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Let E=F be a quadratic separable extension of global �elds, and A E , A the

corresponding rings of adeles. Fix a character !0 on the group A �E =E
� of E-idele

classes which is trivial on the F -idele classes, and an irreducible, automorphic

discrete-series representation � of GL(2; A E ) with central character !0 realized (as

a closed invariant subspace) in the space of automorphic forms. Then � is said to be

GL(2; A )-distinguished (or cyclic) if there exists a form � in the space of � such that

its integral (or period)
R
�(x)dx over the space (or cycle) PGL(2; F )nPGL(2; A ) is

non-zero.

One purpose of this paper is to compare the notion of being GL(2; A )-distin-

guished with the notion (de�ned below) of being distinguished with respect to

another subgroup of GL(2; A E ). Using a \relative trace formula", Jacquet and Lai

[JL] carried out such comparisons in certain cases. To extend their results, one could

either develop an extensive theory of orbital integrals for the relative trace formula,

as is done in [H3], or give a relative version of the Deligne-Kazhdan \simple trace

formula," in which this theory simpli�es. We adopt the latter approach. Another

objective of this work is to consider such a comparison and a \relative trace" (or

\bi-period summation") formula in the higher rank case.

Distinguished representations were introduced in a similar context by Wald-

spurger [Wa], and in our context by Harder, Langlands and Rapoport [HLR] to

study Tate's conjectures [T] on algebraic cycles in the case of Hilbert modular sur-

faces. Then Lai [L] � using the comparisons of distinguished representations in [JL]

� extended the results of [HLR] to certain proper Shimura surfaces. Our results

can be used to establish Tate's conjectures for some new proper Shimura surfaces.

We indicate in an appendix the changes which need to be made to Lai's work to

accommodate the surfaces which we consider.

Let G denote the F -group GL(2) and let G0 denote the F -group ResE=FG ob-

tained from G by restricting scalars from E to F (thus G0(F ) ' G(E)). Then �,

thought of as a representation of the restricted product G0(A ) of the local groups

G0v, factors over F as 
v�v. A local component �v (or, more generally, an irre-

ducible admissible representation of G0v) is said to be Gv-distinguished if there is

a non-zero Gv-invariant linear form on the space of �v. These representations are

classi�ed in [H2] in the case of trivial central character, and in [F8] in general. We

say that � is abstractly, or locally, G(A )-distinguished if each of its local components

�v is Gv-distinguished. It is easy to see that if � is G(A )-distinguished then it is

abstractly G(A )-distinguished.

It is shown in [F8] that a cuspidal � is G(A )-distinguished if and only if it is

the unstable base-change lift of a cuspidal representation of the quasi-split unitary
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group U(2; E=F ) in two variables associated with E=F . The analogous local result

is also proven. It then follows from the theory of base-change for U(2; E=F ) of [

F1] that if � is abstractly G(A )-distinguished and at least one of its components is

an unstable, but not stable, base-change lift then � is G(A )-distinguished. Such a

component is either square-integrable or induced of the form I(�1v; �2v) for distinct

characters �1v and �2v of E�v =F
�
v . On the other hand, there exist cuspidal rep-

resentations � which are stable base-change lifts, whose components are all of the

form I(�v; �
�1
v ), where �v(x) = �v(�x) for x 2 (Fv
E)� and �x is the Galois conju-

gate of x. These local representations are in the image of both stable and unstable

maps, and so � is abstractly G(A )-distinguished, but not G(A )-distinguished.

Let D be an inner form of G. Then D(F ) is the multiplicative group of a

quaternion division algebra central over F . The groups G and D have isomorphic

centers, and it will be convenient to let Z denote the center of either group. Let

V denote the �nite set (with even cardinality) of places of F where D rami�es.

Let us assume �rst that E� is contained in D(F ). Equivalently, Ev = Fv 
 E

is a �eld for each v 2 V . Then D(E) is isomorphic to G0(F ) = G(E). The

representation � is said to be D(A )-distinguished if there is a form � in the space

of � with
R
Z(A)D(F )nD(A)

�(x)dx 6= 0.

An irreducible admissible representation �v of G
0
v is said to be Dv-distinguished

if there is a non-zero Dv-invariant linear form on the space of �v. If Dv is aniso-

tropic, then an induced representation I(�1; �2) of G
0
v is Dv-distinguished if and

only if �2 = ��1
1 [F8, H2]. On the other hand, the representation I(�1; �2) is Gv-

distinguished precisely when �1�2 = 1, or �1 6= �2 and both characters �i of E
�
v

are trivial on F�v .

The distinguished \special" representations are classi�ed as follows. Let sp(�)

denote the square-integrable subrepresentation of the induced representation I(��1=2; ���1=2)

of G0v, where �(z) = jzjv for z 2 E�v . Then sp(�) is Dv-distinguished if and only if

it is Gv-distinguished, and this occurs precisely when the restriction of � to F�v is

the unique nontrivial character of F�v whose kernel is the image of the norm map

from E�v into F�v (see Proposition B17, [F8], p. 169, and [H2]).

It is clear that if � is D(A )-distinguished, then each of its components is Dv-

distinguished. The square-integrable �v are those �v which are special or super-

cuspidal. The following theorem coincides with Theorem C of D. Prasad [P],

which is proven by entirely local means, as a special case of his study of forms

on GL(2; E)�GL(2; F ). This theorem is also proven in [H3] on using an extensive

analysis of orbital integrals.

0.1 Theorem. A square-integrable representation �v of G0v is Dv-distinguished if

and only if it is Gv-distinguished.

An alternate proof of the above theorem which uses a simpler application of the

trace formula appears in this paper. We also prove the following global result:

0.2 Theorem. An irreducible, automorphic discrete-series representation � of

G0(A ) is D(A )-distinguished if and only if it is G(A )-distinguished and its compo-
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nents �v at v 2 V are not of the form I(�1; �2) with �i trivial on F
�
v .

We shall in fact prove a more general result, where D is any inner form of G,

where D(F ) does not necessarily contain E�. To state this, let D be an inner form

of G, and D0 the F -group obtained by restriction of scalars from E to F . Denote

by V the set of places of F where D rami�es, by V 0 the subset of v in V which stay

prime in E, and by V 00 the set of v in V which split in E. In particular, when v

belongs to V 0 then the groups D0
v and G

0
v are isomorphic. The groupD

0(F ) = D(E)

is anisotropic exactly when V 00 is non-empty.

If �D = 
�Dv is an irreducible representation of D0(A ), denote by � = 
�v
the corresponding representation of G0(A ). Thus �v ' �Dv for v 62 V 00, and �v
is the square-integrable representation corresponding to �Dv for v 2 V 00. If �D is

discrete-series then so is �, and if �D is D(A )-distinguished then each �Dv is Dv-

distinguished. At the places v 2 V 00, the Dv-distinguished representation �Dv of

D0
v = Dv � Dv is of the form �0Dv 
 ~�0Dv . The corresponding representation �v of

G0v = Gv�Gv is then of the form �0v
 ~�0v and, in particular, it is Gv-distinguished.

We prove:

0.3 Theorem. Suppose that � is an irreducible automorphic representation of

G0(A ) which corresponds to a discrete-series representation �D of D0(A ). Then �D

is D(A )-distinguished if and only if � is G(A )-distinguished and for each v 2 V 0

the component �v is not of the form I(�1; �2) with �i trivial on F
�
v .

When V 00 is empty, Theorem 0.3 reduces to Theorem 0.2. When V 0 is empty,

Theorem 0.3 coincides with the main theorem of Jacquet-Lai [JL]. Theorem 0.3 is

proven in part C of this paper.

In general, we use only the simplest possible expression of the relative trace

formula which is suitable for our applications. In particular, matching of orbital

integrals needs to be done only on the r-regular set (see A4 and A5). In addition, we

show in part D that the r-character is locally constant on the r-regular set (de�ned

below). In dealing with the Eisensteinian contribution to the relative trace formula,

we rely on the computations carried out in [JL]. These computations apply to the

case when the central character is trivial, but this restriction is removed in [F8],

Lemma, p. 156.

The result of [JL] has been generalized in [ F2] to the context of GL(n) in

the case where V 0 is empty (as in [JL]) and � has a supercuspidal component.

Actually, [ F2] requires that � has an additional square-integrable component, but

this requirement can perhaps be removed on applying the regular-Iwahori functions

as in [ F6]. In parts A and B of this paper we shall also work in the context of

GL(n), and prove the following generalizations of [ F2] and the Theorems 0.1 and

0.3.

Put G = GL(n) and take D to be an inner form of G de�ned over F . Let G0

and D0 be the groups obtained by restriction of scalars. Fix a non-archimedean

place v of F which is inert in E. The notion of being distinguished extends in the

obvious fashion to this more general context. In B15 we prove:
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0.4 Theorem. Let �Dv be an irreducible, admissible representation of D0
v which

corresponds (via the Deligne-Kazhdan correspondence; see [ F3], III, p. 169) to a

square-integrable representation �v of G
0
v. If �

D
v is Dv-distinguished and supercusp-

idal, then �v is Gv-distinguished. If �v is Gv-distinguished and supercuspidal, then

�Dv is Dv-distinguished.

The archimedean analogue of this can be deduced from well known techniques

of Flensted-Jensen, Oshima-Matsuki and Bien, but this will not be done here.

Globally we have the following result, as suggested in [ F5]. In B10 we prove:

0.5 Theorem. Let �D be an irreducible, automorphic cuspidal representation of

D0(A ) such that each of its local components is Dv-distinguished, and � the Deligne-

Kazhdan ([ F3], III, p. 170) corresponding representation of G0(A ). Suppose that �

has a supercuspidal component and a square-integrable component at two distinct F -

places where D0 splits. If �D is D(A )-distinguished then � is G(A )-distinguished. If

� is G(A )-distinguished, and for each v 2 V 0 the r-character of �v is not identically
zero on the set of r-regular g 2 G0v which come from D0

v, then �
D is D(A )-distin-

guished.

The condition in 0.4 can be relaxed from \�v is supercuspidal" to \�v is a

component of a cuspidal representation � of G0(A ) as in 0.5 with a supercuspidal

component". The local results 0.1 and 0.4 follow at once from the global results

0.2 and 0.5, on noting that a distinguished supercuspidal representation can be

embedded as a component of a cuspidal distinguished representation which has a

supercuspidal component at any chosen �nite split place, and that any component

of a distinguished cuspidal representation is distinguished.

Note that the global theorem of [ F3], III, requires in particular establishing the

local correspondence not only for tempered local representations, but also for rele-

vant local representations (since the generalized Ramanujan conjecture � asserting

that all components of a cuspidal � are tempered � is merely a conjecture). The

notion of relevant representations (the representations which may be components

of a cuspidal G(A )-module) is introduced in [ FK1] in a similar context (of an

r-fold covering of GL(n)), where they are shown to be irreducible and unitarizable.

The proof of the correspondence in the case where D is anisotropic is remarkably

simple, as explained in [ F7].

In the proof of 0.4 and 0.5 we use the fact mentioned above that the r-characters

of �v and �
D
v are locally constant on the r-regular set. Consider v 2 V 0. Any in�nite

dimensional non-square-integrable Dv-distinguished representation of GL(2; Ev) is

necessarily of the form I(�; ��1). The r-character of such a representation of

GL(2; Ev) is identically zero on the set of r-regular elliptic elements in G0v ex-

actly when � is trivial on F�v ; see C14 and [H3]. Using this, we obtain the precise

formulation of the special case 0.3 of 0.5, as stated above.

More generally we show in B19, in the context of any reductive group, that

normalized parabolic induction respects the notion of being distinguished, and that

the r-character of the induced representation is related in a simple manner to the

r-character of the inducing representation.
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In the case of G = GL(n), it is conjectured in [F8] that the G(A )-distinguished

irreducible cuspidal representations of G0(A ) are obtained by stable (if n is odd)

or unstable (if n is even) base change (see [ F4]) from the associated quasi-split

unitary group, and the conjecture is proven for n = 2. In [ F10] this conjecture

is reduced � by means of a \Fourier summation formula" � to a technical local

conjecture concerning \Fourier orbital integrals."

A. Relative conjugacy.

Let E=F be a quadratic separable extension of local or global �elds, D an inner

form of GL(n) over F . We denote by D the group D(F ) of F -points on D, and

D0 = D(E). Following a common abuse of terminology, we will sometimes say

D is an inner form of GL(n; F ). Then D is the multiplicative group of a simple

algebra of rank n central over F , namely a matrix algebra M(m;H) of m � m

matrices with entries in a division algebra H of rank n=m central over F . Further,

D0 = M(m;H 
F E)�. There exists an involutive automorphism � : D0 ! D0

whose restriction to the center E� of D0 coincides with the Galois action z 7! z on

E, such that D consists of the �xed points of � in D0.

Example. When n = 2, any anisotropic inner form D of GL(n; F ) which is the

multiplicative group of a rank 2 central F -algebra containing the �eld E can be

realized as the group D� of matrices

�
a �b

b a

�
in G0 = GL(2; E), where � is a �xed

element of F �NE, and a; b range over E. The involutive homomorphism is given

by �

�
a b

c d

�
=

�
0 �

1 0

��
a b

c d

��
0 �

1 0

��1

, where the bar indicates the Galois

action of E=F . If we allow � 2 NE�, then D� is isomorphic to GL(2; F ).

Remark. A division algebra H of rank n central over F contains a cyclic �eld

extension K of F of degree n. Given such a pair H � K, where K=F is a cyclic

Galois extension and � denotes a generator of Gal(K=F ), then there is some h 2 H
such that H is the F -algebra generated by the element h and by all k 2 K, subject

to the relations hn = 1 and hk = �(k)h for all k 2 K.

Consider the set

S = fx 2 D0; x�(x) = 1g:
To study the structure of the relative conjugacy classes we prove (cf., Proposition

I.2.1 of [H1] for the case n = 2, and Proposition 10 of [F8] for GL(n)):

A1. Lemma. (1) The map D0=D! S, x 7! x�(x)�1, is a bijection. It maps the

double coset DxD to the orbit Ad(D)(x�(x)�1) under the adjoint action of D. (2) If

x; y 2 S are conjugate by an element of D0, then they are conjugate by an element

of D.

Proof. (1) It is clear that our map is well-de�ned and injective. The surjectivity

follows at once from the triviality of H1(Gal(E=F ); D0) (see [S], X, x1, Ex. 2): if
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g�(g) = 1, then a� = g de�nes a cocycle, which is a coboundary, namely there is

x 2 D0 with g = a� = x�(x)�1.

(2) Suppose that g 2 D0 satis�es xg = gy. Since x�(x) = 1 and y�(y) = 1, we

have x�(g) = �(g)y. Put a = 1
2
(g + �(g)), and b = (g � �(g))=2

p
�, where � 2 F

and E = F (
p
�). Then g = a + b

p
�, xa = ay, xb = by. Consider the polynomial

p(t) = det(a+ tb). Its degree is � n, and its coe�cients lie in F , since �a = a and

�b = b. It is non-zero since p(
p
�) = det g 6= 0. As long as F has more than n

elements, there exists t 2 F with p(t) 6= 0. With this t, the element a + tb lies in

D0, in fact in D since �(a+ tb) = a+ tb, and it conjugates x to y.

A2. Corollary. (1) Given x 2 D0 there exist g; h 2 D with x�1 = g�(x)h. (2) Let

E=F be a quadratic extension of local �elds. Then any irreducible admissible rep-

resentation of D0 admits at most one (up to a scalar multiple) D-invariant linear

form on its space.

Proof. (1) The elements x�1�(x) and �(x)x�1 lie in S, and they are conjugate by

an element in D0 (as x�1�(x) = x�1 � �(x)x�1 � x), hence by an element in D (by

A1(2)), and so Dx�1D = D�(x)D by A1(1). (2) is proven as in [F8], Proposition

11, on taking G0, G there to be our D0, D.

An element 
 of D0 � GL(n; F ), F = an algebraic closure of F containing E,

is called regular if its eigenvalues are distinct (singular otherwise), and elliptic if it

lies in an anisotropic torus of D0. Thus 
 is elliptic regular if and only if it lies in

no proper E-parabolic subgroup of D0. As in [ F2], we make the

De�nition. The element 
 2 D0 is called r-regular, or r-elliptic if 
�(
)�1 is regular,

or elliptic, in D0. The elements 
; 
0 2 D0 are r-conjugate if there are x; y 2 D with


0 = x
y; equivalently, 
�(
)�1 and 
0�(
0)�1 are conjugate by an element of D,

in view of Lemma A1.

