hence y/b+ 1 = (1 + u/b),
e€ R*/(1+b'R),uc R, cg=1. Theny = —b+eb+eu. When ¢ € 1 + b~ 1R’ we have
ly| <1, and then |Z] = |z| > 1, so 1 < |Z| < |b|. Hence the integral in the second term is

bl ) B(ED)B) + bl — 1= bl S (b/2) — 1.

c€(R'* /(1+b—1R'))* eE=1

Consequently the sum of the first and second terms is (D) times > (b/2), which is the second
term with the integral replaced by > (b/2).

Concerning the third term where |z| > 1 and [Z/b+ y| > 1, we claim that only the z with
|Z/b + y| = |w~t| contribute to the integral. To see this, write [Z/b + y| = |7|™™, where
m < 1. Then |Z + (y +b)(y + b) — bb| = [Z + by| = |bwr~™|, and there are two cases to
deal with: (1) |Z| = |bw~™|, then [(1 4+ y/b)(1 +7/b) — 1| < |7~ ™/bl; (2) |Z] < |bmw™™]|,
then [(1 4+ y/b)(1 + 3/b) — 1| = |mw~™/b|. We shall integrate t(y) over the y subject to
|Z/b+ y| = |w~™|. There are three possibilities.

(i) If |[==™| > |b], in case (1) we have |y|* < |bw~™], and so [ (y)dy = 0. In case (2) we have
ly|? = |bwr~=™| > ¢3, and Jiyjmqe ¥(W)dy = 0if £> 2.

(ii) If [w=™| = |b], in case (1) we have |y| < |b|, and [¢(y)dy = 0. In case (2) y ranges over
{lyl<b]} —{y/b+1=c(1+mu),u€ R, e € R'/(1+wR'), €€ = 1}, hence [(y)dy is

0, bl > |71,

—((e — 1)5)/ (mbu)du = { —((e = 1)b), |b] = |7, ie.m=1

lul<1

(i) If [7=™| < |B] then y/b+1 = e(1+ 7 ™b 'w), e € R¥/(L + 7™ R), et = 1,
thus y = (¢ — 1)b + em~™u, and |u| < 1. In case (1) this u ranges all over |u| < 1, then
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f|u|<1 Y (eum™™)du = 0. In case (2) this u ranges over the complement in |u| < 1 of {y/b+1 =
e(1+ 7r_m+15_1u); e€e R™*/(1+ 7r_m+15_1R’), €€ =1, |u| < 1}, and then [ (y)dy is

m > 1

_ 0,
—((e - 1)6)/ Y(eum ") du = { —((e = 1)b), m = 1(i.e. |b] > |w~1|).

lu|<1

In summary, we may take only z with |2/b+ y| = |[w~1| in the integral of the third term,
only case (2) applies, namely Z ranges over |Z| < [bwr~™|, m = 1, thus |Z| < |b|, hence obtained
is the product of —|b|F1p(b) > (b/2) and

f(ﬂ'—l)+Zq2k(1+q—1)f(ﬂ_—k—1) — f(ﬂ' 1_|_q ZqZk 2

k>1 k>2

The sum of all terms is then

[FD)+ (@ +a-Df () + 1 +g (=g f(mM)]blrd(d) Y (b/2).

k>2

But this is the assertion of Lemma 15.2, completing the proof of this lemma, and so also of
Proposition 15. 0

Remark. The result of the last computation can also be expressed in the form

~1/2 k-1 k41 o\ _ q+1—-1/q, k=0,
|b| q \I/(b7 f 7"7b) - Z(b) { (1 + q—l)(l _ q—2)qk+17 k > 17

and
1, k=0,

B2 F (b, 5 ) =D () 4 g +1-1/q, k=1,
(1+¢H(1—qg g k>2,

when |b| > 1. The difference is easily compared with the corresponding difference of the values
of W(b, f'*+1 4p) —q LW (b, f'*,4) described in Proposition 13. Similar comment applies in the
case of |b| < 1.

As noted after Proposition 15, any two of Propositions 13, 14, 15 imply the third. We proved
13 and 15, and conclude 14, which asserts that corresponding spherical functions are matching,
at a place of the global field F' which is non-split and unramified in the quadratic extension £
(we also took the conductor of 9 to be R’, but this is an easily removable condition, and only
the case of conductor (¢) = R’ will be used anyway).

