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Abstract. A theorem of Grothendieck asserts that over a perfect �eld k of cohomological

dimension one, all non-abelian H2-cohomology sets of algebraic groups are trivial. The purpose

of this paper is to establish a formally real generalization of this theorem. The generalization

| to the context of perfect �elds of virtual cohomological dimension one | takes the form

of a local-global principle for the H2-sets with respect to the orderings of the �eld. This

principle asserts in particular that an element in H2 is neutral precisely when it is neutral

in the real closure with respect to every ordering in a dense subset of the real spectrum of

k. Our techniques provide a new proof of Grothendieck's original theorem. An application to

homogeneous spaces over k is also given.

0. Introduction.

Let k be a �eld with separable closure ks and Galois group �k = Gal(ks=k). We assume

that k is perfect throughout this introduction; then ks is an algebraic closure of k. Let G be

an algebraic group over k. (By this we always mean a smooth group scheme of �nite type

over Spec k.) Recall that a homogeneous G-space is a nonempty smooth algebraic scheme

X together with a (right) action by G on X, both X and the action being de�ned over k,

such that the action of G(ks) on X(ks) is transitive. The G-space X is called a principal

homogeneous G-space (or a G-torsor) if in addition this last action is free, i.e. has trivial

stabilizer subgroups. The non-abelian Galois cohomology set H1(k;G) = H1(�k; G(ks)) is

the set of isomorphism classes of principal homogeneous G-spaces over k. A well known

theorem of Steinberg (\Conjecture I" of Serre; see [S2], III, x2.3, Thm. 1') asserts that when

k has cohomological dimension at most one (cd(k) � 1) and G is connected and linear, the

cohomology set H1(k;G) is trivial. In other words, each principal homogeneous G-space is

trivial, which means, has a k-point.

There is a general de�nition of the second non-abelian cohomology set in terms of gerbes

(by Grothendieck, Dedecker, Giraud [G]; see also Deligne-Milne [DM], Breen [Br]). Springer

[Sp] constructed a non-abelianH2-set in terms of group extensions; this set has an equivalent

description in terms of 2-cocycles. His approach was recently taken up again by Borovoi [B1].

Here is a brief review of this setup: Given an algebraic group G over ks, let SOut(G=k) be

the quotient of the group SAut(G=k) of k-semilinear automorphisms of G by the subgroup

Int(G) of inner automorphisms of G. A k-kernel in G is a homomorphic section � of the

natural homomorphism SOut(G=k) ! �k which satis�es a certain continuity condition.

(The notion of continuity is delicate.) The set H2(k;G; �) classi�es group extensions of

G(ks) by �k compatible with the kernel �. It may be empty. If it is not, it is a principal
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homogeneous set under the abelian group H2(k; Z), where Z is the center of G, considered

as an algebraic group over k by means of �. The elements of H2(k;G; �) which correspond

to split extensions are called neutral. The set of neutral elements is denoted by N2(k;G; �),

and the kernel � is said to be trivial if there exists a neutral element. Theorem 3.5 of [Sp]

| attributed to Grothendieck | asserts that if k is perfect with cd(k) � 1 and G is any

algebraic group over ks, then any k-kernel � in G is trivial, and H2(k;G; �) consists of a

single element which is (therefore) neutral.

The interest in non-abelian H2-cohomology stems at least in part from its relation to

homogeneous spaces. Let G be an algebraic group over k and X a homogeneous G-space,

de�ned over k. To X one associates in a natural way a k-kernel �X in H, where H is the

stabilizer of a ks-point of X, and a class �X in H2(k;H; �X). The class �X is neutral if

and only if X is dominated (over k) by some principal homogeneous G-space. This fact

can be regarded as part of an \exact sequence" relating the Hi-sets of G and H to relative

Hi-sets of G mod H, i = 0; 1; 2; see [Sp], Prop. 1.27.

Grothendieck's theorem therefore implies Springer's theorem, which says: Over a (per-

fect) �eld k with cd(k) = 1, each homogeneous space under an algebraic group G is domi-

nated by a principal homogeneous space under G. Another proof of this fact, also due to

Springer, which does not use non-abelian H2, can be found in [S2], III, x2.4. If the group
G is connected and linear, one can therefore use Steinberg's theorem to conclude that each

homogeneous G-space has a k-point.