Here \r-" is an abbreviation for \relatively-". Note that the centralizer of


�(
)�1 is de�ned over F , since x
�(
)�1x�1 = 
�(
)�1 implies

�(x)(
�(
)�1)�1�(x)�1 = (
�(
)�1)�1:

A3. Corollary. Let fTg denote a set of maximal multiplicative F -subgroups in

D such that T = T(F ) runs through a complete set of representatives for the

D-conjugacy classes of (maximal) F -tori in D. Let T 0 = T(E) be the group of

E-points on T, and T 0;r-reg the set of r-regular elements in T 0. Introduce the

equivalence relation: t0 � t00 in T 0 if there are w = w(t0; t00) in the Weyl group

WD(T ) = ND(T )=ZD(T ) of T in D, and t 2 T , such that wt0w�1 = tt00. Then a

set of representatives for the set of r-conjugacy classes of the r-regular elements of

D0 is given by the union over fTg of the T 0;r-reg= �.

By a common abuse of language, fTg as in A3 will be referred to (e.g. in A4)

as \a set of representatives for the D-conjugacy classes of maximal F -tori in D."
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In view of the analytic homeomorphism x 7! x�(x)�1 from D onto S, we may

alternatively describe the set of conjugacy classes (under D, equivalently, by A1(2),

under D0) in the set Sreg = S \ D0;reg of regular elements in S. This is given by

the union over fTg of T
reg
S =WD(T ), where T

reg
S is the set of regular elements in

TS = T 0 \ S.
Of course, the considerations above apply to any inner form D of G, where E=F

is local or global, and in particular to G itself. Recall that there is an embedding

of the set of D0-conjugacy classes of regular elements 
D in D0, into the set of

G0-conjugacy classes of regular elements 
 in G0. A class 
D is determined by its

characteristic polynomial (over E), and this determines a conjugacy class 
 in G0;

however, not every regular conjugacy class in G0 is so obtained. Via this map we

may embed the set of representatives of conjugacy classes of tori in D0, in the set

of conjugacy classes of tori in G0.

In view of A1(2), we obtain an embedding of S
reg
D =Ad(D), the set of D-conjugacy

classes of regular elements in the set S = SD de�ned by D, in the analogous set

Sreg=Ad(G). By virtue of A1(1) we obtain an embedding of the set DnD0;r-reg=D of

D-double cosets of r-regular elements in D0, into the set GnG0;r-reg=G of G-double-

cosets of r-regular elements in G0. We will say that a double coset DxD corresponds

to the double coset GyG if the image of DxD under this embedding is GyG.

We shall be concerned with orbital integrals on this double coset space. Let

E=F be a quadratic separable extension of local �elds. We signify by ! a character

of E� which is trivial on F�. Denote by HD the convolution algebra (implicit is

a choice of a Haar measure) of complex-valued locally constant functions f on D0

which transform under the center by !�1 and are compactly supported modulo the

center. For any t in D0 denote by Z(t) the set of (x; y) 2 D � D for which there

exists z = z(x; y) 2 Z with xty�1 = zt. If t is r-regular then x; y 2 T = T 0 \ D,
where T 0 is the centralizer of t�(t)�1 in D0. Since H1(Gal(E=F ); T 0) is trivial, we

may assume (on changing x or y) that t lies in T 0, and so that xy�1 = z 2 Z.

De�nition. For f 2 HD and t 2 D0 de�ne the r-orbital integral

�(t; f) = �f (t) =

Z Z
(D�D)=Z(t)

f(xty�1)(dx dy):

Here dx, dy are Haar measures on D, and (dx dy) is the quotient of the product

measure by a Haar measure on Z(t). The choice of dx, dy, and the measure on

Z(t), is implicit in the notation �(t; f). If t and t0 are r-conjugate then Z(t) and

Z(t0) are isomorphic over F and the measures can � and will � be compatibly

chosen.

It is clear that �(t; f) depends only on the double coset DtD of t in D0. Since the

map x 7! x�(x)�1; D0=D ! S, is an analytic isomorphism, properties of �(t; f) can

be deduced from standard properties of usual orbital integrals �(t; �) =
R
�(x�1tx)

on D0=Ad(D0) (by A1(2); S=Ad(D0) = S=Ad(D)). In particular, the integral de�n-

ing �(t; f) is absolutely convergent on D0;r-reg, and its restriction to the r-regular

part T 0;r-reg of T 0, where T is any F -torus in D, is locally constant and transforms

under Z 0 via !�1.
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Conversely, given any r-conjugacy invariant function �(t) on D0, equivalently a

function on the union of T 0 = T(E) with T ranging over fTg, whose restriction

to T 0 vanishes on a neighborhood of the r-singular part of T 0, and which is locally

constant and transforms via !�1 under Z 0, there exists f 2 HD which is zero

in a neighborhood of the r-singular set of D0 with �(t; f) = �(t) on D0. This

characterization of the integrals �(t; f) for f 2 HD which vanish near D0;r-sing can

be extended to a characterization of the �(t; f) for all f 2 HD, but this requires

more e�ort and will not be needed here; see [H3] for a complete characterization

for GL(2). Using our characterization we conclude:

A4. Lemma. Suppose that E=F is local, and D is an inner form of G = GL(n; F ).

Denote by fTDg and fTg a set of representatives for the conjugacy classes of F -

tori in D and G, and write fT (TD)g for the subset of fTg consisting of the tori T

which correspond to tori TD 2 fTDg. Then for any fD 2 HD which is supported

on D0;r-reg, there exists f 2 HG which is supported on G0;r-reg such that �(t; f) =

�(tD; fD) if t corresponds to tD 2 D0;r-reg, and �(t; f) = 0 for all t 2 T 0, where

T 2 fTg� fT (TD)g. Conversely, given f 2 HG which is supported on G0;r-reg with

�(t; f) = 0 on all t 2 T 0 for all T 2 fTg not corresponding to any element of fTDg,
there exists fD 2 HD which is supported on D0;r-reg, with �(tD; fD) = �(t; f) if

tD 2 T 0D corresponds to t 2 T (TD)0;r-reg.

As observed in [JL], at a place v of the ground global �eld which splits in the

quadratic extension, the theory of r-orbital integrals reduces to the theory of usual

orbital integrals. We encounter the following situation. Let F be a local �eld and D

an inner form of G, put E = F �F , D0 = D�D, and f = (f1; f2) 2 HD (thus fi is

a smooth compactly supported modulo Z function on D). Write f
_

2 (x) = f2(x
�1),

and h = f1 � f_2 (thus h(x) =
R
f1(xy)f2(y)dy). Clearly,

�(t; f) =

Z Z
f1(xt1y)f2(xt2y)dx dy

=

Z Z
f1(xt1t

�1
2 x�1y)f2(y)dx dy =

Z
h(xt1t

�1
2 x�1)dx;

and the classi�cation of the �(t; f), with t = (t1; t2), reduces to the classi�cation of

usual orbital integrals on D=Ad(D), at t�(t)�1 = t1t
�1
2 . The latter theory is well

known, and we conclude:

A5. Lemma. Suppose that E = F � F and D0 = D �D as above, fTDg denotes

a set of representatives for the conjugacy classes of F -tori in D, fTg the analogous
set in G, and fT (TD)g the set of T 2 fTg corresponding to the TD 2 fTDg. Then
for each fD 2 HD there is f 2 HG such that �(t; f) = �(tD; fD) if t 2 T (TD)0;r-reg
corresponds to tD 2 T 0D;r-reg, and �(t; f) = 0 if t lies in T 0;r-reg, T 2 fTg�fT (TD)g.
Conversely, given f 2 HG with �(t; f) = 0 for all t 2 T 0;r-reg, T 2 fTg� fT (TD)g,
there exists fD 2 HD with �(tD; fD) = �(t; f) for all tD 2 T 0;r-regD which correspond

to t 2 T 0;r-reg, T = T (TD).

Of course, if fD is zero on a neighborhood of the r-singular set in D0, f can be

chosen to vanish on a neighborhood of the r-singular set in G0, and vice versa.
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De�nition. Functions fD 2 HD and f 2 HG as in A4 and A5, satisfying �(t; f) =

�(tD; fD) for corresponding t 2 G0, tD 2 D0, and �(t; f) = 0 on the t 2 G0 which

do not come from D0, are called r-matching.

B. Simple relative trace formula.

Let E=F be a quadratic separable extension of global �elds, D an inner form of

G = GL(n) over F , and V the �nite set of places where D rami�es. Denote by F1
the product of Fv over the archimedean places v, by A f the ring of �nite adeles,

and by A �f the �nite ideles. At each �nite v, denote by Rv the ring of integers in

Fv and put Kv = G(Rv). When v is real let Kv = O(2;R), when v is complex let

Kv = U(2) and let K denote the product of the Kv over all places v of F . Let E1,

A E;f , A
�
E;f , R

0
v, K

0
v, K

0 denote the corresponding objects with respect to E.

At each �nite v 62 V , the group Dv = D(Fv) is isomorphic to Gv = G(Fv), and

Kv is the standard maximal compact subgroup in Dv ' Gv. A fundamental system

of open neighborhoods of 1 inD(A ) consists of the set of
Q
v2S Lv�

Q
v 62SKv, where

S � V is a �nite set of places of F and Lv is an open subset of Dv containing 1.

We have also �xed a character !0 : A �E =E
�A � ! C � .

Fix a di�erential form of maximal degree on the algebraic group D=Z over F ,

hence a Haar measure dxv onDv=Zv such that the product of the volumes jKv=Kv\
Zvj over almost all v converges, and denote by dx = 
dxv the product measure on
D(A )=Z(A ). Similarly, we obtain a measure dx0 = 
dx0v with analogous properties

on D0(A )=Z0(A ).

At almost all �nite v the component !0v is unrami�ed, and we denote by H0
v

the subalgebra of the convolution algebra Hv = C1c (D0
v; !

�1
v ; dx0v) consisting of

the K 0
v-biinvariant elements. Denote by f

0
v the unit element in H0

v ; it is supported

on Z 0vK
0
v. Let f = 
fv be a product of fv 2 Hv, with fv = f0v for almost all v.

Denote by H the span of such f . For any t = (tv) 2 D(A ) and f = 
fv in H , put

�(t; f) =
Q
v �(tv; fv).

De�nition. The function f is called r-discrete if for every x; y 2 D(A ) and 
 2 D0

we have f(x
y) = 0 unless 
 is r-elliptic regular.

If T is a maximal multiplicative F -subgroup in D, let ND(T ) denote the nor-

malizer of T = T(F ) in D = D(F ) as in A3, and WD(T ) = ND(T )=T the Weyl

group. The cardinality of the Weyl group is denoted by wD(T ).

B1. Proposition. If f is r-discrete, then

Z
DZ(A)nD(A)

Z
DZ(A)nD(A)

[
X


2D0=Z0

f(x�1
y)] dx dy

=
X
fTge

jT(A )=Z(A )T j wD(T )�1
X


2T 0=TZ0

�(
; f):
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On the right, T (more precisely T) ranges over a set of maximal multiplicative

F -tori in D such that T runs through a complete set of representatives for the

conjugacy classes of elliptic F -tori in D. The inner sum ranges over the r-regular


 in T 0=TZ 0. Here T 0 = T(E); Z 0 = Z(E); D0 = D(E).

Proof. The map which associates to g 2 D0(A ) the sequence fa1; : : : ; an = det gg of
coe�cients in the characteristic polynomial

Pn
i=0 aix

n�i of g yields an isomorphism

from the set of semisimple conjugacy classes in D0(A )=Z0(A ) to a subset of the

quotient of A n�1
E � A �E by A �E , where faig � faizig, z 2 A �E . If f(x

�1
y) 6= 0 with


 2 D0 and x; y 2 D(A ), then the image of x�1
�(
)�1x lies in a compact subset

of A n�1
E � A �E=A

�
E , and also in the discrete subset En�1�E�=E�, hence in a �nite

set.

Consequently, only �nitely many r-conjugacy classes (of r-elliptic regular) 


contribute to the sum
P
f(x�1
y) over 
 in D0=Z 0, on the left. Rearranging, as in

[JL], we have

X

2D0=Z0

f(x�1
y) =
X
fTge

X0


2T 0=Z0

X
�2D=T

X
�2N(T )nD

f(x�1�
�y)

=
X
fTge

wD(T )
�1

X0


2T 0=TZ0

X
�2D=T

X
�2ZnD

f(x�1�
�y);

where
P
fTge

indicates a sum � as in the proposition � over the elliptic F -tori T , and

P0

 a sum over the r-regular 
. Integrating this �nite sum over x; y in Z(A )DnD(A ),

we obtain

X
fTge

jT(A )=Z(A )T j wD(T )�1
X0


2T 0=TZ0

Z
D(A)=T(A)

dx

Z
Z(A)nD(A)

f(x
y)dy;

as required.

Remark. We should comment on the convergence of the r-orbital integrals �(
; f).

Each of these is a product of local integrals. If v is a place of F which does not

split in E, the local integral is

�(
; fv) =

Z
Dv=Tv

dx

Z
Dv=Zv

fv(x
y)dy:

As noted in A4, this converges. Indeed, if the integrand is non-zero, then x
y lies

in a compact, and so does x
�(
)�1x�1, hence x is in a compact modulo T 0 (since


�(
)�1 is regular), and so x lies in a compact subset of Dv=Tv. But for such

x the function y 7! fv(x
y) is compactly supported on Dv=Zv, and the integral

converges.

At almost all such v the function fv is f0v , the quotient by jKvZv=Zvj of the
characteristic function of K 0

vZ
0
v=Z

0
v, Ev=Fv is unrami�ed, !0v = 1, Dv = Gv, and


 2 K 0
vZ

0
v. If fv(x
y) 6= 0 then x
y 2 K 0

vZ
0
v, and so is x
�(
)�1x�1. Since
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�(
)�1 is regular in K 0
vZ

0
v, x lies in T 0vK

0
v \ Dv; and this intersection is TvKv

since Ev=Fv is unrami�ed. Then we may take x in KvZv, and conclude that y is

in KvZv. Hence the integral is equal to the volume jKvZv=Zvj=j(KvZv \ Tv)=Zvj
for almost all v where Ev is a �eld.

If v is a place of F which splits into v0 and v00 in E, then 
 = (
0; 
00) in

D0
v = Dv �Dv, and the r-orbital integral

�(
; fv) =

Z
Dv=Tv

dx

Z
Dv=Zv

fv0(x

0y)fv00(x


00y)dx dy

is equal, as noted in A5, to the usual orbital integral

�(�; hv) =

Z
Dv=Tv

hv(x�x
�1)dx

of hv = fv0 � f_v00 at � = 
�(
)�1 = 
0�(
00)�1 (we embed Dv diagonally in D0
v).

The convergence follows, and it is easy to see that at almost all such v the integral

is equal again to jKvZv=Zvj=j(KvZv \ Tv)=Zvj. We obtain the convergence of each

of the global integrals �(
; f) in B1.

To produce discrete functions f , we introduce the local analogue.

De�nition. The function fv 2 Hv is called r-discrete if for every x; y 2 Dv and


 2 D0
v we have fv(x
y) = 0 unless 
 is r-elliptic regular.

Note that when v is split in E, if fv = (fv0; fv00) is r-discrete then hv = fv0 �f_v00 is
supported on the elliptic regular set in Dv. The converse is also true, for example,

when fv00 is supported in ZvK
0
v, where K

0
v is a small compact open subgroup of Gv

and fv0 is K
0
v-biinvariant.

It is clear that f = 
fv is r-discrete if it has an r-discrete component; an element
� 2 D0 is elliptic (resp. regular) if it is elliptic (resp. regular) in D0

v for some v.

Let L(D0) = L!0(D
0nD0(A )) denote the space of automorphic forms on D0(A );

these are smooth functions on D0nD0(A ) which transform on Z0(A ) according to !0

and are absolutely square-integrable on Z0(A )D0nD0(A ). Recall that the function

� 2 L(D0) is called cuspidal if for each proper parabolic subgroup P0 of D0 over

E with unipotent radical N0 we have
R
N 0nN0(A)

�(ng)dn = 0 for every g 2 D0(A ).

The space of cuspidal functions in L(D0) is denoted by L0(D
0) = L0;!0(D

0nD0(A )).

Note that G0 is the special case of D0 with empty set V , hence the de�nition of

L0(G
0) is a special case of that of L0(D

0).

Denote by r the right representation on L(D0), by r0 its restriction to L0(D
0),

by r(f) the convolution operator on L(D0), and by r0(f) its restriction to L0(D
0).

The space L0(D
0) decomposes as a direct sum of irreducible, automorphic cuspidal

representations of D0(A ). Note that the multiplicity one and rigidity theorems for

D0 follow from those for G0 via the Deligne-Kazhdan correspondence (see [ F3], p.

170).
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De�nition. (1) The function f is called cuspidal if for every x; y in D0(A ) and

every proper E-parabolic subgroup P0 of D, we have
R
N
0(A)

f(xny)dn = 0, where

N0 is the unipotent radical of P0. (2) The function fv in Hv is called supercuspidal

if for every x; y in D0
v and every proper Ev-parabolic subgroup P 0v of D0

v, whose

unipotent radical is denoted by N 0
v, we have

R
N 0v
fv(xny)dn = 0. Here v is a place

of E. If v is a place of F which splits in E then we say that fv = (fv0 ; fv00) is

supercuspidal if fv0 or fv00 is.