Part 2. Proof of Proposition 17. In the course of this proof (only) we write K’ = GL(2, R).
We first consider the argument of f’ in the integral. We ask, for n > 0, for which z,y € F and

c € F*, we have
1 =z —b/e 0 10 (7™ 0 ,
(0 1)( 0 1/c> <y 1>€K< 0 1>K'
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(1) If |y| < 1 and |z| < [|(1,)||(= max{1,|b|}), or |z| < 1 and |y| < ||(1,b)]|, our matrix is in
the K'-double coset of

CE 5)G7)=C5 8 = (o D0 8= )
and then |¢| = 1 and |b| = ¢, or [b| = |¢| = g™

(2) If |z] < 1 and |y| > [|(1,b)]], using the Bruhat decomposition recorded in the proof of
Lemma 12, our matrix lies in the K’-double coset of

b/c 0 1 1/y Ly 0\ _ (b/cy O

0 1/c)\0 1 0 y/) L 0 y/ec)’
Thus |y| = |c| and [b/c?| = ¢", or [b] = |ey| and |y/c| = ¢".
(3) If |y| <1 and |z| > ||(1,b)]], our matrix is in the K’-doble coset of

b/c 0 1 1/z Lz 0\ _ (1 b/z b/cx 0

0 1/c 0 1 0 =) \0 1 0 =xz/c)’
thus |z| = |c| and |b/c?| = ¢™, or |b| = |cx| and |z/c| = ¢™.
(4) If || > 1 and |y| > 1 then

D6 D 26

o )0 )= (" ) el

y/c y/c

(5 2 ) )
1 —b/yy(:vy — b)) [ b/e(zy —b) 0 o
(o ) (" 0 )

_ ([ b/e(zy =) 0 . i
= (M ) i oy = b1 > 1|, b/3) |

O =

—_

Hence — by symmetry of x and y — we also have

_ (b/gm ;}) if |2y — b] < ||(x, b/a)|:

_ [ b/c(xy —b) 0 .
= < 0 (zy — b)/c) if |xy — b > ||(z,b/z)]|.

To check compatibility in the case where |z| > 1 and |y| > 1, we now claim that |zy — b| <
|(x,b/x)|| if and only if |xy — b] < ||(y,b/y)||, and then |zy| = |b|. Suppose that |zy — b| <
I(y,b/y)]|- We deal separately with two cases. (i) If 1 < |y| < |[b/y| then |zy — b|] < |b/y|, and
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since |y| > 1 we have |zy| = |b|. If |zy — b| > ||(z,b/x)|| then |b/y| > |xy —b] > || = |b/y], a
contradiction. (ii) If |b/y| < |y| > 1 then |zy — b] < |y|, and since |z| > 1 we have |zy| = |b|.
Then |zy — b > ||(z,b/z)]| leads to |y| > |ry — b| > |b/z| = |y|, again a contradiction, and the
claim follows.

We are now ready to perform the integration of the proposition. If |b] < 1, the contributions
from the domains (1), (2), (3), (4) yield

P60 0) 2 (7)) et
i //|w|>1,|y|>1f/ <<b/(m%_ " xyo— b)) Yalo —y)drdy
:f'<<3 ?))—%’((bgz 2))n<w>+n<n>2f'(<bg4 ;’))

as asserted in the proposition.
When |b| > 1 the contribution from the domains (1), (2), (3) to the integral is zero since
f|y|<|b| 2(y)dy and f|y|>|b| 2 (y)dy are zero. The contribution from the domain (4) is the sum

// 2 1>1,[y[>1 I <<b{)y 0>>¢2($— y)dx dy

lzy—b|<II(y,b/y)lI=Il(z,b/=)]|

// ol > 1.1yl >1 <<b/($% K $y0_ b>> Yoz — y)dz dy.

zy—b|>|l(y,6/y)ll

and

To compute the first integral, we split the domain of integration into two.
(i) On |z| > |b/z| = |y| > 1 we have |y — b| < |z| and so |y — b/z| < 1, and we obtain

/|b|>|z|>|b|1/2 ! ((g b/a:)) 2(x —b/z)dx

This is zero since flw|=qm Yo(x — b/z)dx # 0 only when |b| = ¢®™ (i.e. |z| = |b[}/?).
(ii) On |y| > |b/y| we have |zy — b| < |y| and |z — b/y| < 1, so the integral is

/1<|y|z|b|1/2f <<b(/)y 0))“ —b/y)dy

The only non-zero contribution to this integral is obtained from y with |y| = |b/*/2, and so in
particular the valuation of b is even. We then get

WP [ by
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To compute the second integral, note that on its domain |z—b/y| > ||(1,b/y?)]. If |z —b/y| >
q then |z +u —b/y| = |z — b/y| > ¢ for all u € F with |u| = ¢, and the integral over
the corresponding subdomain clearly vanishes. It remains to consider |x — b/y| = ¢; there
x =b/y+ u, |lu| = q. The integral takes the form

/f/ ((b/yg_l yﬂ(')_l)) ba(y — b/y)dy/|u|:q o (u)du.

The integral over u, |u| = ¢, is equal to —1. Non zero contribution to the integral is obtained
only from y with |y| = |b|*/2. Hence we obtain

a7y (7 2)) [ st v

and the proposition follows. 0
Proof of Proposition 18. Our approach will be to compute both sides in a direct way, and
then compare them. We start with ¥ (b, f,1)).