It is easy to see that f is cuspidal if it has a supercuspidal component.

The convolution operator r(f) =
R
D0(A)=Z0(A)

f(g)r(g)dg on L(D0) is an inte-

gral operator with kernel Kf (x; y) =
P


2D0=Z0
f(x�1
y). Let f�g = f��g be an

orthonormal basis for the space � � L0(D
0). Then r0(f) is an integral operator

on D0(A ) with kernel K0
f (x; y) =

P
�

P
�

(r(f)�)(x)�(y). When f is cuspidal, r(f)

factors through the projection on L0(D
0), and K0

f (x; y) = Kf (x; y). Integrating

this over x; y in Z(A )DnD(A ) we obtain:

B2. Proposition. If f is r-discrete and cuspidal, then

X
��L0(D0)

X
�

Z
Z(A)DnD(A)

(r(f)�)(x)dx �
Z

Z(A)DnD(A)

�(y)dy

=
X
fTge

jT(A )=Z(A )T j wD(T )�1
X0


2T 0=TZ0

�(
; f):

The sum on the right is as in B1. We proceed to rewrite the left side.

By A2(2), there is at most one (up to a scalar multiple) non-zero Dv-invariant

linear form L�v on the space V of an irreducible admissible representation �v of D
0
v.

Let us assume that �v is Dv-distinguished, so that such a form L�v exists. Then

the contragredient (~�v; eV ) is also Dv-distinguished. This follows, for example, from
the result of Gelfand-Kazhdan ([GK], see also [BZ]) that ~�v is equivalent to the

representation g 7! �v(
tg�1) on V ; cf. proof of Proposition 11 in [F8].

Choose a non-zero Dv-invariant linear form L~�v in the space
eV � dual to eV . Since

�v(fv) is an operator of �nite rank, �v(fv)L~�v lies in the space
eeV contragredient

to eV . But eeV = V , and so we can de�ne the linear form L�v (fv) = L�v(�v(fv)L~�v)

on the convolution algebra Hv of the fv. The linear form L�v is Dv-biinvariant,

that is, if x; y 2 Dv and xfyv (g) = fv(xgy) then L�v (
xfyv ) = L�v (fv). It depends

on �v only up to equivalence, and if �1v; : : : ; �mv are pairwise inequivalent then

the forms L�1v ; : : : ; L�mv
on Hv are linearly independent. We normalize L�v for an

unrami�ed �v by the requirement that L�v (f
0
v ) = 1, where f0v is the unit element

in the Hecke algebra H0
v of spherical functions.

When v is a place of F which splits in E, �v is Dv-distinguished precisely when

it is of the form (� 
 ~�; V 
 eV ) where (�; V ) is a representation of Dv. Let fujg
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denote a basis of V and f~ujg the dual basis for eV . The canonical pairing h�; �i on
V 
 eV ! C de�nes a Dv-invariant form on V 
 eV , if Dv is identi�ed with the

diagonal of Dv �Dv.

The contragredient of �
 ~� is ~�
 � and the pairing between the corresponding

spaces V 
 eV and eV 
 V is given by

hv 
 ~v; ~w 
 wi = hv; ~wihw; ~vi:

We de�ne our invariant forms L�v and L~�v by L�v(v 
 ~v) = hv; ~vi = L~�v(~v 
 v).

These linear forms can be regarded as generalized vectors in the dual spaces. For

example, L�v can be identi�ed with the formal sum
P
i ~ui
ui, and L~�v =

P
i ui
~ui.

We now compute

L�v ((f1; f2)) = L�v(�v(f1; f2)L~�v) = h
X
i

�(f1)ui 
 ~�(f2)~ui;
X
j

~uj 
 uji

=
X
i;j

h�(f1)ui; ~ujihuj ; ~�(f2)~uii =
X
i

h�(f1)ui; ~�(f2)~uii

=
X
i

h�(f_2 � f1)ui; ~uii = tr �(f
_

2 � f1):

Given a cuspidal representation � = 
�v of D0(A ) such that each of its compo-

nents is Dv-distinguished, we can de�ne the form L� = 
vL�v on 
vHv. For each

f = 
fv, we have fv = f0v for almost all v, and so L�v (fv) = 1 for almost all v, and

L� (f) is de�ned. Consequently � is abstractly distinguished; in particular, L� is a

non-zero D(A )-invariant form on its space. For all other �, we put L� � 0. Note

that the de�nition of L� on D0 includes that of L� for � on G0(A ), since G0 is the

special case of D0 with empty set V .

If the cuspidal � = 
�v is distinguished, then the formA�(�) =
R
Z(A)DnD(A)

�(g)dg

is a non-zero D(A )-invariant form on �. Its restriction to �v is non-zero, implying

that each component of � is Dv-distinguished. If f�g is an orthonormal basis of

the cuspidal �, then f�g is a dual basis of the contragredient ~�. The bar denotes

complex conjugation. It is easy to check that the distribution

A � (f) =
X
�

Z
Z(A)DnD(A)

(�(f)�)(x)dx �
Z
Z(A)DnD(A)

�(y)dy

is bi-D(A )-invariant. It is independent of the choice of the basis f�g, which can

and from now on will be chosen to consist of smooth vectors. Since the operators

f�v(fv); fv 2 Hvg span the space of endomorphisms of an irreducible admissible �v,
the operators f�(f); f 2 H g span the space of endomorphisms of the subspace of

smooth vectors in the irreducible representation �. Hence there is f with A � (f) 6= 0

if � is D(A )-distinguished. Conversely, if A � (f) 6= 0 then A�(�) 6= 0 for some �.

The local uniqueness result of A2(2) implies:
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B3. Lemma. For any irreducible automorphic cuspidal representation � of D0(A )

which is D(A )-distinguished, there exists a constant c(�) 6= 0 such that A � =

c(�)L� .

When � is not distinguished, take c(�) = 0. We refer to the following as the

simple relative trace formula for D0(A )=D(A ):

B4. Proposition. If f is r-discrete and cuspidal, then

X
��L0(D0)

c(�)L� (f) =
X
fTge

jT(A )=TZ(A )j wD(T )�1
X0


2T 0=TZ0

�(
; f):

This is of course valid for any inner form D of G, including G itself. Recall

that the set fTDge of conjugacy classes of (elliptic) F -tori TD in D is identi�ed

as (a subset fT (TD)ge of) the corresponding set fTge of G, and the analogous

identi�cation can be made locally too. The functions f = 
fv 2 H and fD =


fDv 2 H D are r-matching if �(
; fv) = �(
D; fDv ) for all corresponding r-regular


D 2 T 0D;v and 
 2 T 0v, Tv = T (TD;v), and �(
; fv) = 0 on any r-regular 
 2 T 0v if
T 2 fTg � fT (TD)g.

Let V be the set of F -places where D rami�es. At v 62 V we have Dv ' Gv, and

we take fDv to be fv, via this isomorphism. Let V
00 be the set of v 2 V which split

in E, and V 0 the set of v 2 V which stay prime in E. At each such v 2 V 00, for each
fDv = (fD1 ; f

D
2 ) there exists an r-matching fv = (f1; f2), thus h

D = fD2
_ � fD1 and

h = f
_

2 � f1 have matching orbital integrals �(hD) = �(h); and for each fv with

�(
; h) = 0 on the regular 
 not obtained from D, there exists an r-matching fDv ,

as noted in A5. We conclude:

B5. Proposition. If fD and f are r-matching, r-discrete and cuspidal, thenX
�D�L0(D0)

c(�D)L�D (f
D) =

X
��L0(G0)

c(�)L� (f):

Suppose that v is �nite, D splits at v and �v is unrami�ed, namely there is a

(unique up to scalar multiples) Kv-�xed non-zero vector in the space of �v. Then

for every w in the space of �v and fv 2 H0
v , the vector �v(fv)w is zero unless

w is Kv-�xed, in which case the multiple f_v (t(�v))w of w is obtained. Here f_v
denotes the Satake transform of the spherical function fv; it is a polynomial in

z1; z
�1
1 ; : : : ; zn; z

�1
n , invariant under the action of the symmetric group Sn. We put

t(�v) = (z1; : : : ; zn) where zi are the Hecke eigenvalues of the unrami�ed �v. Hence

for unrami�ed �v and spherical fv 2 H0
v we have

L�v (fv) = L�v (�v(fv)L~�v) = f_v (t(�v))L�v(�v(f
0
v )L~�v) = f_v (t(�v));

since L�v takes the value 1 at the unit element f0v in H0
v , by our normalization.

Let S � V = V 0 [ V 00 be a �nite set of places containing those which ramify in

E=F or are archimedean. Fix an irreducible, unrami�ed Gv-distinguished repre-

sentation �v of G
0
v at each v 62 S. There exists at most one cuspidal representation
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� of G0(A ) with �v ' �v for all v 62 S. We put �(�) = 1 if � exists and �(�) = 0

if not. By the Deligne-Kazhdan correspondence ([ F3], p. 170) this rigidity and

multiplicity-one theorem applies also to D0, and so there exists at most one cuspidal

representation �D of D0(A ) with �Dv ' �v(v 62 S); we put �(�D) = 1 if �D exists,

�(�D) = 0 otherwise. A well-known argument of \generalized linear independence

of characters" (see [ FK2], Theorem 2) implies:

B6. Proposition. If fDS = 

v2S

fDv and fS = 

v2S

fv are r-matching and have

r-discrete and supercuspidal components at two distinct F -places in S, then for any

f�v; v 62 Sg we have

�(�D)c(�D)
Y
v2S

L�Dv (f
D
v ) = �(�)c(�)

Y
v2S

L�v (fv):

At v 2 S � V , we have �Dv ' �v and fDv = fv via Dv ' Gv. If c(�) or

c(�D) 6= 0 then �v is distinguished, there is some fv with L�v (fv) 6= 0, and the

place v 62 S can be deleted from the products on both sides of the identity of B6.

At the places v 2 V 00 which split in E=F and D is rami�ed, if �Dv = �D1v 
 �D2v
and �v = �1v 
 �2v are distinguished then �D2v ' ~�D1v and �2v ' ~�1v, L�Dv (f

D
v ) =

tr �D1v(h
D
v ) and L�v (fv) = tr �1v(hv), �

D
1v corresponds to �1v (since �

D corresponds

to �), and since hDv and hv have matching orbital integrals (by assumption), we

have tr �D1v(h
D
v ) = tr �1v(hv), and again v can be deleted from the products of B6.

At two places v 2 S � V 0 we need to use special test functions fv. At one such

place we need to use a supercuspidal function, at another, an r-discrete function. A

matrix coe�cient fv of a supercuspidal representation is a supercuspidal function.

At a place v which splits E=F , we may choose hv to be a normalized coe�cient

of the supercuspidal representation �01v of Gv, and then L�v (fv) is tr �1v(hv) if

�v = �1v 
 ~�1v (it is 0 otherwise), and this is 1 if �1v ' �01v and 0 otherwise.

Since �01v is supercuspidal, if v 2 V 00 it corresponds to a supercuspidal �
0D
1v , and

any normalized coe�cient hDv of �
0D
1v matches hv, and satis�es L�Dv (f

D
v ) = 1 if

�Dv ' �
0D
1v 
 ~�

0D
1v , and = 0 otherwise.

Consider once more a v which splits and �v with L�v (fv) = tr �1v(hv). The

character of any admissible �1v is locally constant on the regular set in Gv, and

if �1v is square-integrable its character is non-zero on the elliptic regular set (by

the orthogonality relations for such characters). Hence there is a discrete hv with

tr �1v(hv) 6= 0. Such a square-integrable �1v corresponds to a square-integrable �
D
1v

if v 2 V 00, and tr �D1v(hDv ) 6= 0 for a matching discrete hDv .

Suppose then that v stays prime in E=F , and �Dv is Dv-distinguished, where Dv
is an inner form of Gv. Since L~�Dv

=
P
f�g

L~�Dv
(~�)�, the bilinear form L�Dv is given

by

L�Dv (f
D
v ) =

X
f�g

L�Dv (�
D
v (f

D
v )�)L~�Dv

(~�);

where f�g is a basis of the space of �Dv , and f~�g is the dual basis in the contragre-

dient ~�Dv . If �
D
v is Dv-distinguished, clearly so is ~�

D
v , and there are �0 and ~�00 with
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L�Dv (�
0) 6= 0 and L~�Dv

(~�00) 6= 0. If �Dv is also supercuspidal, choosing fDv to be the

coe�cient fDv (g) = d(�Dv )(�
D
v (g)�

0; ~�00) where d(�Dv ) is the formal degree of �
D
v , by

the Schur orthogonality relations

Z
D0v=Z

0
v

d(�Dv )(�
D
v (g)�1;

~�2)(�
D
v (g)�3;

~�4)dg = (�1; ~�4)(�2; ~�3)

we obtain that �Dv (f
D
v )�

00 = �0 and L�Dv (f
D
v ) = L�DV

(�0)L~�Dv
(~�00) 6= 0, while

L�Dv (f
D
v ) = 0 for all �Dv 6' �Dv .

It is clear that both sides of the identity of B6 vanish unless �D corresponds to

�. We conclude:

B7. Proposition. Suppose that �D and � are corresponding cuspidal representa-

tions which have supercuspidal components at a place v1 62 V 0, and square-integrable
components at a place v2 6= v1 which splits in E. Suppose that �Dv is Dv-distin-

guished and �v is Gv-distinguished for all v 62 V 0. Then for any r-matching fDv
and fv (v 2 V 0) we have

c(�D)
Y
v2V 0

L�Dv (f
D
v ) = c(�)

Y
v2V 0

L�v (fv):

Since the distribution L = L�Dv is right Dv-invariant, L(f) depends only on

#(g�(g)�1) =
R
Dv=Zv

f(gx)dx. As the left invariance implies the analogous prop-

erty, it follows that L(f) depends on f only through its r-orbital integral �(f). In

particular, there is an Ad(Dv)-invariant distribution � on SD such that L(f) =

�(#). Howe [Ho] studied the analytic properties of Ad(Dv)-invariant admissible

distributions on Dv, in the case where Dv = GL(n; Fv). As is shown in part D, his

techniques can be modi�ed to apply also in our case, to yield the smoothness part

of

B8. Proposition. The Dv-biinvariant distribution L�Dv can be represented by a

Dv-biinvariant function on D0
v which is locally constant and not identically zero on

the r-regular set in D0
v.

This function will be called the r-character of �Dv , and denoted by ��Dv (
) =

�(
; �Dv ). It is common to refer to the distribution L�Dv represented by the function

��Dv also as the r-character of �Dv . The archimedean analogue of B8 is proven in

Sano [Sa], who showed that a generalized spherical function onG(C )=G(R) is locally

integrable on G(C )=G(R) and is analytic on the regular set of G(C )=G(R).

Proposition B8 is proven in [H1], pp. 56-61 (III, x1), when Dv = GL(2; Ev), and

the central character is trivial; see also [H3]. The case where Dv is anisotropic is

trivial. As noted above we delay the proof of B8 to part D. Harish-Chandra showed

in [HC2] that the character of an admissible irreducible representation of any p-

adic reductive group is locally constant on the regular set. His proof shows that

the restriction of L�Dv to the space of functions fKv (g) =
R
Kv

fv(kgk
�1)dk(fv 2 Hv)
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is locally constant. His techniques may apply to show the smoothness for any

H-biinvariant distribution on a p-adic reductive group G, where H is the group

of points of G �xed by an involution (the case of usual characters is that where

G = H �H, and H embeds diagonally in G, and the involution is (x; y) 7! (y; x)).

In [HC1] Harish-Chandra proved the local integrability of the character in charac-

teristic zero for any reductive connected p-adic group. The analogous result is valid

in the case considered in this paper (see [H4]), but it is known to fail for many other

general symmetric spaces G=H. The local integrability shows in our case that the

r-character is not identically zero on the r-regular set of G.

B9. Proposition. Suppose that �D and � are corresponding cuspidal representa-

tions which have supercuspidal components at a place v1 62 V 0, and discrete-series

components at a place v2 6= v1 which splits in E. If �D is D(A )-distinguished then

� is G(A )-distinguished. If � is G(A )-distinguished, and for each v 2 V 0 the r-

character ��v is not identically zero on the set of r-regular g 2 G0v which correspond
to elements of D0

v, then �
D is D(A )-distinguished.

Proof. If �D is D(A )-distinguished, each �Dv is Dv-distinguished and we may use

B7. At each v 2 V 0 we choose fDv which is supported on the r-regular set in

D0
v, with L�Dv (f

D
v ) 6= 0. Such fDv exists by B8. Each such fDv has an r-matching

function fv on the r-regular set in G0v. We shall use the identity of B7 with such

functions. Since the left side is non-zero, so is the right side. In particular c(�) 6= 0

and � is G(A )-distinguished.

In the opposite direction, if � isG(A )-distinguished, each �v is Gv-distinguished.

By assumption on �v for v 2 V 0, there exists, for each v 2 V 0, a function fv 2 Hv

supported on the set of r-regular elements of G0v which correspond to elements of

D0
v, with L�v (fv) 6= 0. For such fv, there exists an r-matching function f

D
v on the

r-regular set in D0
v, by A4. Consequently we may use the identity of B7 with this

choice of local r-matching functions. Since the right side is non-zero, so is the left

side. Hence c(�D) 6= 0, and �D is D(A )-distinguished, as required.

De�nition. An admissible irreducible Dv-distinguished representation �Dv of D0
v

is called r-discrete-series if its r-character is not identically zero on the r-regular

elliptic set in D0
v.

The condition at v2 in B9 can be relaxed.

B10. Proposition. Suppose that �D and � are corresponding cuspidal representa-

tions which have supercuspidal components at a place v1 62 V 0 (it su�ces to require

that �v1 be supercuspidal, for then �Dv1 is such too). If �D is D(A )-distinguished

and �Dv2 is r-discrete-series at v2 6= v1, then � is G(A )-distinguished (and �v2 is

r-discrete-series). If � is G(A )-distinguished, �v2 is r-discrete-series at v2 6= v1,

and for each v 2 V 0 the r-character of �v is not identically zero on the set of r-

regular g 2 G0v which come from D0
v, then �D is D(A )-distinguished (and �Dv2 is

r-discrete-series).
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Proof. If v2 splits in E=F , �v2 = �1v2 
 ~�1v2 is r-discrete-series means that �1v2 is

discrete-series, and B10 reduces to B9. If v2 stays prime we may choose r-discrete

r-matching fv2 and f
D
v2
, and then apply B7 as in the proof of B9.

B11. Corollary. If �v and �
D
v are components of � and �D, where � or �D satisfy

the assumptions of B9 or B10, then there exists a non-zero constant c(�v; �
D
v ) such

that L�v (fv) = c(�v; �
D
v )L�Dv (f

D
v ) for all r-matching functions fv and fDv .

Proof. If � satis�es the assumption of B9 or B10, then for each v0 6= v in V 0 there

is fv0 with L�v0 (fv0) 6= 0. Similar conclusion is obtained if �D satis�es B9 or B10.

The constant c(�v; �
D
v ) is obtained on �xing fv0 and the matching f

D
v0 (for all v

0 6= v

in V 0) in the identity displayed in Proposition B7.

The conclusion here can be restated as asserting that ��v(
) = c(�v; �
D
v )��Dv (


D)

for all pairs (
; 
D) of corresponding elements in Gv, Dv. This follows from A4,

B8, and the relative Weyl integration formula

Z
D0v=Z

0
v

fDv (g)dg =
X
fTvg

jTv=Zvjw�1
TDv

Z
T 0v=TvZ

0
v

�v(t)
2�(t; fDv )dt:

The sum ranges over the set of conjugacy classes of Fv-tori in Dv, and fv is a

function on D0
v=Z

0
v. This relative formula can be reduced to the standard formula

via the isomorphism D0
v=Dv ! SDv

of A1.

B12. Proposition. If fv 2 Hv is a supercusp form and t is r-regular, then �(t; fv)

is zero unless t is r-elliptic.

Proof. Write D0
v = GL(m;A0) and Dv = GL(m;A), where A is a division algebra

central over Fv, and A
0 = A 
Fv Ev. We may assume that t lies in the standard

Levi subgroup M 0
v of a maximal parabolic P 0v = M 0

vU
0
v in D0

v, and its centralizer

is a torus T 0v = T (Ev) � M 0
v, where Tv = T (Fv) is an Fv-torus. By virtue of the

Iwasawa decomposition, the integral

�(t; fv) =

Z
Dv=Tv

dx

Z
Dv=Zv

fv(xty)dy

factorizes through the integral

Z
Uv

Z
Uv

fv(xutu
0y)dudu0:(�)

If P 0v is of type (a; b)(a + b = m), then u =

�
I u

0 I

�
;u0 =

�
I u0

0 I

�
and t =�

t1 0

0 t2

�
accordingly, and we need to show that when u; u0 range over all a � b

matrices over A, u0+t�1
1 ut2 ranges over all a�bmatrices over A0. It su�ces to show
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that the map u 7! t�1
1 ut2� t�1

1 ut2 is injective, and for this we may let u range over

M(a� b; A0) (we can also work with the tensor product of A0 with a splitting �eld).
Since t1; t2 are invertible, we may consider the map u 7! u � t

�1
1 t1 � u � (t�1

2 t2)
�1

instead, and may assume that t
�1
1 t1 and t

�1
2 t2 are diagonal. Since �(t)�1t = t

�1
t

is regular in Dv, this vector spaces homomorphism is an isomorphism, and we

conclude that

(�) =
Z
U 0v

fv(xtuy)du:

But this is zero since fv is supercuspidal.

B13. Corollary. Let �Dv be a Dv-distinguished supercuspidal representation of

D0
v. Then there exists an fDv 2 HD

v with L�Dv (f
D
v ) 6= 0 and L�Dv (f

D
v ) = 0 for all

�Dv 6' �Dv . Moreover, �(t; fDv ) is not identically zero on the r-regular elliptic set of

D0
v.

Proof. The �rst claim is proven in the paragraph prior to B7: we choose fDv to be

a matrix coe�cient of �Dv . Then f
D
v is a supercusp form, and by B12 the r-orbital

integral �(t; fDv ) vanishes outside the r-elliptic set. Since L�Dv (f
D
v ) 6= 0, we have

that �(t; fDv ) is not identically zero on the r-elliptic regular set.

Next we show that local distinguished supercuspidal representations embed as

components of global cuspidal distinguished representations.

B14. Proposition. Given a Du-distinguished supercuspidal representation �0Du
of D0

u, places v1; : : : ; vm (6= u) which split in E and Dvi-distinguished supercuspidal

representations of D0
vi
, there exists a D(A )-distinguished cuspidal representation

�D of D0(A ) whose components at u; v1; : : : ; vm are the given ones.

Proof. We use the r-trace formula of B4, with a test function fD = 
fDv con-

structed as follows. At u we take fDu to be a function associated to �Du as in B13.

At vi we take f
D
vi
such that hDvi is a coe�cient of the given supercuspidals. Let 
0 be

an r-regular elliptic element in D0 with �(
0; f
D
v ) 6= 0 for v = u; v1; : : : ; vm; it exists

since D0 is dense in
Q

v=u;vi

D0
v, and �(x; fDv ) are locally constant on the r-regular

set. We choose fDv (v 6= u; vi) to be almost all f
0;D
v , and to satisfy �(
0; f

D
v ) 6= 0 for

all v. Moreover, at some v0 we require that f
D
v0

be supported on the r-regular set.

As noted in the proof of B1, �(
; fD) 6= 0 only for �nitely many (r-regular elliptic)

r-conjugacy classes in D0, including that of 
0.

We can now replace one of the components fDv (v 6= u; vi) by its product with the

characteristic function of a small neighborhood (modulo center) of the Dv-double

coset of 
0 in D0
v. The new fD will have the property that �(
0; f

D) 6= 0, while

�(
; fD) = 0 for any 
 2 D0 not in the class of 
0. For such fD the sum on the

right of B4 reduces to the single term jT(A )=TZ(A )jw(T )�1�(
0; f
D) 6= 0, where

T is the centralizer of 
0�(
0)
�1.

Consequently the sum on the left of B4 is non zero, and there is a cuspidal

�D � L0(D
0) with c(�D) 6= 0 (i.e. �D is D(A )-distinguished) and L�Dv (f

D
v ) 6= 0 for
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all v. At v = vi, L�Dv (f
D
v ) = tr �D1v(h

D
v ), where �

D
v = �D1v 
 ~�D1v. This is non-zero

only when �D1v is the supercuspidal whose coe�cient is the chosen hDv . At v = u,

B13 implies that �Du = �0Du , as required.

B15. Proposition. Suppose that �Dv and �v are corresponding representations

of D0
v and G0v. If �Dv is Dv-distinguished and supercuspidal, then �v is Gv-dis-

tinguished. If �v is Gv-distinguished and supercuspidal, then �Dv is distinguished.

In this case we have ��v (
) = c(�v; �
D
v )��Dv (


D) for all pairs of corresponding

elements 
 2 G0v and 
D 2 D0
v.

Proof. This follows from B14 and B11 (only B9, and not B10, is needed to apply

B11 here).

When Dv is anisotropic (= multiplicative group of a division algebra), each

representation �Dv of Dv is supercuspidal, and it is clear that the r-character �(�
D
v )

is locally constant (i.e. B8 is trivially valid). We record this special case of B15

separately as

B16. Corollary. If Dv is anisotropic and �Dv is Dv-distinguished, then �v is

Gv-distinguished.

In the next Proposition we discuss distinguishability with respect toG = GL(2; F ),

where E=F is a quadratic extension of local �elds. Note that by [F8], Proposi-

tion 12, the non-supercuspidal in�nite dimensional distinguished representations of

GL(2; E) are of the form I(�; ��1), where �(x) = �(x), or of the form I(�1; �2),

with �ijNE� = 1, and �1 6= �2, or they are the \special" square-integrable sub-

representation sp(�) of I(��1=2; ���1=2), where � is a character of E�=NE�.

B17. Proposition. (a) The representation Is = I(��s; ��1��s) of GL(2; E) is

distinguished (s 2 C ). (b) The representation I(�1; �2), �1 6= �2, is distinguished

precisely when �ijF� = 1. (c) The representation sp(�) is distinguished precisely

when �jF� 6= 1, but �jNE� = 1.

Proof. (a) Recall that Is consists of all smooth functions ' : GL(2; E)! C satis-

fying

'

��
a �
0 b

�
g

�
= �(a=b)ja=bj1=2+sE '(g) (a; b 2 E�; g 2 GL(2; E)):

We shall construct a GL(2; F ) invariant functional Ls on Is as follows:

Ls(') =

Z
TnG

'

��
a b

b a

��
dg:

We integrate here over the group G = f
�
a b

b a

�
; a; b 2 E; aa � bb 6= 0g, which

is isomorphic to GL(2; F ) (by conjugation in GL(2; E)), hence Ls is GL(2; F )-

invariant, and T = f
�
a 0

0 a

�
; a 2 E�g. We shall show that Ls(') converges for
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all s 2 C with <(s) > 0 (not <(s) � 0 as misprinted in [F8], p. 162, `. {7),

to a rational function in q�s, where q is the cardinality of the residue �eld of the

ring R of integers in F . For � such that a singularity occurs for some s we de�ne

the GL(2; F )-invariant form to be the value at such s of the product of Ls with a

suitable linear function in q�2s (or q�s).

In determining the convergence of the integral and the form of the singularity, a

certain in�nite sum dominates the answer. It is clear that the case of a general �

di�ers only notationally from the case of � = 1, so we deal with the case of � = 1

alone. For simplicity we consider only the case where E=F is unrami�ed. Then

qE , the residual cardinality of E, is q
2. Further it su�ces to consider only the unit

vector '0 in Is, whose value on the standard maximal compact KE = GL(2; RE)

of GL(2; E) is 1; the computation of Ls(') for other ' is similar.

To compute our integral note the measure relation

d

�
a b

b a

�
=

da db

jaa� bbj2F
:

Then

Z
TnG

'0

��
a b

b a

��
dg = 2q�2 +

Z
jbj=1

'0

��
1 b

b 1

��
j1� bbj�2

F db;

since

�
a b

b a

�
2 KE for jaj = 1, jbj < 1, or jaj < 1, jbj = 1, and

R
jbj<1

db = q�1
E =

q�2. This equals

= 2q�2 +

Z
jbj=1

j1� bbj2s�1
F db;

since �
1 b

b 1

�
=

�
1 1=b

0 1

��
(1� bb)=b 0

0 b

��
0 �1
1 0

��
1 1=b

0 1

�
;

and

'0

��
(1� bb)=b 0

0 b

��
= j1� bbjs+

1

2

E = j1� bbj2s+1; if jbj = 1:

Lemma. We have
R
j1�bbj�q�m

db = q�m(1 + q�1) for m � 1.

Proof of lemma. Write b = "(1 + �mb1) with b1 2 RE and " 2 R�E=(1 + �mRE),

"" = 1; here � is a generator of the maximal ideal in the local ring R (and RE).

Then db = q�mE db1, and our integral is equal to

q�2m �#f" 2 R�E=(1 + �mRE); "" = 1g
= q�2m �#fR�E=(1 + �mRE)g=#fR�F =(1 + �mRF )g:



22

The last equality follows from Hilbert Theorem 90, asserting that " 2 E� with

"" = 1 is of the form " = z=z, where z 2 E� is uniquely determined modulo F�.

This is

= q�2m (1� q�1
E )=q�mE

(1� q�1)=q�m
= q�m(1 + q�1):

as asserted.

Returning to the proof of the proposition we conclude that

Ls('0) = 2q�s +

1X
m=0

q�m(2s�1)

Z
jbj=1

j1�bbjF=q�n

db

= 2q�s + [(1� q�2)� q�1(1 + q�1)] +

1X
m=1

(1 + q�1)(q�m � q�m�1)q�m(2s�1)

= 2q�s + 1� q�1 � 2q�2 + (1� q�2)q�2s(1� q�2s)�1 = (1� q�1)
1 + q�2s�1

1� q�2s
:

Note also that the volume of TnTK, where K consists of the

�
a b

b a

�
with jaj � 1,

jbj � 1, jaa� bbj = 1, is clearly 2q�2+1� q�2� q�1 � q�2 = 1� q�1. Normalizing

the measure dg on TnG to assign the volume 1 to TnTK, we conclude that

Ls('0) =
L(2s)

L(�; 2s+ 1)
:

Here � is the quadratic character of F�=NE�, and L(s) = (1� q�s)�1, L(�; s) =

(1 � �(�)q�s)�1 = (1 + q�s)�1. In conclusion the G-invariant form L(2s)�1Ls is

non-zero for all s 2 C , and has no poles there. It is de�ned by a convergent integral

on <(s) > 0, and by analytic continuation for the complementary half s-plane. This

completes the proof of the proposition when � factorizes through �(b) = jbj and
E=F is unrami�ed. The rami�ed � and E=F are similarly handled.

(b) Recall that the representation I(�1�
s; �2�

�s) of H 0 = GL(2; E) consists of

all smooth functions ' : H 0 ! C satisfying '(ph) = �1(a)�2(b)�B0(p)
1=2+s'(h)

(p =

�
a c

0 b

�
2 B0; h 2 H 0): We assume as we may that s is real and �i are

unitary. By [F8], p. 156, `: 2, we have that H 0 is the disjoint union of B0H and

B0�1H (where H = GL(2; F ), and �1 is �
�1 of [F8]). Hence any H-invariant linear

form on any subspace of Is must be a linear combination of the forms `0 and `1.

Here `0 factorizes through the average of ' on H, namely through the integral of

'(g)dg on BnH. Since '(ph) = �1(a)�2(b)�B(p)
1+2s'(h) (p 2 B; h 2 H), and dg =

�B(p)
�1dpdk, the form '(g)dg = �1(a)�2(b)�B(p)

2s'(h)dpdk is left B-invariant

only when s = 0 and �ijF� = 1. The form `1 factorizes through the average of

' on G = �1H�
�1
1 of (a) above, and since G intersects B0 in T = fdiag(a; a),

a 2 F�g, and '(diag(a; a)h) = �1(a)�2(a)'(h), `1 is 0 unless �1�2 = 1, namely

�1 = �2. This completes the proof of (b), and we proceed to prove (c), assuming

now that the �i are equal, say to �. So again, `1 is 0 unless �jNE� = 1.
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(c) We conclude from the previous paragraph that when s > 0, and �jNE� = 1,

the only H-invariant form on Is, and on any subspace thereof, is the form `1, which

is the same as Ls of the proof of (a). Now the H 0-module Is (s > 0) is irreducible

except when s = 1=2, when its composition series has length two, with quotient

g 7! �(g), and a sub de�ned by
R
B0nH0

�(h0)�1'(h0)dh0 = 0: Since the coset BnH
has measure zero (with respect to dh0) in B0nH 0, this last integral is equal to

(�(�1)
�1 times)

R
TnG

�(g)�1'(g�1)dg. This integral is a multiple of Ls(') when

�jF� = 1. Hence there is no non-zero H-invariant form on sp(�) when �jF� = 1

(there is such a non-zero form when �jNE� = 1, �jF� 6= 1, by [F8], Proposition

8). This completes the proof of Proposition B17.