18.1 Lemma. It suffices to take the integration in V(b, f,1))

1 0 0\ [/—a/b 0
:/f u 1 0 5}
1/4a 0 1 0 1

over x| < q and |y| < q or |z| = |y| > ¢*, without changing the value of the integral.

Y(x+ y)dr dydz dud*ad™

o O =
S =8
— < W

Proof. Since f is spherical we may conjugate its argument by diag (1,e,e71), |e| = 1, then
change variables on z(— ex), y(— y/e), and u, to obtain that our integral — for fixed
x,y, 2, u, , 3 — factorizes through

Y(ze + y/e)de.

le|=1

If |z] <1 and |y| > ¢ this is clearly zero. If |z| > |y| > ¢, and |y| < ¢*™, m > 1, the integral
factorizes through the e = 1 —na™, || <1, and e =1 4+ p™ + n27x2™ + . ... Hence

Y(ze +yfe) =Yz +y+ (y —x)nm™),

and its integral over |n| < 1 is zero unless |z — y| < ¢, thus |z| = |y| if |y| > ¢, and |z| < q if
ly| = q (we take minimal m, namely m = 1 if |y| = ¢), as required. O

Another simple observation is the following



18.2 Lemma. The integral

e

vanishes unless |u| > |v| > |w|.

IS
< = O

Proof. Indeed the integral is equal to

e
sl

0

0
0
zu/w yv/w 1
0
1
)

0 u 0
0 v V(x4 y)dx dydz
1 0 w
1 0
zu/v 1 (x4 y)dx dydz

0 1
T
z

If |u/u| > 1, change z — = + 7, and note that fln|<1 Y(nv/u)dn = 0, as required.

0
0 Y(zv/u+ yw/v)de dy dz.
1
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O

Our next step is to split the domain of integration for ¥(—b, f,1) into five. We take the
argument of f, as in Lemma 18.1, with |z| < ¢, |y| < gq.

10 0\ [a/b 0
m =|=z 10 B : if Ju] <1< al;
z y 1 0 1
1/ 0 1 1/4a a/b 0 1 z =z
aim = 1 1 1] 0 1 y
0 o 0 1 0 1 0 0 1
16 0\ /1 z z+b/4
= 1] 0 1 Y
0 o 0 0 1
100\ /16 0
= T 1 0 Ié; , if lu| <1, |a| < 1;
z+b/4 y 1 0 o
u 0 1 1/u 0 a/b 0 1 =z =z
Iy = 1/u 0 1 0 16} 0 1 y
0 1 0 0 1 0 0 0 1
au/b 0 1 z+ pb/au Z+yﬁb/au
= B/u 0 1
0 1 0 0
1 0 0 au/b
=| z+p6b/au 1 0 B/u , if lu| > 1, |a > 1;
z4+yBb/au y 1 0 1
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1 0 0 1 0 4o 0 —1
av)y =]lu 1 0 0 1 0 1
0 0 1 0 0 1 1 0
1/4c 0 a/b 0 1 z =z
1 1] 0 1 y
0 4o 0 1 0 0 1
10 0 1/4b 0 1 = z+4b
=0 1 —-u 5} 0 1 Y
0 0 1 0 4o 0 0 1
1/b 0 1 = a+4b
= I} 0 1 y—dau/p
0 o 0 0 1
1 0 o\ /1/b 0
= x 1 0 g , if 1 < |ul <1/|al;
z4+4b y—4dauf 1 0 o}
1 0\ /1 1/u 0\ /0 -1 0\ [u 0
V) = 1 0 1 0 1 0 0 1/u
1/4a o 1/\o o 1/ \o 1
1 l/u O 0 1 z =z
0 1 y
1 0 0 1
0 au/b 0 1 z+pb/au  z+ yBb/au
= 0 1 0 B/u 0 1 Y
0 —1/4a 1 0 1 0 0 1
au/b 0 1 z+pb/au  z+yBb/au
= B/uc 0 1 y —4dau/pB
0 « 0 0 1
1 0 0 au/b 0
= | =+ Bb/au 1 0 B/uc ) if 1 < la|™! < |ul.
z+ypb/au y—4dau/B 1 0 a

We shall now integrate the integrand of Lemma 18.1 on each of these five domains. Put

3
I
N 8] =
<~ o
= oo
)
I
=@

and note that the following integrals are taken over |a| > 1, |3| > 1, and against dz dy dz du d* o d* 3.

Here they are:
(/7). Change o= afb to obtain (x) = [\, 151 /5, f (U)W (z +y).
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(f;7)- Change: a — 1/a, = B/a, & — afb, z — z — b/4 (in this order) to obtain

[ i)
la|>1/160]
(fIH). Change: z — yfb/au, x — x — b/au, [+ Bu, a — afb/u (in this order) to obtain
[rwivesn ol [ v
| =1 <|u|<|BD]

([;v)- Change z — z — 4b, y — y + 4uc/, a — a1, B+ B/a, a— afb, to obtain

[ 1wt 013 Y

181~ <Ju|<[abl

([/)- Change: z — z —ypBb/ou, y — y+ dou/B, x — = — Bb/au, § — Balu, u — ufb,
a— a” ', a & u, to obtain

/ SO +y) / (b /u+ du/B)d"u - |fblda

1< |u|<|apBb]

= [b] /f(Ut)lb(x +y)|af| - / lu| "t (4u — b/u)du.