Remark. The �rst author uses this opportunity to note that the proof of the sec-

ond half of Theorem 7 in [F8] is too complicated (and incomplete). He adjusts it as

follows. On p. 162, `: �3; of [F8], after: \we shall prove that," insert: \(1) the (\spe-
cial") square-integrable subrepresentation sp(�) of I(��1=2; ���1=2) (�jNE� = 1)

is not distinguished unless �jF� 6= 1, and I(�1; �2) with �i : E
� ! C � , �ijNE� =

1, is not distinguished unless �ijF� = 1, (2)." On `: � 2 there, replace \not of

the form I(�; ��1)" by \which is supercuspidal." This (1) is proven in (b) and (c)

of Proposition B17 above. The proof of (2) does not require Bernstein's Decom-

position Theorem, and so the second half of p. 165 in [F8], as well as the top half

of p. 166, including Proposition 13, and the misleading Remark on p. 166, are no

longer needed. Simply take �0u
0 of [F8], Proposition 14, p. 166, to be supercuspidal

(in addition to its other properties), and replace: \has in�nitesimal : : : de�ned by,"

in [F8], p. 166, `: 18=19, by \is." The function f 0u of p. 166, `: �10, will be taken to

be just a matrix coe�cient of �0u
0, and the f 0ui on `: � 6 will similarly be taken to

be coe�cients of the �0ui
0 there. In other words, p. 166, `: � 10; �9, should be re-

placed by: \Proof. Let f 0u 2 H 0u be a matrix coe�cient of �00u. Since �
00
u is generic,

distinguished and supercuspidal, f 0u can and is chosen to satisfy DW�00u; 
0
u
(f 0u) 6= 0.

This distribution depends on f 0u only through �(
; f 0u). Hence �(
; f
0
u) is not iden-

tically zero. Let u1; : : : ; um." Consequently `: 16 to 18 of [F8], p. 168, should be

replaced simply by: \Proof of Theorem 7. By Proposition 14, every supercuspidal

distinguished G0v-module �
0
v with central character !0v�

0
v is a component of a cus-

pidal G -distinguished." Note also that throughout [F8], the character �02 should

be replaced by �0 = �2, for example on p. 144, `: � 16; �12; �11; p. 146, `: 10;
p. 154, `: � 4; p. 155, `: 7; p. 158, `: � 5; p. 161, `: 21; p. 167, `: � 10.

Proposition 14 of [F8] asserts now that: each distinguished in�nite dimensional

supercuspidal representation �v of GL(2; Ev) can be viewed as a component of a

cuspidal distinguished representation � of GL(2; A E ), in fact with supercuspidal

distinguished components at any prescribed �nite set of places. If �v has trivial

central character, � can be chosen to have trivial central character.

It follows from the �nal Remark (2) in [F8], and from Proposition B17(c), that

a Steinberg (=special) representation of G0v(= D0
v) is Gv-distinguished if and only

if it is Dv-distinguished, when G = GL(2). B15 shows this for supercuspidals. It

follows from the �nal Remark (2) in [F8] that an induced representation I(�1; �2)

of G0v(= D0
v) is Dv-distinguished if and only if �2�1 = 1. Proposition B17 (a)
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and (b) provides a purely local, and direct, proof of the assertion that I(�1; �2) is

Gv-distinguished if and only if either �1�2 = 1, or �1 6= �2 and both �i are trivial

on F�v . The Gv-distinguished representation I(�1; �2) of G
0
v, �1 6= �2, �ijF�v = 1,

is the unstable base change lift ([ F1]) of a supercuspidal representation of the

quasi-split unitary group U(2; Ev=Fv), hence � by [F8] � it is a component of a

cuspidal GL(2; A )-distinguished representation � of GL(2; A E ). We can construct

� and choose D such that � satis�es the assumptions of B9, provided we assume

that the r-character � of I(�1; �2) is not identically zero on the r-elliptic regular

set in G0v. Since I(�1; �2) is Gv-distinguished but not Dv-distinguished, we obtain

a contradiction from B11. We proved then the following:

B18. Corollary. The r-character � of the representation I(�1; �2) of G
0
v, �i :

E�v =F
�
v ! C � ; �1 6= �2, vanishes on the r-elliptic regular set in G0v (�(x) 6= 0 for

an r-regular x 2 G0v implies that x�(x)�1 is diagonalizable in G0v).

A purely local proof of B18 in a more general setting, is next.

Let E=F be a quadratic extension of local �elds, G a reductive F -group and P

a parabolic F -subgroup, G = G(F ), G0 = G(E), P = P(F ), and P 0 = P(E).

B19. Proposition. Let (�; V ) = I(�; V�;G
0; P 0) be the G0-module normalizedly

induced from the admissible irreducible M -distinguished representation (�; V�) of a

Levi factor M 0 of P 0. Then (�; V ) is G-distinguished and its r-character �� is

supported on the subset GP 0G of G0; in particular �� vanishes on the r-elliptic

regular set.

Proof. Recall that V consists of the V�-valued smooth functions � on G0 which

satisfy �(pg) = �
1=2
P 0 (p)�(p)(�(g)) (p 2 P 0; g 2 G0). Note that G0 = P 0K 0, where K 0

is the standard maximal compact subgroup of G0. We denote by �� the dual of �,

and by ~� the contragredient of �.

If �̀2 �� is a non-zero M -invariant form on (�; V�), then < �̀; �(pg) > = �
1=2
P 0 (p)

< �̀; �(g) > for p 2 P; g 2 G. Since �2P = �P 0 and we have the measure decompo-

sition f(g)dg = f(pk)��1
P (p)dpdk, the measure < �̀; �(g) > dg depends only on the

projection to the coset space PnG = K. We de�ne a non-zero G-invariant form
�L 2 �� on (�; V ) by < �L; � >=

R
K
< �̀; �(k) > dk; � 2 �:

Similarly, if ` 2 �~� is a non-zero M -invariant form on (��; V��), then a non-zero G-

invariant form L 2 �~� on (~�; ~V ) is de�ned by < L; ~� >=
R
K
< `; ~�(k) > dk; for ~� 2

~�:

For any compactly supported smooth function f on G0, the vector �(f)L lies

in V =
~~V (this is a subspace of

�~V ). The G-invariant distribution attached to � is

de�ned by

L� (f) =< �L; �(f)L >=< ~�(f�)�L;L >;

where f�(g) = f(g�1).

Let us compute the V�-valued function �(f)L 2 V on G0. For that we pair

it with any element ~� in the contragredient representation ~V ; this is a V~�-valued
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function on G0. ThusZ
K0

< ~�(k0); (�(f)L)(k0) > dk0 =< ~�; �(f)L >

=< ~�(f�)~�; L >=

Z
K

< (~�(f�)~�)(k); ` > dk

=

Z
K

Z
G0
f(g�1) < ~�(kg); ` > dkdg =

Z Z
f(g�1k) < ~�(g); ` >

=

Z
K

Z
P 0

Z
K0

f(k0�1p�1k)�
1=2
P 0 (p) < (~�(p)~�)(k0); ` > ��1

P 0 (p)

=

Z
K0

Z
P 0

Z
K

�
�1=2
P 0 (p)f(k0�1p�1k) < ~�(k0); �(p�1)` >

=

Z Z Z
�
1=2
P 0 (p)f(k

0�1pk) < ~�(k0); �(p)` >;

for all ~� 2 ~V . Hence in V�, for every k
0 2 K 0 we have

(�(f)L)(k0) =

Z
K

Z
P 0
�
1=2
P 0 (p)f(k

0�1pk)�(p)` dpdk:

We conclude that L� (f) =
R
G0
f(g)��(g)dg is given by

< ~L; �(f)L >=

Z
K

< �̀; (�(f)L)(k) > dk =

Z
K

Z
K

Z
P 0
�
1=2
P 0 (p)f(k

0pk) < �̀; �(p)` > :

Hence the r-character �� is supported on GP 0G = KP 0K, as required.

C. The case of G = GL(2).

The purpose of this section is to remove the restrictions in B9 and B10 in the

case of G = GL(2), and to prove the

C1. Theorem. Suppose that � is an irreducible, automorphic representation of

G0(A ) which corresponds to a cuspidal representation �D of D0(A ). Denote by

V 0 the set of places of F which stay prime in E where D rami�es. Then �D is

D(A )-distinguished if and only if � is G(A )-distinguished, and at each v in V 0 the

component �v = �Dv (G0v = D0
v at v 2 V 0) is not of the form I(�1; �2) where �i are

characters of E�v trivial on F�v .

To prove this we can no longer use the simple form B2, B4, of the r-trace formula,

since in general the � to be studied may not have a supercuspidal component. We

need to use the general form of the r-trace formula, which includes the contribution

from the continuous spectrum. Recall that for f = 
fv, fv 2 Hv, the convolution

operator

(r(f)')(g) =

Z
Z0(A)nG0(A)

f(h)'(gh)dh =

Z
Z0(A)G0nG0(A)

Kf (g; h)'(h)dh
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on

L!0(G
0nG0(A )) = f' :G0(A ) ! C ;'(z
g) = !0(z)'(g) (z 2 G0(A ); 
 2 G0; z 2 Z0(A ));Z

Z0(A)G0nG0(A)

j'(g)j2dy <1g

is an integral operator with kernel

Kf (g; h) =
X


2Z0nG0

f(g�1
h):

The theory of Eisenstein series decomposes L(G0) = L!0(G
0nG0(A )) as the di-

rect sum of three mutually orthogonal invariant subspaces: the space L0(G
0) of

cusp forms, the space L1(G
0) of functions '(g) = �(det g) with �2 = !0, and the

continuous spectrum Lc(G
0). Correspondingly

Kf (g; h) = Kf;0(g; h) +Kf;1(g; h) +Kf;c(g; h);(1)

where

Kf;1(g; h) =
1

2

X
�2=!0

�(det g)�(deth)

Z
Z0(A)nG0(A)

f(x)�(detx)dx;

and

Kf;c(g; y) =
1

4�

X
�

X
�

1Z
�1

E(g; I(�; it; f)�; �; it)E(y; �; �; it)dt:

The �rst sum in Kf;c ranges over the characters � = (�1; �2) of the diagonal

subgroup A0(A ) in G0(A ) which satisfy �1�2 = !0, up to the equivalence relation

� � �0 if (�1; �2) = (�1�
s; �2�

�s), s 2 C and �(x) = jxjE .
For each � consider the Hilbert space H(�; s) of functions � : G0(A ) ! C which

satisfy

�

��
a �
0 b

�
g

�
= ja=bjs+1=2

E �1(a)�2(b)�(g) (g 2 G0(A ); a; b 2 A �E )

and
R
K0
j�(k)j2dk <1. We identify the vector space H(�; s) with H(�) = H(�; 0)

via the restriction-to-K 0 isomorphism, � 7! �jK 0 . Denote by �(�; s) the element

of H(�; s) corresponding to �(�) in H(�). Let I(�; s) be the right G0(A )-module

structure on H(�; s), and introduce the Eisenstein series

E(g; �; �; s) =
X


2B0nG0

�(
g; �; s) (� = �(�) 2 H(�)):

This E converges absolutely on Re(s) > 1
2
, and has analytic continuation to C as a

meromorphic function which is holomorphic on Re(s) = 0. The inner sum in Kf;c

ranges over an orthonormal basis � of H(�).
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To obtain an r-trace formula we need to integrate (1) over g; h 2 Z(A )GnG(A ).

Since Kf and Kf;c may not be integrable, we truncate the K� using the truncation

operator T� over F . For higher rank G it might be necessary to truncate over

E. But in our rank one case the di�erence between these two truncations goes

to zero as � goes to in�nity. We prefer to use the F -truncation here since in our

rank one case it leads to a simpler exposition. Given a continuous function � on

Z0(A )G0nG0(A ) and � > 1, denote by �� the characteristic function of (�;1) in R,

and put

T��(g) = �(g)�
X


2BnG

�N (
g)��(H(
g));(2)

where

�N (g) =

Z
N 0nN0(A)

�(ng)dn; H

��
1 x

0 1

��
a 0

0 b

�
k

�
= ja=bjE:

Here N0 denotes the upper triangular subgroup of G0. A standard lemma asserts

that if 
 2 G0 and g 2 G0(A ) satisfy H(g) > 1 and H(
g) > 1 then 
 2 B0.

Hence the sum in (2) has at most one term, and if H(g) > � > 1 then �T�(g) =

�(g)� �N (g). Clearly �T� = � if � is a cuspidal function. Denoting by �Tii the

truncation operator with respect to the ith variable, and noting that the kernel

function Kf;0(g; h) on the cuspidal spectrum is a cuspidal function in each of its

two variables, we conclude (1) in the following

C2. Lemma. (1) We have �T11 �T22 Kf;0 = Kf;0. (2) We have

lim
�2!1

lim
�1!1

Z
Z(A)GnG(A)

Z
Z(A)GnG(A)

�T11 �T22 Kf;1(g; h)dgdh =

Z Z
Kf;1(g; h)dg dh:

Proof. Recalling the de�nition of K1 = Kf;1 (and �T ), we have

�1
T1�2

T2K1(g; h) = K1(g; h)�
X



K1(
g; h)��1(H(
g))�
X



K1(g; 
h)��2(H(
g))

+
X

;
0

K1(
g; 

0h)��1(H(
g))��2(H(
0h));

the �'s range over 
; 
0 2 BnG. Integrate each of the four terms on the right over

Z(A )GnG(A ), and denote the result by (a)�(b)�(c)+(d). For a �xed �2, we claim

that (b) ! 0 as �1 ! 1. Indeed, (b) is a �nite linear combination of integrals of

the form Z
Z(A)GnG(A)

�(deth)dh �
Z
Z(A)BnG(A)

�(det g)��1(H(g))dg:

This is zero unless � = 1 on A � . Otherwise, by the Iwasawa decompositionG(A ) =

A(A )N(A )K we �nd that this is a scalar multiple of
R1
�1
t�2dt = ��1

1 . The same

argument shows that (d)! 0 as �1 !1, and that (c)! 0 as �2 !1; the lemma

follows.



28

C3. Lemma. If f is r-discrete, then there is d > 0 such that for �1; �2 > d we

have �T11 �T22 Kf (g; h) = Kf (g; h) on g; h 2 G(A ).

Proof. Recall the following well known ([JL], p. 259) facts.

(a) Given a compact-modulo-Z0(A ) subset 
 in G0(A ), there is d > 0 such that

any 
 2 G0 with g�1
h 2 
 for some g; h 2 G(A ), H(g) > d, H(h) > d, satis�es


 2 B0.
(b) Given 
 as in (a), there exists d > 0 such that any 
 2 G0 with g�1
h 2 
 for

some g; h 2 G(A ) with H(h) > d, satis�es 
 2 GB0.

By de�nition �T11 �T22 K(g; h) is equal to

K(g; h)�
X


2BnG

Z
N 0nN0(A)

X
�2Z0nG0

f(g�1�n
h)dn � ��2(H(
h))(3)

�
X


2BnG

Z
N 0nN0(A)

X
�2Z0nG0

f(g�1
�1n�h)dn � ��1(H(
g))(4)

+
X

;
0

Z Z X
�

f(g�1
�1n�n0
0h)dn dn0 � ��1(H(
g))��2(H(
0h)):(5)

By (a) (and (b)) we may choose a su�ciently large d > 0 such that for �i > d

the � in (5) is in B0. Then the integration in (5) over n0 gives 1. Moreover, in

(4) the � is in B0G, by (b), and in (3) the � is in GB0, again by (b). Since f is

r-discrete, it vanishes on all element in G0(A ) of the form g�h with g; h 2 G(A )

and � 2 B0N0(A ). The lemma follows.

Remark. Recall that f = 
fv will be r-discrete when it has a component fv which
is r-discrete, namely supported on the r-regular r-elliptic set in G0v.

It remains to examine the e�ect of the double truncation on the Eisenstein kernel.

The intertwining operator M(�; s) : H(�) ! H(~�), where ~� = (�2; �1), is de�ned

on Re(s) > 1
2
by

(M(�; s)�)(g; ~�;�s) =
Z
N0(A)

�(wng; �; s)dn

�
w =

�
0 1

�1 0

��
;

and by analytic continuation on the entire complex plane. Recall ([F8]) that

G0 = GB0[G�B0 = B0G[B0��1G

�
� =

�
�
p
�

p
�

1 1

�
; E = F (

p
�); � 2 F

�
;

and put

T = G \ �B0��1 =

�
�

�
a 0

0 a

�
��1; a 2 E�

�
= G \

��
� ��

� �

�
;�; � 2 F

�
:
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If �1�2 = 1 de�ne on Re(s) > 1
2

J(�; s)� =

Z
T(A)nG(A)

�(��1g; �; s)dg;

this extends to a meromorphic function on C by analytic continuation. Put A u =

fa 2 A � ; kak = 1g. Write �(�) = 1 if �ijA � = 1, �(�) = 0 otherwise, and �(�) = 1

if �1�2 = 1, �(�) = 0 otherwise. As usual, �E=F is the unique non-trivial character

of A � which is trivial on E�NA �E .