181~ <Ju|<[ab]

18.3 Lemma. When |b| > 1, the integral ¥(—b, f,) is equal to
e [ e badus [ gl U+ g)aU e d .
lul=[b]*/2 la|>1,]8]>1

When |b| <1 it is

b0
/ f (U ( 5 )) bz + y)d* fdU
1<I8I<b] -1 0 1

a/b 0
+ / flu 3 W(o + y)|ald* ad* BdU
la>1,1<181<1/0 0 1

a/b 0
+ / flu 4 W(@ + y)|a|dXad* BdU
jal>188],1<]al<|A] 0 1

w [ s pelatars [ b

|ul’
‘a|‘§;l;‘|i|121 1/181<|ul<|ab]
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Proof. When |b] > 1, ([;) is (*), (f;;) 18 (%), (J;;7) 1s (*) (times |a|(1-1/]a|-1) = 1) = —(x),
and ([},,) is (¥) (times |8](1 — 1/|3| — 1)) = —(x), so they cancel each other, and we are left
with (fi,), which is (after changing u — u/2)

/ FUOY(z + y)|ald™ ol Bbld™ B - / |u| ™ o (1 — b/u)du.

o122 18]~ <|u|<|ab]
The inner integral can be taken only over |u| = |[b|*/?, and the lemma follows when |b| > 1.

When [b] <1, ([;) + (f;;) is equal to the sum of the first integral in the statement of the
lemma (for |b| < 1), and

2 / FUL( + ).
|a|>1,|81>1,|aB|>1/|b]|

Also

_ 80| — 1/|af, if |Bb] <1 }
= U 3 ,
(/III) /|a|21,|ﬁ|21,|aﬁ|>1/|b| JUDP +y)lad { 1—-1/|a] =1, if |pb] > 1

and

_ labl = 1/|8],  if [ab] <1 }
= U : :
(/IV) /|a|21,|ﬁ|21,|aﬁ|>1/|b| Ui +u)lfl { 1-1/[B] =1, if]ab] >1

The sum of the last three displayed lines is equal to the sum of the second and third terms in
the lemma. The fourth is directly obtained from ([;,), and the lemma follows. O

Our next aim is to compute the integral
(18.4.1) / FUOY(z + y)dz dydzlaf|d ad™
le|>1,|B[>1

which occurs in the expression of Lemma 18.3 for the integral ¥(—b, f, 1) when |b| > 1. We
shall compute it, and the result of the computation is a sum of many terms which do not fit
together in an easily expressed formula. In retrospect it is then natural and non-surprising
that our method of proof will be to cut the domain of integration into as many subdomains
as necessary (they will be denoted by (1), (2), ...), and then perform the integration.

af 0
(1) If ly| <1, |z| <1 and |z| <1, then the argument of f is g , and we obtain
0 1
af 0
[ 8 aBld ad*B.
lal,|B8]>1 0 1
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(2) If [y| < 1, [2] < 1, |z = g, we obtain

afq 0
jf f 6/a () abldr & ad* g
1B]>q,|la|>1

aq 0
n / / q ¥ (@)lalded*a
jal>1

0 1
af 0
——" [ / 8 afld” ad” B
la|>q2,181>1 0 1
« 0

We write q for w—1, thus |q| = ¢.

(3) If ly| <1 and |z| > ¢ > |z]|, the argument of f is g = Bz
0 1/z 0 1
and the integral factorizes through [ (z)dz, |z| < ¢, which is 0.

Remark. When |y| > 1 the integral takes the form

1 0 1 0 0 af 0 1 0
[l - s 10 oy 1/e Yo+ y)lof
0 n zly—xz 0 1 0 1/y 0 1/n
1 0 0\ [aj 0
[l = 1o oy Yo+ y)lap),
nz/y—nxr 0 1 0 1/y
for any |e| = 1 = |n|. Integrating over € = n in this domain we conclude that |z| < ¢ (the

integral over |z| > ¢ is zero). Integrating over n and fixing e = 1 we conclude that it suffices
to integrate over |y| < g. We use this remark to list the next domains.

As we have dealt in (1), (2), (3) with |y| < 1, we assume in all the following cases that
vl =q
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(4) If (ly| = q and) |z| > ¢2, |z| < g, the argument of f can be taken to be
1 0 0 1 0 0 af 0

¢z 1 0|lo 10 3
>0 1) \0o y 1 0 1
1 0 0 af 0 1 0 0 afz 0
= z 10 By =10 1 0 By/z
r—z/y 0 1 0 1/y 0 z/y—z 1 0 1/y
afz 0 afBz? 0
= 6] = Bz since z/y —x = (z/y)(1 — zy/=2).
0 1/z 0 1

But then the integral factorizes through f|m|<q (x)dr = 0.