C4. Lemma. (1) The integral of 2� � �TE(g;�; �; s) over Z(A )GnG(A ) is equal

to

jA u=F�j�(�)[T s
Z
K

�(k)dk�T�s
Z
K

(M(�; s)�)(k)dk]+2���(�)jA�E =E�A � j�J(�; s)�:

(2) If � is K -�nite then for some su�ciently large �nite set V we have that

J1(�; s)� = J(�; s)� � LV (1 + 2s; �E=F � �1jA �)=LV (2s; �1jA �)

is an elementary (i.e. a linear combination of products of rational and exponential)

function of s, which is holomorphic on Re(s) = 0. Here LV is the partial (product

outside V ) Hecke L-function attached to a character of A �=F�.

(3) The function
R
�TE(g;�; �; s)dg is holomorphic and of polynomial growth on

iR.

Proof. This can be extracted from [JL], x8, when �1�2 = 1. The general case

follows from this on modifying the proof as explained in [F8], Lemma following

Proposition 4. Let us recall a proof of (2) patterned on [JL]. Any �(g; s) in H(�; s)

can be written as

�(g; s) = Q(s)LV (1+2s; �1=�2)
�1�1(det g)jgjs+

1

2

E

Z
A
�

E

	((0; t)g)(�1=�2)(t)jtj2s+1
E d�t;

where Q(s) is an elementary function in s and 	 is a Schwartz function on A E�A E .
Indeed, if P 0v denotes the group of matrices in B0v with bottom row (0; 1), then the

map 	v 7! R
E�v

	v((0; t)g)�
�1(t)d�t from the space of smooth compactly sup-

ported functions on F 2
v �f(0; 0)g ' P 0vnG0v, to the space of functions � on G0v with

�(hg) = �(b)�(g), where h =

�
a c

0 b

�
, is surjective by Bourbaki, Integration, VII,

x2, no 5 (the point being that integration yields a surjection C1c (G)! C1c (HnG)).
Moreover, it is easy to see that for almost all places the local factor in the displayed

integral above coincides with the L-factor in the denominator. Combining integra-

tions we obtain

Z
T(A)nG(A)

�(��1g; s)dg = Q(s)LV (1+2s; �1�N)�1

Z
G(A)

	((1;
p
�)g)�1(g)jgj2s+1

F dg;
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since if �1�2 = 1 then �1=�2 = �1�1 = �1 � N . By the Iwasawa decomposition

g = ank:

= Q(s)LV (1+2s; �1�N)�1

Z
A�

Z
A�

�1(ab)jaj2sjbj2s+1d�ad�b

Z
A

Z
K

	((a; x+b
p
�)k)dx dk:

After integrating over x and k the resulting function of a and b is a Schwartz

function. The local factors of the remaining integrals over a and b are easy to

evaluate. Since LV (s; �1 �N) = LV (s; �1jA �)LV (s; �1jA � � �E=F ), we obtain that

as a function of s our integral is

= Q1(s)L
V (2s; �1jA �)LV (2s+ 1; �1jA � )=LV (2s+ 1; �1jA �) � LV (2s+ 1; �1jA � � �E=F )

= Q1(s)L
V (2s; �1jA �)=LV (2s+ 1; �E=F � �1jA �);

where Q1(s) is an elementary function in s, as required.

Denote by f�g an orthonormal basis of the space H(�).

C5. Lemma. The integral of �T11 �T22 Kf;c(g; h) over g; h 2 Z(A )GnG(A ) has a

limit as �1 ! 1. The resulting function of �2 is the sum of a scalar multiple of

log �2, a term o(1) as �2 !1, and the sum of

c1
X

�1�2=1

X
�;�

1Z
�1

d

dt
[(I(�; it; f)��;��) � tJ(�; it)�� � tJ(�; it)��]dt

t
;(a)

c2
X

�ijA�
=1

�1 6=�2

X
�;�

(I(�; 0; f)��;��) �
Z
K

��(k)dk � d
dt
j
t=0

[

Z
K

(M(�; it)��)(k)dk];(b)

and

c3
X

�ijA�
=1

�1=�2

X
�;�

(I(�; 0; f)��;��) �
Z
K

��(k)dk � d
dt
j
t=0

[

Z
K

(M(�; it)��)(k)dk];(c)

for some volume constants c1; c2; c3.

Proof. This is [JL], (9.4), when �1�2 = !0 is 1; the general case follows on making

the modi�cations alluded to in the proof of C4.

Note that all sums in C5 are �nite, depending only on the rami�cation of f; the

function (I(�; it; f)��;��) is a Schwartz (rapidly decreasing) function in t on R,

and tJ(�; it)� is holomorphic in t 2 R and of polynomial growth.

C6. Lemma. Let F be a Schwartz function on R with F (0) = 0. Then

lim
�!0

(

Z 1

�

+

Z ��

�1

)F (x)x�2dx = lim
�!0

(

Z 1

�

+

Z ��

�1

)F 0(x)x�1dx:
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Proof. Elementary.

Note that the integral
R1
�1

in C5(a) is also an improper integral lim
�!0

(
R1
�

+
R ��
�1

).

Let us summarize what we now have on the r-trace formula for f on G0(A ).

Recall that the complex number c(�) is de�ned by Lemma B3. It depends on the

choice of the distribution L� .

C7. Proposition. Given f = 
fv, such that fv 2 Hv for all v and fu is r-

discrete at some place u, we have

X
��L0(G0)

c(�)L� (f) +
1

2
jZ(A )GnG(A )j2

X
�2=!0

�j
A
�

F

=1

tr �(�; f)(i)

+
X

�ij
A
�

F

=1

(c2�(�1 6= �2) + c3�(�1 = �2))
X
�

Z
K

(I(�; 0; f)�)(k)dk(ii)

� d
dt
jt=0(

Z
K

(M(�; it)�)(k)dk)

+ c1
X

�1�2=1

Z 1

�1

X
�;�

[(I(�; it; f)��;��) � tJ(�; it)�� � tJ(�; it)��]t�2dt(iii)

=
X
fTge

jT(A )=Z(A )T jw(T )�1
X


2T 0=TZ0

�(
; f);(iv)

provided that f is chosen to have the property that [: : : ] vanishes at t = 0.

Here �(�) is the one-dimensional constituent of the full-induced I(��1=2; ���1=2),

tr �(�; f) is the trace of the convolution operator (�(�))(f), and we write �(X) = 1

if X happens, and �(X) = 0 otherwise. Of course one can write out the r-trace

formula for any function f = 
fv, but we prefer to write out only the simplest

form which su�ces to prove C11.

To prove C1 we need to compare C7 with the analogous r-trace formula for a

test function fD on D0(A ). There are two cases to consider, depending on whether

the separable quadratic extension E of F embeds in D, or not. In the �rst case,

referred to below as CASE I, the group D0 of E-valued points on D is isomorphic

to G0 = GL(2; E), while in the second CASE II, D0 is an anisotropic form of G0,

central over E.

If V denotes the set of F -places where D rami�es, V 0 the subset of v 2 V which

stay prime in E, and V 00 the complement, consisting of the v 2 V which split in

E, we have that V 00 is empty precisely in CASE I. The case of C1 where V 0 is

empty is the Theorem of [JL]. In CASE I, where D0 = G0, we need to integrate the

kernel identity (1) over g; h in the compact homogeneous space Z(A )DnD(A ). In

CASE II, since D0 is anisotropic we do not have the continuous spectrum, i.e., we

set Kf;c = 0 in (1), and again integrate over (Z(A )DnD(A ))2 . In both cases there
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is no need to truncate. Moreover, at each v 2 V the component fDv is necessarily

r-discrete if it vanishes on the r-singular set.

As in the case of G, if �1�2 = 1 and Re(s) > 1
2
, we de�ne

J(�; s)� =

Z
T(A)nD(A)

�(g; �; s)dg;

where

T(A ) =

��
a 0

0 a

��
� D(A ) = D(A )� =

��
a b�

b a

��
; � 2 H(�); � = (�1; �2):

The function J(�; s)� has analytic continuation to the entire s 2 C plane as a

meromorphic function, whose restriction to Re(s) = 0 is holomorphic, except at

s = 0 where it has at most a simple pole, and it has at most polynomial growth

in jtj ! 1, on s = it. Note that any D(A ) is isomorphic to a D(A )� with some

� 2 F �NE.

The derivation of the r-trace formula for fD on D0(A ) is by now routine. In the

handling of the integration over Z(A )DnD(A ) of the Eisensteinian kernel in CASE

I, note that G0 = B0D; and B0nG0 = TnD, T =

��
� 0

0 �

�
;� 2 E�

�
. We obtain

C8. Proposition. Given fD = 
fDv such that fDv 2 HD
v for all v and fu

vanishes on the r-singular set at some place u, we have

X
�D�L

0;!0
(D0)

dim�D 6=1

c(�D)L�D (f
D) +

1

2
jZ(A )DnD(A )j2

X
�2=!0

�j
A�

=1

tr �D(�; fD)(i)

+ c1�(I)
X

�1�2=1

X
�;�

Z 1

�1

[(I(�; it; fD)��;��) � tJ(�; it)�� � tJ(�; it)��]t�2dt(ii)

=
X
fTDge

jT(A )=Z(A )T jw(T )�1
X


2T 0=TZ0

�(
; fD);(iii)

provided that fD is chosen to have the property that [: : : ] vanishes at t = 0.

Note that in CASE I, any �D � L0;!0(D
0) has dim�D = 1 6= 1, but in CASE

II the �D with dim�D = 1 are described by the second sum. As usual, �(I) = 1 in

CASE I, and �(I) = 0 in CASE II.

Propositions C7 and C8 have the immediate

C9. Corollary. For any r-matching f = 
fv on G0(A ) and fD = 
fDv on D0(A )

such that for some u 2 V the components fu and fDu are r-discrete we have

(C7(i)) + (C7(ii)) + (C7(iii)) = (C8(i)) + (C8(ii)):



33

Proof. Since fTDge = fTge, and by de�nition of r-matching, since f and fD are

r-matching we have (C7(iv))=(C8(iii)).

To extract C1 from C9 we need to simplify the identity of C9. The �rst step is

to show that (C7(iii))=(C8(ii)), in particular that both are zero in CASE II, for

su�ciently many functions f and fD. We �rst dispose of the easier case.

C10. Lemma. In CASE II, that is when V 00 is non-empty, we have (C7(iii))=0.

Proof. (1) The integral
R
T(A)nG(A)

�(��1g; �; s)dg converges absolutely on Re(s) >
1
2
, and if � = 
�v, �v 2 H(�v; s) for all v and �v = �0

v for almost all v (�0
v is

the normalized Kv-�xed vector in H(�v; s); it satis�es �
0
v(k) = 1 on k 2 Kv), the

integral can be written as a product of the local integrals over all places.

At a place which stays prime in E, the local integral is simply

Z
TvnGv

�v(�
�1g; �v; s)dg = J(�v; s)�v

= J1(�v; s)�v � L(2s; �1vjF�v )=L(1 + 2s; �1vjF�v � �Ev=Fv);

and J1(�v; s)�v is an elementary function in s.

At a place v of F which splits into v0, v00 in E, if �v = �v0 � �v00 we have that

the local integral is

Z
TvnGv

�v0(�
�1g; �v0; s)�v00(�

�1g; �v00 ; s)dg:

Here � and � are matrices in Gv with �
�1� = w =

�
0 1

1 0

�
and

��1Tv� = ��1Tv� = eAv =
��

a 0

0 a

�
; a 2 E�v

�
� eGv

= ��1Gv� =

��
a b

b a

�
; a; b 2 Ev; aa 6= bb

�
:

Making the change g ! �g of variables the integral becomes

Z
AvnGv

�v0(wg; �v0; s)�v00(g; �v00 ; s)dg:

Since 1 = �1v�2v = (�1v0 ; �1v00)(�2v00 ; �2v0), this integral can also be written as

Z
Kv

Z
Nv

�v0(wnk; �v0; s)dn � �v00(k; �v00 ; s)dk = hM(�v0; s)�v0;�v00i:
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Up to an �-factor (of the form cqs, = elementary function in s), this is

L(2s; �1vjF�v )L(2s+ 1; �1vjF�v )�1hR(�v0; s)�v0;�v00i;

where R is the normalized intertwining operator, since �1v0=�2v0 = �1v0�1v00 =

�1vjF�v .
(2) The space H(�) is the tensor product over all v of the analogous local spaces

H(�v), the operator R(�; s) is the tensor product of the local normalized inter-

twining operators R(�v; s), and the orthonormal basis for H(�) can be chosen to

be the restricted tensor product of orthonormal bases chosen for the H(�v). The

integrand in (C7(iii)), is, up to an elementary function in t, the function

X
�

J1(�; it)I(�; it; f)� � J1(�; it)�:

By the above choices, this is a product of local, analogous expressions.

Consider a place v which splits into v0, v00 in E. Since �1�2 = 1, the space

H(�v0) = H(�1v0 ; �2v0) and H(�v00) = H(�1v00 ; �2v00) are contragredient, and we

can and do choose the basis f�v00g on H(�v00) to be dual to that f�v0g on H(�v0).

Put �0 for �v0 and �00 for �v00 . By (1) the local factor is

X
�;�

hR(�v0 ; it)I(�v0; it; fv0)�0�; I(�v00 ; it; fv00)�00�ihR(�v0; it)�0�;�00�i

=
X
�;�

hI(�v00 ;�it; f
_

v00)R(�v0 ; it)I(�v0; it; fv0)�
0
� ;�

00
�ihR(�v0; it)�0�;�00�i

=
X
�0

(I(�v00 ;�it; f
_

v00)R(�v0 ; it)I(�v0; it; fv0)�
0; R(�0v; it)�

0):

The last equality follows from the fact that for a; b in H(�v0) we have

b =
X
�0

hb;�00i�0; hence (a; b) = ha; bi =
X
�00

hb;�00iha;�0i =
X
�00

ha;�00ihb;�00i:

Here the sum ranges over the orthonormal basis f�0g, and f�00 = �
0g is the dual

basis, of H(�v00). But R(�v0 ; it) is a unitary intertwining operator. Hence we get

=
X
�0

(I(�v0; it; f
_

v00)I(�v0; it; fv0)�
0;�0) = tr I(�v0 ; it;hv)

where hv = fv0 � f_v00 .
Finally, since V 00 is non-empty there is a place v which splits in E where D

rami�es. The corresponding function fv = (fv0 ; fv00) (to any fDv 2 HD
v ) has the

property that tr �v(hv) = 0 for any properly induced representation �v of Gv.

Hence the lemma follows.

Our next aim is to show that (C7(iii))=(C8(ii)) in CASE I for su�ciently many

functions f (to prove C1). In C7 and C8 we require that f and fD be chosen so that
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[: : : ] in C7(iii) and C8(ii) be zero at t = 0. We make this choice as follows. Let S

be a �nite set of places of F containing V , the archimedean places and those which

ramify in E. At any v 62 S we take the component fv = fDv to be spherical. Fix

w 62 S. Note that fw � f0w = fw for any spherical fw. Suppose that the component

of f at w is f0w, and denote by f � fw the function obtained from f on replacing its

component at w by fw.

For any � 2 H(�) we have that I(�; it; f � fw) is the product of I(�; it; f)� and

the scalar

f_w(diag(�1w(�w)q
�it
w ; �2w(�w)q

it
w)) if Ew is a �eld,

or

h_w(diag(�1w0(�w)q
�it
w ; �2w0(�w)q

it
w)) if w splits into w0; w00 in E:

Here f_w or h_w is the Satake transform of fw or hw = fw0 � f_w00 . In fact we can and

will take fw00 = f0w, and then hw = fw0 . As usual �w is a uniformizer in Rw, and

qw the cardinality of the �eld Rw=�wRw. Since [: : : ] of C7 and C8 has a zero of

order two unless �ijA � = 1, we will now assume that �ijA � = 1. Since �1�2 = 1 in

C7(iii) and C(ii), we have �1 = �2, and �1�2 = !0, where !0jA � = 1 (hence there

is some ! on A 1
E with !0(z) = !(z=z)).

For brevity we now write h for fw if w stays prime, and for hw = fw0 if w splits.

The scalar which appears in [: : : ] is then of the form h_(diag(zq�it; zqit)), q = qw
and t 2 R, and z2 = !(�w) (= 1 if w stays prime). We need to choose h such

that the value at t = 0 is zero. Recall that h_(z1; z2) is a symmetric polynomial in

z1=z2, thus

h_(z1; z2) =
X
n

an(a1=z2)
n; a�n = an;

and any such polynomial is of the form h_, for some h. We will choose h such that

h_(z1; z2) =

�
1� 1

2

�
z1

z2
+
z2

z1

��
~h_(z1; z2)(6)

for some other spherical ~h.

C11. Proposition. Fix a place w 62 V , where both ! and E=F are unrami�ed,

and complex z1; z2 with z1z2 = !(�w) and z1 6= z2. For any fD = 
fDv such that

fDu is r-discrete at some place u 6= w, and matching f = 
fv with r-discrete fu,

we have (C7(i))+(C7(ii))=(C8(i)), where the sums over �, �(�) and I(�; 0) range

over those automorphic representations whose component �w at w is unrami�ed

with Hecke eigenvalues z1, z2 if w stays prime, or of the form �w0 � ~�w0 (if w

splits) with unrami�ed �w0 having the Hecke eigenvalues z1; z2.

Proof. We shall write the equality of C9 for a test function of the form f � h,
h = fw in the non-split case and h = fw0(= fw0 � f_w00 , since fw00 is taken above to

be f0w) in the split case, and h related to ~h is in (6). Following standard lines, the

equality of C9 can be written then in the form

X
i�0

ci(1� 1

2
(ti=t

0
i + t0i=ti))

~h_(ti; t
0
i) =

Z
jtj=1

~h_(zt; z=t)(1� 1

2
(t2 + t�2))d(t)dt;
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where tit
0
i = !(�w), z

2 = !(�w), jtij = jt0ij = 1 or (ti; t
0
i) = (uiq

�ri
w ; uiq

ri
w ) with

juij = ju0ij = 1 and �1
2
� ri � 1

2
, and

X
i

jci(1� 1

2
(ti=t

0
i + t0i=ti))j <1;

Z
jtj=1

jd(t)jjdtj <1:

A standard application of the Stone-Weierstrass theorem (e.g., as in [ FK2], Propo-

sition, p. 198) implies that the set of polynomials ~h_ is dense in the space of

continuous functions on the compact set consisting of the t in C with jtj = 1 of

q�1
w � t � qw. Choosing a suitable ~h we conclude that ci = 0 for all i, and the

proposition follows.

Remark. Note that the requirement in C7 and C8 that \f has the property that

[: : : ] vanishes at t = 0" forces us to introduce the factor 1 � 1
2
(t=t0 + t0=t), which

vanishes at t = t0, hence the requirement in C11 that z1 6= z2.

C12. Corollary. For any corresponding cuspidal �D and �, such that dim�D > 1,

and �v ' �Dv is distinguished for all v 62 V and for any r-matching fDv and fv
(v 2 V ), we have

c(�D)
Y
v2V

L�Dv (f
D
v ) = c(�)

Y
v2V

L�v (fv):

Proof. Let S � V be a set such that !, E=F and � are unrami�ed outside S. The

identity of C11 applies with f = 
fv where at any v 62 S we may use any spherical

fv. A standard approximation argument used � as mentioned above � in [ FK2],

Theorem 2, implies that the identity (C7(i))+(C7(ii))=(C8(i)) remains true if we

sum only over those �, �(�), I(�), �D and �D(�) whose component at any v 62 S
is (equivalent to) �v, and at some place w 62 S the Hecke eigenvalues z1; z2 of �w
are distinct (this last requirement appears in C11).

By rigidity (see [ JS2]) and multiplicity one theorems for GL(2), � is the only

automorphic representation of G0(A ) whose components are equivalent to �v for

almost all v. Hence there is only one term in the sum of (C7(i))+(C7(ii)), indexed

by �. The analogous theorems for D0(A )� which follow from the correspondence

from the set of automorphic representations of D0(A ) to those of G0(A )� imply

that �D is the only automorphic representation of D0(A ) whose components are

equivalent to �v for almost all v. Hence there is only one term in the sum of

(C8(i)), indexed by �D. The identity of C12 follows, but only for � and �D which

satisfy the requirement at w.

Moreover, the restriction at w can be dropped. Indeed, suppose that at each v

outside S the Hecke eigenvalues z1v; z2v of �v are equal. Consider the symmetric-

square lifting
Q

of � (see [GJ] or [ F9]). This is a cuspidal representation of

GL(3; A E ), since � is cuspidal and not of the form �(�) for any character � :

A �L =L
� ! C � of any quadratic extension L of E (� 6= �(�) since the Hecke eigen-

values of � are equal outside S). On the other hand, the Hecke eigenvalues of
Q
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outside S are (z1v=z2v; 1; z2v=z1v), namely (1; 1; 1). Consequently the cuspidal
Q

has the same Hecke eigenvalues (at almost all v) as the representation I(1; 1; 1)

of GL(3; A E ) normalizedly induced from the trivial character of the Borel sub-

group. This is impossible by rigidity theorem for GL(3) (see [ JS2]), implying that

z1w 6= z2w for some w 62 S. We apply C11 with this w, and the corollary follows

for all matching �D and �.

Note that at any v 2 S � V we have �v ' �Dv and fv = fDv , hence L�v (fv) =

L�Dv (f
D
v ). We may choose this fv to vanish on the r-singular set in G0v, and to

satisfy L�v (fv) 6= 0. The corollary follows.

Remark. At the places v 2 V 00 � V which split in E, we have

L�Dv (f
D
v ) = tr �D1v(h

D
v ) = tr �1v(hv) = L�v (fv)

if �v = �1v�~�1v and �
D
v = �D1v�~�D1v are distinguished, �1v and �

D
1v are correspond-

ing, and hDv and hv are matching. We choose (as we may) hv with tr �1v(hv) 6= 0.

Hence the products in C12 can be taken to range only over V 0, assuming that (�v
and) �Dv are Dv-distinguished for all v 62 V 0.

C13. Corollary. Suppose that Du is an anisotropic inner form of Gu, Eu=Fu is a

quadratic extension, and �u is a square-integrable Du-distinguished representation

of G0u; note that G
0
u = D0

u. Then there exists a non-zero constant c(�u) such that

L�u(f
D
u ) = c(�u)L�u(fu)(7)

for any r-matching function fu and fDu . Alternatively put, for any r-regular-elliptic

r-corresponding 
D and 
 in Du and Gu, we have

�D�u(

D) = c(�u)��u(
);

where �D�u is the r-character of �u with respect to Du, and ��u is the r-character

of �u with respect to Gu.

Proof. Consider a global quadratic separable extension E=F which is the given

local extension at the place u, and denote by u0 6= u a �nite place which stays prime

atE. LetD be the multiplicative group of a quaternion algebra central over F which

rami�es precisely at u and u0. Then D0 = GL(2; E), and V 0 = fu; u0g; V 00 is empty.
If �u is supercuspidal, B14 implies that there exists a cuspidal representation �D

of D0(A ) which is D(A )-distinguished, whose component at u is the given one, and

whose component at u0 is supercuspidal (there are Du0 -distinguished supercuspidal

GL(2; Eu0)-modules by [F8]). If �u is special then we can construct a cuspidal

representation of the unitary group in two variables associated to E=F which is

anisotropic at u; u0, whose component at u is special, and whose component at

u0 is supercuspidal. As in [F8] we deduce that the unstable lift �D to D0(A ) is

cuspidal and D(A )-distinguished, with the required components at u; u0. Applying

C12 with this �D we obtain (7). The r-character relation follows from (7) on using

the r-Weyl integration formula.
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In particular, if �u is a distinguished square-integrable representation of G0u,

there exists an r-discrete function fu (which has an r-matching r-discrete function

fDu ) with L�u (fu) 6= 0. To prove one of the sides of C1, we need this property also

for Du-distinguished non-square-integrable representations of G0u.

C14. Proposition. The r-character of the induced representation I(�; ��1) of

G0u is not identically zero on the r-elliptic-regular set in G0u precisely when the

restriction �jF�u of � to F�u is nontrivial.

Proof. This is proven in [H3]; the vanishing of the r-character on the r-elliptic-

regular set when �jF�u = 1 is shown in B19.

Proof of C1. Suppose that �D isD(A )-distinguished, namely that c(�D) 6= 0. Then

each �Dv isDv-distinguished. By B8 we may choose r-regular f
D
v with L�Dv (f

D
v ) 6= 0.

By A4 there exists an (r-regular) r-discrete fv which r-matches f
D
v . Applying C12,

since the left side is non-zero, so is the right, and c(�) 6= 0, implying that � is

G(A )-distinguished.

In the opposite direction, suppose that � is G(A )-distinguished, and �v is Dv-

distinguished at every place v 2 V 0, but not of the form I(�; ��1) with �jF�v = 1 for

any v 2 V 0. The last supposition means that in addition to being Gv-distinguished,
at each v 2 V 0 the representation �v of G0v is either square-integrable or of the form
I(�; ��1) with �jF�v 6= 1, but it is not of the form I(�1; �2), �i : E

�
v =F

�
v ! C � ,

�1 6= �2. By C13 and C14 there exist r-discrete fv with L�v (fv) 6= 0 for every v

in V 0. By A4 there exist r-matching r-discrete fDv on D0
v = G0v. Applying C12, we

have c(�) 6= 0 by assumption, and for this choice of fv, the right side is non-zero.

The same is true for the left side. Hence c(�D) 6= 0 and �D is D(A )-distinguished,

as required.

Remark. (1) The proof of C12 can be adapted in an obvious fashion to imply that

C7(ii) is zero. In fact, for fw as in C11, the part corresponding to �1 = �2 in C7(ii)

is zero by the choice of fw. The case where V 00 contains at least two elements is

discussed by local means in [JL], (9.5), pp. 305/6.

(2) The proof of C12 can also be adapted to show that (C7(i))=(C8(i)), further

that tr �(�; f) = tr �D(�; fD) for all � : A �E =A
�E� ! C � with �2 = !0, and that

tr �v(�v; fv) = tr �Dv (�v; f
D
v ) when Dv is an anisotropic form of Gv. For this local

statement, note that given a local character �u of E�u =F
�
u and a place u0 which

splits in E, there is a global character � with this component at u and such that �

is unrami�ed outside u and u0. The character identity at a split place, for example

u0, is easy to prove.

(3) An alternative proof of C1 � but only in the case where V 00 is empty � can

be given on working out an analogue of [F8], in the context of an inner form of

the unitary group G = U(2; E=F ) of that paper, and comparing this analogue with

the results of [F8] in the quasi split case. All technical di�culties have already

been overcome in [F8]. Interesting identities of \Whittaker-Period" distributions

(DW�v; v of [F8], p. 168) will follow, instead of the identity (7) of C13. We need
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V 00 to be empty since D0(A ) must contain the unipotent upper triangular subgroup

for the Fourier summation formula of [F8] to exist.

(4) In [H3] it is shown that for each unitary �v : E�v ! C � with �v = �v there

is c > 0 such that for r-corresponding r-regular 
D and 
, and t 2 R, we have

�Dt (

D) = �c�t(
) where �Dt is the r-character of I(�v�

it
v ; �

�1
v ��itv ) with respect

to Dv, while �t is its r-character with respect to Gv.

D. Smoothness of the r-character.

Let E=F be a quadratic extension of non-archimedean local �elds, H a division

algebra with center F , and H 0 = H 
F E. Then H 0 = M(m;H 00) for some m

and some division algebra H 00 with center E. For simplicity we assume that the

residual characteristic of F is not two. Fix a positive integer n and let (�; V ) be

an irreducible, admissible representation of G0 = GL(n;H 0). Assume that there

exists a non-zero linear form ~L on V which is invariant under G = GL(n;H). Then

there also exists a non-zero linear form L on the space of the contragredient ~�. Up

to scalars, these forms are unique and in this section the exact normalizations are

irrelevant. Consider the G-biinvariant distribution de�ned by

L� (f) = h�(f)L; ~Li
for f 2 C1c (G0), where h ; i is the canonical pairing on V � ~V . We will prove:

D1. Proposition. There exists a locally constant G-biinvariant function �� on

the set of r-regular semisimple elements of G0 such that

L� (f) =

Z
G0
f(g)��(g) dg

whenever f 2 C1c (G0) is supported on the set of r-regular semisimple elements.

The case of GL(2) has been discussed in [H1], following closely Howe's ideas in

[Ho]. Our proof is similar.

Let RF , RE , R, R
0 and R00 denote the maximal compact subrings of F , E, H,

H 0 and H 00, respectively. Thus R0 =M(m;R00). Let d2 = [H 00 : E] and let e be the

rami�cation index of E=F . According to Proposition 5 of I.4 in [W], we can choose

local uniformizers �F 2 RF , �E 2 RE , �0 2 R and � 2 R00 such that �E = �d, �F =

�eE and �e = �m0 . When r 2 Z, we take Lr = �rM(n;R0) = �rM(mn;R00). When

r is positive, Kr = 1 + Lr de�nes a group called the r-th congruence subgroup of

GL(mn;R00). The set of equivalence classes of irreducible, unitary representations

of Kr is denoted by K̂r. Fix, for the remainder of this section, a distinguished

representation (�; V ), as above. Fix also a positive integer r0. If � 2 K̂r0 , we let

V� denote the corresponding isotypic component of V . Let E� be the projection of

V onto V� which commutes with �. De�ne a function ��(g) = hE��(g)L; ~Li on G0.
Fix a Cartan subgroup T of G. The centralizer T 0 of T in G0 is a Cartan subgroup

of G0. Fix a compact, open subset X of T 0 consisting of regular elements. If there

exists a matrix g in G0 such that g�g�1 2 X and ��(g) 6= 0 then we will say that �

contributes to ��. This notion depends on the choices of X and r0.
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D2. Proposition. Only a �nite number of � contribute to �� for �xed X and r0.

Let us quickly show how this proposition implies Proposition D1. Let Y be the

�nite set of � which contribute to ��. Given g 2 G0 such that g�g�1 2 X, we can

choose a compact, open subgroup K � Kr0 such that kg�g
�1�k�1 2 X and �(k)~v = ~v

for all k 2 K and ~v 2 ��2Y ~V�. Then ��(kg) = ��(g) for all � 2 Y and k 2 K. Now

if f is supported on the set of g such that g�g�1 2 X, then L� (f) = h�(f)L; ~Li is
equal to

P
�2K̂r0

hE��(f)L; ~Li =
P
�2Y

R
f(g)��(g)dg, and Proposition D1 would

follow.

Let us make a further reduction. If � 2 K̂r0 then the conductor of � is the

subgroup Kr with r minimal such that Kr is contained in the kernel of �.

D3. Proposition. There exists a positive integer n1, depending only on X and

r0, such that if � has conductor r and � contributes to �� then r < n1.

If this is so, then � will be a representation of the �nite group Kr0=Kr. Hence

only a �nite number of � can contribute. We are therefore reduced to �nding such

an n1.

Let M =M(n;H) and M 0 =M 
F E =M(mn;H 00). Fix an additive character

 F of F with conductor RF . If A is a closed additive subgroup of M 0, de�ne

A� = fx 2M 0 j  F (trM 0=F (xy)) = 1 for all y 2 Ag:

Pontryagin duality implies that A�� = A and (A1 \ A2)
� = A�1 + A�2, when A, A1

and A2 are closed subgroups of M 0.

D4. Lemma. If r is a rational integer, then L�r = L�r�d+1.

Proof. We note, �rst of all, that the character  E =  F �trE=F of E has conductor

RE . The condition which x 2 M 0 must satisfy in order to lie in L�r is equivalent

to  E(trM 0=E(�
rxy)) = 1 for all y 2 M(mn;R00). Our claim now follows from

Corollary 1 to Proposition 5 of X.2 in [W].

D5. Lemma. The set M� consists of all x 2M 0 such that �x = �x.

Proof. In order for x 2 M 0 to belong to M�, it is necessary and su�cient that

 F (trM 0=F (xy)) = 1 for all y 2 M . Equivalently,  F (trM=F ((x+ �x)y)) = 1 for all

y 2M , but this is the same as x+ �x = 0.

D6. Corollary. If r is a rational integer, then (Lr \M)� = L�r�d+1 +M�.

Assume that X and r0 are �xed as above and �x � 2 K̂r0 which contributes

to ��. Choose g such that g�g�1 2 X and ��(g) 6= 0. It is easily shown that if

r and s are positive integers such that r � s � 2r, then x 7! 1 + x de�nes an

isomorphism of groups Lr=Ls ' Kr=Ks. In particular, Kr=Ks is abelian. Let Kr2

denote the conductor of � and let r1 = max(r0; [(r2+1)=2]), where [x] is the greatest
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integer � x. Then Kr1=Kr2 is abelian. Consequently, the restriction of � to Kr1

decomposes as a direct sum of characters  . The non-zero vector v0 = E��(g)L

in V� has a corresponding decomposition v0 =
P
v . There exists a character  0

such that hv 0 ; ~Li 6= 0.

Imitating Howe's de�nition (in section 2 of [Ho]) of the \dual blob" of  0, we

take

�( 0) = fx 2M 0 j  0(1 + y) =  F (trM 0=F (xy)) for all y 2 Lr1g:
Given x; y 2 �( 0), then x � y 2 L�r1 . It follows that �( 0) is a coset of the form

x + L�r1�d+1. Similarly, one can de�ne the dual set �( ) for each character  

occurring in the restriction of � to Kr1 . There is a \coadjoint" action of Kr0 on the

characters of Kr1 de�ned by Ad�(h) (k) =  (h�1kh).

D7. Lemma. The group Kr0 acts transitively on the set of characters occurring

in the restriction of � to Kr1 .