(5) If |2| = ¢® and |z/y — x| < 1 then (]z| = g and) the argument of f is diag (aByz, By?/z,1).
Also ¥(x +y) = ¥ (y+ z/y), and the integral is easily computed, after a change z — zy, to be

afBq? 0
g / / 8 aBld*ad” 8
la|>1,8|>1 0 1

af 0
g / / 8 Bl d* ad* B.
la|>q3,|8|>1 0 1

(6) If |z| < g = |z|, the value of f in the integral is

1 0 0 afx 0 aBz?y 0
fllo 1 —= By =f Bay?
0 0 1 0 1/zy 0 1

The integrand contains also a factor ¢(z + y). Integrating over |z| = g = |y| and |z| < g we
obtain

af 0
= / f 5 Bl d*a d” .
|a|>1,|81>¢ 0 1

(7) If |2] = ¢ and |2/y — x| = q write u = z — 2/y, and note that the integral is

aflz 0 .
/ S Byu/z Py + = + u)|aBld*ad* B dudy dz
lul=q,lyl=q,lz|=q Yy
al>1,18]>1 0 1/uy

afBq? 0
=1 / fa? apld* ad* B
la[>1,]8]>1

0 1
af 0

_ _q—B/ f 3 08| d” ad” 5.
1B1>2¢% || >q? 0 1
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aflz 0
(8) If |2| = ¢ and |z| < 1, the integrand is f (( By/z )) ¥ (y), and the integral
0 1/y

afBq? 0
—(q— 1)/ f Baq laB|ld™ ad™ 3
lal,|B1>1 0 1
1 1 af 0
=—(1-- f B Bld* ad™ .
‘1( q)/|a|,|ﬁ|zq (( 0 1)) oBld” e

afy 0
(9) If |2] <1 and |z| < 1 then the integrand is f (( By? )) ¥(y), and the integral
0 1

is

is then

afm 0 Bq? 0
- / / B afld*ad - [ f Bq Bld* 8
la|>q,|81>1 0 1 181>1 0 1

af 0 Bq 0
— _1/ f (( 3 )) afB|d* ad* B — 1/ f (( g )) |Bld™ 3.
7 Jia|>1,181>q> 0 1 7 J181>q 0 1

a 0
Next we add up (1) — (9). We write f(a,b) for f (( b >) . The main term is the

0 1
product of
(18.4.2) [ ] tes.pasdads
lal>1 /1811
and 1 1 1 1 1 1 1
l- -4+ =+—=—-———-—-+—=—-=(1-2-)3
9 ¢ ¢ ¢ q ¢ q ( q)

The other terms are

1 8 . _i )
; /w'Zlf(ﬁ,B)lﬁld 5+ /lmZIqu,ﬁﬂmd - [ feaia

loe| > q?
from (2),

1

1
2 d*B8— - d* 3 — 2 d*
o Gy I C TRy ML
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from (5),
1 1 1
- fla, Dald*a — — fla,q)lalda — — flo, @®)|ald o
e >1 lae|>q " J)a|>q?
from (6),
-3 B,8)|Bld* B + ¢ Ba, B)|8]d* 3
Tl WG T e B
-3 ,1 d>< -3 , d><
tq /|a|>1f(a Jald*a + g /quf(a @lald=a
from (7),

g /m|> F(BB)IBI B +q (1 — g /| f(e 1)|ald" o

al>1
from (8), and

—1 71 d>< —1 , d>< —1 71 -1 , d><
q /|a|>1f(a Jold o+ q /quf(a Qlald*a+ ¢ f(q,1) — g /W f(Ba, 816

from (9).
These “other terms” add up to:

(E S22y i) /|ﬁ|21 FEABI B+ -0 [ f(sap)lolas

g ¢ ¢ 181>1

(1843)  +¢ (1 — g /| _ f@alolio

2 2 1
+|{-——=+—= / fla,D]ald*a
(q q? q3> la|>1 ( )lod

[ sea e -a [ fesdlalaa
18]1>1 |a|>1

+(—¢ a7 =)D+ (@ -0 f(a9)
+af(@% )+ (67 —a70) fa, D).
The result of this computation is the following
18.4 Lemma. The integral (18.4.1) is equal to the sum of (18.4.3) and the product of (1 —
q 1) and (18.4.2). O

We shall now continue to study the assertion of Proposition 18 for |b| > 1, by considering
the sum over m. A standard change of variables implies that




is equal to

a 0 1 =z vy
4 /f b 0 1 2| |dedyd:
¢ 0 ¢/ \o 0 1
100\ /a 0
:‘9‘/]" ¢ 1 0 b da dy dz.
¢ y z 1 0 c