Proof. Suppose  1 and  2 are two such characters. The irreducibility of � implies

the existence of h 2 Kr0 such that E1�(h)E2 6= 0, where Ei is the projection onto

the space of  i. Then E1�(h)E2 must intertwine Ad
�(h) 2 and  1.

The previous lemma implies that the conductor of any  occurring in �jKr1 must

be identical to the conductor Kr2 of �. Moreover, the dual sets �( 1) and �( 2) of

any two of these characters must be conjugate by any element of Kr0 .

Now let N denote the set of nilpotent elements in M 0. The next result has been

proven by Howe in the context of GL(n) (Lemma 2.4 in [Ho]). The same proof

works for the more general case which we consider.

D8. Lemma. For every integer r, AdG0(Lr) � Lr +N .

This is needed for the following:

D9. Lemma. There exists a positive number n2, depending only on r0 and X,

such that if r2 � n2 then �( 0) contains a nilpotent element.

Proof. Fix, independently of the choice of �, another representation �0 2 K̂r0 which

occurs in �. Let Kr0 be its conductor. The irreducibility of � implies that there

exists h 2 G0 such that E��(h)E�0 6= 0. Then E��(h)E�0 intertwines the restriction

of � to Kr0 \ hKr0h
�1 with the trivial representation. There is a character  of

Kr1 which occurs in � and is trivial on Kr1 \ hKr0h
�1. Now let y belong to �( ).

Then  F (trM 0=F (xy)) = 1 for all x 2 Lr1 \hLr0h�1. Hence y 2 (Lr1 \hLr0h�1)� =

L�r1�d+1 + hL�r0�d+1h
�1 � L�r1�d+1 + L�r0�d+1 +N . If r2 � 2r0 then r1 � r0,

since r1 � [(r2+1)=2]. In this case, y 2 L�r1�d+N . Thus �( )\N is not empty.

But �( 0) must also contain a nilpotent element since it is conjugate to �( ). Thus

n2 = 2r0 satis�es our needs.

This allows us to reduce to the case where �( 0) contains a nilpotent element

when we prove Proposition D3. The following lemmas will also be useful. Recall

that g is introduced after Corollary D6.
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D10. Lemma. The character  0 is trivial on Kr1 \G and on Kr1 \ gGg�1.

Proof. First suppose that k 2 Kr1\G. Then hv 0 ; ~Li = h�(k)v 0 ; ~Li =  0(k)hv 0 ; ~Li.
Thus  0(k) = 1. Now suppose that k 2 Kr1\gGg�1. Then �(k)v0 = E��(k)�(g)L =

E��(g)�(g
�1kg)L = v0. Therefore  0(k)v 0 = v 0 and our claim follows.

D11. Lemma. If x 2 �( 0) then x+ �x 2 L�r1�ed�1 \M .

Proof. An element x 2M 0 belongs to �( 0) precisely when  0(1+y) =  F (trM 0=F (xy))

for all y 2 Lr1 . For such x, we have  F (trM 0=F (xy)) = 1 for all y 2 Lr1 \M ,

since  0 is trivial on Kr1 \ G. Equivalently,  F (trM=F ((x + �x)y)) = 1 for all

y 2 �
�[�mr1=e]
0 M(n;R). Corollary 1 to Proposition 5 of X.2 in [W] implies that

�
�[�mr1=e]
0 (x+ �x) lies in �1�md0 M(n;R). Our claim now follows from the fact that

�m0 = �e.

For each x 2 M 0, we de�ne ord(x) to be the unique integer r such that x 2
Lr�Lr+1. According to the next lemma, giving an upper bound for r2 is equivalent

to giving a lower bound for ord(x) when x 2 �( 0).

D12. Lemma. If x 2 �( 0) then ord(x) = �r2 � d+ 1.

Proof. Suppose x 2 �( 0). Then r2 is the smallest integer such that  F (trM 0=F (xy)) =

1 for all y 2 Lr2 . That is, r2 is the smallest integer such that x 2 L�r2 = L�r2�d+1.

Hence ord(x) = �r2 � d+ 1.

We now proceed to prove Proposition D3. For this, we may as well assume

that �( 0) contains a nilpotent element �, according to D9. Otherwise r2 < n2.

Lemma D10 implies that there exists � 2 gM�g�1 \ �( 0). Put � = � � �. Then

� 2 L�r1�d+1. We have Ad(�gg�1)� + �� = Ad(�gg�1)�+ ��, or equivalently

Ad(�gg�1)� � � = �(� + ��) + Ad(�gg�1)�+ ��

We can certainly choose a positive integer l such that Ad(x�1)Lr � Lr�l for all

x 2 X and all r. Therefore D11 implies Ad(�gg�1)� � � 2 L�r1�d1 , where d1 =

max(d+ l � 1; ed+ 1). On the other hand, we can choose an integer b, as in [Ho],

so that for any � 2 N and x 2 X we have ord(Ad(x�1)� � �) � ord(�) + b.

Consequently,

�r2 � d+ 1 + b = ord(�) + b � ord(Ad(�gg�1)� � �) � �r1 � d1:

Suppose r1 = r0. Then r2 is bounded above by r0 + d1 � d + 1 + b. Otherwise

r1 = [(r2 + 1)=2] and r2 � 2(d1 � d + 3 + b). This completes the proof of D3. As

explained above, D1 and D2 follow from D3.

Appendix. Algebraic cycles.

Theorem 0.3 can be used to establish Tate's conjecture [T] on algebraic cycles for

some new Shimura surfaces, following the reduction of Lai [L] to the work of Harder-

Langlands-Rapoport [HLR]. In this appendix, we state the result and indicate the
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changes which have to be made in [L]; we do not record a comprehensive exposition

to this proof. Our only contribution is representation theoretic, asserting that

given a GL(2; A )-distinguished cuspidal representation of GL(2; A F ) there exists a

suitable � in the sense that the proofs of [HLR] and [L] apply � inner form D(p) of

GL(2) over Q, such that the corresponding representation of D(p)(A F ) exists and

is D(p)(A )-distinguished.

We �rst introduce the Shimura surface in question. Let F be a real quadratic

�eld extension of the �eld Q of rational numbers, and G an anisotropic inner form

of GL(2) over F which splits at the two real places of F , and which has the property

that for every �nite prime p in Q we have
P
v invvG(Fv) = 0, where the sum ranges

over all places of F over p. Thus G(F ) is the multiplicative group of a quaternion

division algebra M central over F which splits at the archimedean places, andP
vjp invvM = 0 for all primes p; here invv denotes the invariant of M at v (see

Weil [W]). Thus M = D 
Q F , where D is a division algebra over Q which splits

at the archimedean place. Again, G is rami�ed only at �nite places which split

in F=Q , and then the rami�cation occurs at both places above the Q -prime in

question. Denote by G0 the algebraic group obtained from G on restricting scalars

from F to Q .

Let A denote the ring of Q -adeles. Then G0(Q) = G(F ), G0(R) = GL(2;R) �
GL(2;R), G0(A ) = G(A F ), and G

0(F ) = f(x; x);x 2 G(F )g where x 7! x denotes

the action of the non-trivial element of Gal(F=Q ). Let h : C � ! G0(R) be the

R-monomorphism which maps i =
p�1 to

��
0

�1
1
0

�
;
�

0
�1

1
0

��
. Let K1 be the cen-

tralizer in G0(R) of the image of h. Let K be a su�ciently small compact open

subgroup of G0(A f ), where A f is the ring of �nite Q -adeles. The data (G0; h;K)

de�nes (see Deligne [D]) a proper smooth (\Shimura") surface SK over Q whose

space of complex points is

SK(C ) = G(F )nG0(A )=K1K:

We shall be concerned with Tate's conjecture for the surface SK , and the (�xed)

absolutely irreducible �nite dimensional representation (�; V ) of G0 over Q . Note

that the conjecture in [T] is stated with � = 1 only , but we follow the exposition of

[HLR], see p. 66. The representation (�; V ) de�nes an `-adic sheaf V�(Q ` ) on the

�etale site SK �Q Q , and one has the associated `-adic cohomology vector spaces

Hj = Hj(SK �Q Q ; V�(Q `)):

Here Q is an algebraic closure of Q , and we �x embeddings Q ,! Q ` ,! C . The Ga-

lois group Gal(Q =Q) acts on Q , hence on SpecQ , on SK�QQ (via the second factor),

and on the cohomology spaces. Denote the action on Hj by �j. Note that Hj = 0

unless j = 0; 2; 4, and put � = �0��2��4. Following [D] and [HLR] (but not [L]), in
the de�nition of the canonical model we choose the reciprocity law homomorphism

of class �eld theory which associates to the Frobenius substitution Frp the inverse

p�1 of a local uniformizer. Denote by � : Gal(Q =Q ) ! Gal(Q( `1
p
1)=Q) ' Z�` the

cyclotomic character corresponding to the absolute value character �(x) = jxj of
the idele class group A �=Q� .
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Let d be a rational integer with �(q) = q2d for q 2 Q� � G(F ). Let ! be a

character of �nite order of Gal(Q =Q). Introduce the space

T (!) = fx 2 H2(SK �Q Q ; V�(Q `)); �
2(�)x = ��1�d(�)!�1(�)x; � 2 Gal(Q =Q )g

of Tate-cycles, as in [HLR], (2.5), p. 66. The Q ` -dimension t(!) of T (!) occurs in

Tate's conjecture stated below.

The next ingredient in Tate's conjecture is the Q ` -dimension a(!) of the space

A(!) = A \ T (!) of !-algebraic cycles, which we proceed to de�ne. Let E be an

abelian extension of Q , and A1(SK �Q Q ; E) the Q ` -span of the curves in SK �Q Q

which are de�ned over E. Put A1 = [EA1(SK �Q Q ; E), where the union ranges

over all abelian extensions of Q in Q . Then A is the image of the cycle map

A1 ! H2(SK �Q Q ; V�(Q ` )).

The last ingredient in the statement of the Tate conjecture concerns the L-

function

L(s; SK; !) =
Y
p62S0

det[1� p�s!(Frp)�
2(Frp)]

�1;

where the product ranges over all primes outside a �nite set S0 which contains

all places where ! or �2 ramify, and 1. This product converges in some half

plane Re(s) >> 0, and has analytic continuation as a meromorphic function to a

neighborhood of s = d + 2. Denote by p(!) the order of pole at s = d + 2; see

[HLR], (2.6), p. 66. It is independent of the set S0.

Theorem. For any G, h, K, (�; V ), ! as above, we have a(!) = t(!) = p(!).

This is the same as the conjecture of Tate [T] for the scheme SK over Q , in the

case where � = 1. Let V 00 be the set of Q -places which split in F and where G is

rami�ed. In the case where V 00 has even cardinality, the Theorem coincides with

Theorem 2.7 of [L]. The work of [L] consists of reducing the proof of [L], (2.7), to the

proof in [HLR] of the analogous conjecture for the Shimura variety SK associated

with the group GL(2)=F , rather than with its inner forms.

Since the scheme of [HLR] is no longer proper, [HLR] work instead with inter-

section `-adic cohomology. In the case considered in [L], where V 00 is an even set

of places of Q which split in F , let D be a quaternion division algebra central over

Q which rami�es precisely at the places in V 00. Then G(F ) = (D 
Q F )�, and

the main tool used in [L], to reduce the proof of [L], (2.7), to that of [HLR], is

Lemma 4.5 of [L], which is the same as the Theorem of [JL], and also the same as

the special case where V 0 is empty in our Theorem 0.3. The multiplicative group

of this D is denoted by H 0 in [L], x4.
To prove the remaining case of the Theorem, where the set V 00 has odd cardi-

nality, let p be a �nite Q -prime which stays prime in F , and put V (p) = V 00 [ fpg.
Note that p 62 V 00 since V 00 consists of Q -places which split in F . As in [L], (8.3),

�x an inner form D(p) of GL(2) over Q which is rami�ed precisely at the places of

V (p). Then D(p)(F ) = G(F ). We can work with D(p)(F ), for any p which does not
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split in F , instead of the H 0 of [L], x4, and the proof there is easily adjustable to

rephrase [L], Corollary 4.4, as asserting that the Hirzebruch-Zagier number Z(!; �0)

is positive if and only if the automorphic representation �0 ofG0(A ) in [L], Corollary

4.4, is distinguished with respect to D(p)(A ) and !, for some p (i.e. T�0 6= 0 where

T�0f is de�ned in the lines prior to [L], Lemma 4.3, with H 0 replaced by D(p)(F )).

The �0 of [L], x4, is denoted by �D
(p)

in Theorem 0.3, and both [L], Lemma

4.5, and Theorem 0.3, denote the corresponding automorphic representation of

GL(2; A F ) by �. Theorem 0.3 asserts that �D
(p)

is D(p)(A )-distinguished if and

only if � is GL(2; A )-distinguished, and the component �p(' �D
(p)

p ) of � at p is

not of the form I(�1; �2) with characters �i of F
�
p trivial on Q�p . Note that only

a �nite number of automorphic representations �0 occur in the decomposition ([L],

x2.4) of the cohomology space Hj , since the representation � �xes the in�nitesimal

character and the compact open subgroup K �xes the rami�cation at all �nite

places.

We need to �nd a prime p0 which stays prime in F for which Lemma 4.5 of [L]

remains true provided that H 0 is replaced by D(p0). Given �0 (which occurs in Hj),

if such p0 does not exist then at almost all places p of Q which stay prime in F the

component �0p of � would be of the form I(�1; �2), where �i are characters of F
�
p

which are trivial on Q�p . At almost all p the component �
0
p is unrami�ed, namely

the �i are unrami�ed, and consequently �1 = �2 = 1. At almost all places p which

split in F=Q , since the component is distinguished (and unrami�ed), it is of the

form I(�1; �2) � I(��1
2 ; ��1

1 ). To show that p0 does exist, we will now show the

following:

Lemma. No cuspidal �0 has components as described above.

Proof. Consider �rst the (partial) twisted tensor L-function L(t; �0; r) of [ F5]. At

almost all p, the local factor is

�
1� p�t

��2
�
1� �1

�2
p�t
��1 �

1� �2

�1
p�t
��1

if p splits and (1� p�t)�2(1� p�2t)�1 if p stays prime in F=Q .

Consider also the symmetric square L-function L(t; �0; Sym2) of [GJ] or [ F9].

At the places which split and Sym2 �0p = I(�1=�2; 1; �2=�1)� I(�1=�2; 1; �2=�1) is
unrami�ed, the local factor is

�
1� p�t

��2
�
1� �1

�2
p�t
��2�

1� �2

�1
p�t
��2

:

At almost all primes where p stays prime the local factor associated with Sym2 �0p =

I(1; 1; 1) is (1� p�2t)�3.

Hence the quotient
L(t; �0; r)2

L(t; �0; Sym2)
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is the product of (1�p�t)�2 over almost all p which split, and of (1�p�t)�4(1�p�2t)

over almost all p which stay prime in F=Q . This can be expressed as a product

over almost all p as follows:

Y
p

(1� p�t)�3 �
Y
p

(1� �(p)p�t):

Here � is the quadratic character of A �=Q� associated with the quadratic extension

F=Q , so that �(p) = 1 if p splits and �(p) = �1 if p stays prime. Consequently, we
have

(�) L(t; �0; r)2L(t; �) = �(t)3L(t; �0; Sym2):

The � function on the right has a simple pole at t = 1. The representation

Sym2 �0 of GL(3; A ) is cuspidal, or is induced from a cuspidal representation of a

Levi subgroup of a maximal parabolic of the form �1 � �(�=��), where �1 6= 1 is a

quadratic character of A �=F� associated with a quadratic extension F1=F , and �

is a character of A �F1=F
�
1 (see [ F9]). In any case, by [ JS1] and [ JS2] the function

L(t; �0; Sym2) has neither poles nor zeroes on Re(t) = 1. The function L(t; �) is

entire, and has no zeroes on Re(t) = 1 by [ JS1]. By [ F5], the twisted tensor

L-function L(t; �0; r) has at most a simple pole at t = 1, since 1 splits in F . We

obtain a contradiction to (�), which asserts that L(t; �0; r)2 has a pole of order 3 at

t = 1. The lemma follows.

It follows from the Lemma that the required p0 does exist, in fact there is an

in�nite number of such p0's. For any such p0, Lemma 4.5 of [L] remains true

provided thatH 0 is replaced byD(p0). With this clari�ed, the proof of [L] establishes

also our Theorem. Indeed, by [HLR] and [L], (5.1), in the notations of [L], (2.6),

we have B(!; �D
(p)

) = B(!; �) � 1 with equality if and only if � is GL(2; A )-

distinguished. The same conclusion holds by [L], (4.7), with B replaced by C (in

the notations of [L], (2.6)). Further, if �D
(p)

is D(p)(A )-distinguished for some p

then Z(!; �D
(p)

) > 0, and by the Lemma if � is GL(2; A )-distinguished then there

exists a p such that �D
(p)

is D(p)(A )-distinguished.
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