We shall then write the sum over m of Proposition 18 (for |b| > 1) in the form

Z (qm+IIm o qm+2Jm)-

m>0
qm—‘,—l 0
qmt! dr dy dz
0 1

-

Here

N = O
_— o O

is the sum of

10 0\ [qm+! 0
Jle({o 1o @) dydz (2 <)
y 2z 1 0 1
and
1 0 0 rq™t! 0
/ //f 01 0 a1 /o
jal>1 y 2 1 0 1
1 0 0 rq™t? 0
:CI/ f 010 q™"/z
|z[>1 y z 1 0 1
Also
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We conclude
18.5 Lemma. The sum Y [F((m+1,m+1,0), f) — F(m+ 2,m,0), f)] of Proposition 18 is
equal to A — B, where

(e

B///f<(§ 1 §> (ﬂoq 8/a ?))ﬁd*ﬁdydz. 0

We shall now compute directly A — B. The result is:
18.6 Lemma. The difference A — B is the sum of

and

_ o

/ / f(ap. B)laBld=ad*p times [1—¢~% — ¢~'(1— g~} — 2711 — 1) = (1 — )%,

lef|B]21

/ f(3,8)81d*B times [¢7>+q¢ ' —2¢ % +q¢ P +q ' —q | =2¢"-2¢%+ ¢,

18121

/ £(Ba, B)|Bld* A times [~ (1 — =) + (1 — g~ + (1 — )] = 21 — ¢~ 1)2,

1B1>1
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[ 10,1515 times [-q 4911 = -

1B1>1

/ flas Dlalda times [¢72 +¢7 (1 —¢ ) +¢ (1 —q¢ )] =q¢ '[1+(1—q "),
la[>1

/ f(a,q)|a|d*a times q—l(l _ q—l)z7

jal>1
/ fla,q®)|ald*a times [—¢~ ' + ¢ (1 — ¢~ 1)) = —¢ 2,
jal>1
f,1) times [~ +¢7 (1 —¢7 1) =2¢7 (1 ¢ ) =g +q7 - ¢,
fla,1) times[¢7 —¢g 2= (1—¢ )’ —¢ ' (1-¢ ) ]=-(1-¢"H1-qg " =q?
f(@®q) times 1 —¢ ' +1—q+q(1—¢ ) —q(l—¢ )| =2—-g—q,

f(a?1) times [~ — ¢ T (1 — ¢ )] =q%,
and

f(a,q) times ¢~ (1 —q¢7").

Proof. Let us compute A. First we evaluate the integrand on various subdomains of integra-
tion, denoted by (1(i)), .. ..
(1) Suppose that |8 > 1. (i) If |y|, |z| < 1, then the integrand is f(/3, ) (as usual we write

1.
a 0
f(a,b) for f . b )
> (2, q) b)|| = max(|al, |b|)) then the integrand is
GEEEEC )6
f 0 1 0 1
0 =z 1 0 1/y
1 1/y —z 0 By 0
L)) G ) () e
0 1 0 1 0 1/y

(iii) If |z| > ||(y, q)||, denoting by 7(12) a matrix representing the reflection (12), the integrand
is

1 00 3 0 1 00 3 0
f(r(lZ)(O 1 0>( B >r(12)>f(<0 1 0)( 3 ))f(ﬂf,ﬁz).
y 2z 1 0 1 z oy 1 0 1

(2) Suppose that |3| < 1. (i) If |y|, |z| <|B|7!, then the integrand is

1] 0 1 0 0
(07 (51 8) e
0 1 By Bz 1
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(ii) If |y| > ||(z,q/P)|| then the integrand is

I6; 0 1 1/By 0 -1 By 0
f B 1 1 1
(P [ I | P

By 1
1/y 0 1 =Bz 0 y 0
(DDA )
0 By 0 0 1 0 1/By

(iii) If |z| > ||(y,a/B)||, applying the reflection (12) to the pevious case we obtain that the
integrand is f(8322, 3z).
We conclude that A is:

A= / F(8, )18l + (1 + ¢ / / 1(822, B2)|B2|d* B d

>1 [z]>1
e 18121

" / FEBIBIT B+ (L + g7 / F(B22, 52)| B2 B dz,
|B1<1 lz|>|8]"1>1

and this is the sum of

FL1) + / F(8.8) + (5, 1)]|8ld*
|B]>1
and

a-¢ [ repplapitarsri-a? [[ fasplasiiads

1<]a|<|B] le|>]B[>1

=(1-q?% / f(aB, B)|af|d™ ad™ B.
lal,|B8]>1
We shall write B in the form I + II + III, where

1 0 O 6q 0
I=g¢q fl{o 10 6 |B|d™ 3 dy dz;
(o) ()

1B1>1 (
1 0 O q? 0
H://f 0 1 0 1 dy dz;
y z 1 0 q
1 0 0 0
01 0 1 18]~ d* .
y z 1 B

o]

1B1>q
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Each of I, II, I1I will be expressed now as a sum of integrals on subdomains.
(I) We first deal with I, and denote the contributions from the various subdomains by (1), (2),

(1) If |y|, |2| < 1, the contribution to I is qfﬁ|>1f Ba2, B)|8|d* 3.
(2) On |y| > ||(z,q)||, the integrand is f(diag (B3q3y,3,1/y)), and the contribution is

a1 —q7) / / F(026e%, o) a2 Bld" ad* §
1B8]>1 |a|>1

=q—1<1—q—1>/ / f(af, B)|apld” ad*p.

la|>q? [B]>]cx|qg—2
(3) On |z| > qlyl|, |2| > q, the integrand is f(diag(8q?, Bz,1/2)), and we obtain

a(1— g™ / / (2P /) |81 (B2, Ba?)d" B> -

|z[>q 18|21

=q—1(1—q—1>/ / F(af, B)|apld” ad*p.

la|>118>q*|c]
(4) On |z| = q > |y|, the integrand is f(diag(8q>,3q,1/q)), and we obtain
da-1) [ 162086 =a -0 [ f(Ba sl
18]1>1 1B1>q

(5) On |z| = qly| > ¢ the integrand contains

1 00 Bq> 0
f -y 1 0 Bay
0 0 1 0 1/qy

The intgrand over this subdomain is equal to

glg—1)(1—q7") / / F(By*a®, Bya®) | By?|d* Bd*y

18121 |y|>1

oo [ fes.p)asiad s

la|>q 18] >]clq

(IT) Next we compute II, again by splitting into subdomains.
(1) If |y| < 1 and |z| < g, the integral is ¢f(q2, q).
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(2) On |y| > ||(z,q)|| the value of f in the integrand is
1 —z 0 q?y 0
fllo 1 o0 1 = f(y*aq,y/q),
0 0 1 0 a/y

- / F(Ba, B/QIBP B = (1 — ) / F(B2QC. )| 312d% .

1B1>1 1B1>1

and the integral is

(3) On |z] > ||(qy,q)|| the integrand contains
q? 0 22 /q 0
z =/ zq )
0 q/z 0 1

(1—q¢7") / (zP/a*) [ (2% /a, z@)d*z = ¢ *(1 — ¢~ ") / F(B%q732, B)|1BIPd*B.

|z|>q® 1B1>q*

and the integral is

(4) On |z| = qly| > q the integrand contains f(diag (q*y,q,1/y)), and we obtain

(=g a1 [ fee vy =g 0= [ s,
ly|>1 1B1>a
(ITT) Finally we compute the integral III, again by partition into subdomains. Recall that in

III 3 ranges over |3| > ¢2.
(1) On |y| < |B]/4?, |2 < |A], the integral is ¢=* [ f(B,q%)|Bd*B.

18]1>q*
(2) On |y| > [|(z, 8/a)l|, the value of f is

q’y 0
) ( 1 )) = f(y*d*/B,y/B),
0 By

(1—g ) / / F (2B ) |61 Ba%y
1B1>q2 ly|>1/q
R / / F(aB, B)|afld* ad” b.

1B1>1/q || >q*|B]

and the integral is
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(3) On |z] > ||(8,qy)|| the value of f is

q 0
) ( : )) e
0 Bz

and the integral is

q(l—q—1>/ / £ (2B, 262)(12B]/¢?)d* Bd* =

|z[>118]12q%|2]

=q—1(1—q—1>/ / F(af, B)|aBld* ad” B

1BI>q? |a|>q=2|B]

(4) On |z| = qly| > |5] the value of f is

a’y 0
f (( q )) = f(y*a*/B.ya’/B) (= f(d®y,q) if |2] = qly| = |B]),
0 B/ay

and the integral is

d1-q - 1) / / F B, ya®)lyBla= By
ly|>1/q18|>q%|8|

— iy / / F(af, B)|afld* ad* B.

1BI>1 |a|>q|B]

We now come to putting together the expression for A — B. This is merely a matter of
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careful bookkeeping. Then A — B is the sum of

/ F(8,B)1BlA*B + / fle Dald*a — g / F(Be?, B)|B1d" B

18121 || >1 18121

Mg / (B, B)IBIB+ (1 — ¢ V(@ 1) + (1 — ¢~ ) (% q)

181>1

. / flas@)ald a+ ¢ F(@ 1) + F(d @) — of (0, q)
la|>1

CP—gY / FBC. BB B — (L — g7 / 1B, B B12a*

|B]|>1 |B|>1
- / FEPIBPEB 4 (1 — ) FO D) + gl — ) f ()
|B]|>1
F1-q?) / / F(aB, B)|afld* ad* 6 — (1 - ¢°2) / 1(8.8)|814% 8
i o=
—(1-q?) / f(as1)]ald*a — ¢ F(1,1),
|a|>1

the product of —¢=(1 — ¢=1)? and

(18.6.1) [ + /]f(aﬁ,ﬁ)aﬁdxad%
jal>q181>lal  16]>1 |al>|6l

and the product of —¢~!(1 — ¢~1!) and the integral, which we name (18.6.2), of
f(aB, B)|ap|d*ad* ( over

[ o] o] o]

|:a>q2»3>aq2 1BI>a” |a|2|Blg=2  |a|>11B|2q*|al  |B1>1/q|a|>q*|8]

The integral (18.6.1) is equal to
/ / F(af, B)|afld"ad* p - / F(B2,8)|B12d% B — / f(a 1)|ajd%a
lal,18]>1 |a|=|8]>1 |a|>1

- / 18, 8)1Bl4%B — g / F(Ba, BB+ ¢ F (@) + f (@, 1) + 2/ (1, 1).

1B1>1 1B1>1
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The domains of the four integrals of (18.6.2) can be split as follows.
(1) [B] = |a| > ¢?, union with (i) ¢|B| = |a| > ¢*, (i) ¢°|B| = |@| > ¢°.
(2) |c2v| > |B| > ¢2, union with (iii) |a| = |8] > ¢%, (iv) ¢la| = |8] > ¢%, and (v) ¢*|a| = |B] >
q°.
(3) 18 = el = 1, minus (iii) |8] = o] = 1, (iv) [B8] = qlaf = ¢, (v) |8 = ¢*|a| = ¢, and
18l = ¢’la| > ¢°.
(4) Jal > |8 > 1, union |a| > ¢, |8] = 1/q, minus (i) |a| = g8 > ¢, (i) o] = ¢°I8] > &,
and |o] = 9] > .
We use the labels (i) — (v) to relate subdomains of the various integrals.
The union of the main subdomains in (1) and (2) is |a| > ¢2, |8] > ¢?, which is |a| > 1,

B8] > 1, minus (5): [la] = 1, |8 = 1], [la] = ¢, |8] = 1], [la] = ¢*,18] 2 1], [la| > ¢*,|B] = 1],
[la| > ¢%, 18| = ql, [|a| > ¢2,|8] = ¢*]. The union of the main subdomains in (3), (4) is |a| > 1,
|3| > 1. We conclude that (18.6.2) is equal to:

2 [[ s plapitad s

l], 18121

| / 18, B)BId B+ q / £(Ba, B)IBI" B + ¢ / f(Ba?, B)|Bld" B
B]1>1 B]1>1 1B]>1
+ / Fla 1]ald*a + / flo a)lelda + / f(or, a2)|ald”als)
|| >q? |a|>q3 || >q*
—[*f(d® a) + qf (@, )] — ¢ f(a® V)i — [d* f(a*, a®) + @ f(a@® a) + (1, 1))
— 1 f(@® a®) + af (a, @)] i) — ¢*F(d®, @%) )
g / (52, BaP)|BI2d* Bsy — ¢° / £(52a%, B)|Bd* B
18]1>1 18]>1
e / £(or @) ed” agay.
|a|>q3

The indices (i)—(v), (3)—(5) in the expressions above are meant to indicate the origin of each
expression. Let us rewrite (18.6.2) as follows.

fap, p)labld*ad B —q* [ F(B°d,Ba°)|B’d*6—q¢* [ f(5°¢° B)IBIPd*S
 Jf / /

jal/6]>1 8i>1 Bi>1
- / 7(8.8)|B1d* B — 4 / £(Ba, B)|61d* 6 — ¢ / 1 (B, B)\Bld" p
B1>1 Bi>1 Bi>1
/ fla,Dla|ld*a—(1—q¢* / fla,q)|ald*a— / fla,q®)|ald*a
la|>1 la|>1 la|>1

+(1—=q¢ Hf(a,1) - fla,q) + f(a* 1).
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Inserting this expression for (18.6.2), and the one for (18.6.1), in the expression for A — B
where (18.6.1) and (18.6.2) were first introduced, we obtain Lemma 18.6. O

Since (18.4.2) times (1—¢~')3 is the first displayed expression in Lemma 18.6, and the sum of
the other terms in Lemma 18.6 is equal to (18.4.3) for a function f with f(q,1) = 0 = f(q2, q),
Proposition 18 follows for such f € H for |b| > 1. Similar computations, which we do not record
here, establish the required identity of Proposition 18 also for |b| < 1.

As explained in the lines leading to Proposition 18, we have that Proposition 16 follows
too, at least for all f € H which lie in the span of the characteristic functions of the K-double
cosets K diag (q% q°, 1)K, a > b, with (a,b) # (1,0) or (2,1). O

Remark. Tt is tempting to guess that Propositions 16 and 18 hold for all f € H, and that
our computation of the coefficients of the terms f(q,1) and f(q?, q) are erroneous in (18.4.3)
or in Lemma 18.6, but we have detected no error in these computations, and the validity of

Proposition(s) 16 (and 18) for all f € H with f(q,1) = f(q?, q) = 0 suffices to establish all of
our qualitative results.
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