In this paper we prove a formally real analogue of Grothendieck's theorem. That is,

we assume that the ground �eld k is perfect and has virtual cohomological dimension one,

vcd(k) � 1. This means that k has some �nite extension K with cd(K) � 1 (one can take

K = k(
p�1)). Our main result specializes to Grothendieck's theorem if cd(k) � 1, which is

equivalent to k being not formally real, i.e. having no orderings. However, even in this case

our proof is independent of the proof given in [Sp]. Typical examples of formally real �elds

with vcd(k) = 1 are function �elds of curves over R, or the power series �eld R((T )); one

can replace R by any real closed �eld here ([S2], II, x3.3). Before we describe our results in
more detail, let us briey review previous work on formally real analogues of the theorems

by Steinberg and Springer.

It was Colliot-Th�el�ene [CT] who proposed to study analogues of the classical Hasse

principle for the function �eld k = R(Y ) of a smooth projective curve Y over R, in which

the role of the local places would be played by the completions kP of k at the R-points P

of Y . As observed by the second author in [Sch], one can consider as local objects the real

closures k� of k with respect to its orderings �. Apart from having technical advantages,

this point of view leads to stronger results. The orderings of k are the points of a compact,

totally disconnected topological space 
k = Sper k, the real spectrum of k. The following

Hasse principle was proved in [Sch]: If k is a perfect �eld with vcd(k) � 1, G is a connected

linear group over k and X is a G-torsor with a k�-point for each � in a dense subset of 
k,

then X has a k-point. An equivalent way of expressing this is that the natural map

H1(k;G) �!
Y

�

H1(k�; G) (�)

is injective, where in the product � ranges over any dense subset of the real spectrum 
k.
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Note that this reduces to Steinberg's theorem if k has no orderings. An important point in

the proof is the notion of locally constant families of local cohomology classes, technically

realized through the construction of a sheaf H1(G) on 
k, and the description of the precise

image of (�) in these terms.

The classical framework for Hasse principles is the context of local and global �elds, and

in particular, of number �elds. Here one has exactly the same sort of Hasse principle for

torsors if the algebraic group G is semisimple and simply connected. This is due to work

by Kneser and Harder in the 60s, and to more recent work of Chernousov on E8. Note that

global or (nonarchimedean) local �elds k have vcd(k) = 2. For torsors under semisimple,

simply connected classical groups (as well as G2 and F4), these results have recently been

generalized to all �elds with vcd(k) = 2, by Bayer-Fluckiger and Parimala [BP1], [BP2].

Assume again that (k is perfect and) vcd(k) = 1. The paper [Sch] contains also the

analogue of Springer's theorem (Thm. 6.5). Namely, if G is an algebraic group over k and

X is a homogeneous G-space such that over each real closure k� there exists a G-torsor

which dominates X (over k�), then there exists a G-torsor over k which dominates X (over

k). The proof used ideas of Springer's second proof in [S2]. Oddly, it needed the Feit-

Thompson theorem on groups of odd order. The question of whether the assumption (of

the existence of local dominating torsors) can be relaxed to a dense subset of 
k, instead

of all of 
k, remained open and was raised in [Sch].

We shall now describe our main result. Assume that k is perfect with vcd(k) � 1, let

G be an algebraic group over ks and � a k-kernel in G. Our extension of Grothendieck's

theorem takes the form of local-global principles for H2(k;G; �). Its main features are:

a) The set H2(k;G; �) contains a neutral element if and only if H2(k�; G; �) contains one

for all � in a dense subset of 
k. In other words, � is trivial if and only if �� is trivial

for all � in a dense subset of 
k.

b) For �, � 2 H2(k;G; �), we have that � = � if and only if �� = �� for all � in a dense

subset of 
k.

c) The element � is neutral if and only if �� is neutral for all � in a dense subset of 
k.

In more technical terms, we construct a sheaf of setsH2(G; �) on 
k which is locally constant

and whose stalk at � is the �nite set H2(k�; G; �). Further we construct a subsheaf N 2(G; �)

of H2(G; �) which is again locally constant and whose stalk at � is the subset N2(k�; G; �)

of H2(k�; G; �). Finally we show that the natural map H2(k;G; �) ! �(
k;H2(G; �)) is

bijective, and its restriction to N2(k;G; �) bijects to �(
k;N 2(G; �)).

The most di�cult step is the proof of c). We also present an alternative approach, which

is technically easier but applies only when G is connected and linear. It is based on Borovoi's

elegant technique of hypercohomological abelianization of the non-commutative H2 ([B1],

[B2]). Both approaches use the technique of shea��ed H1 from [Sch].

As an application of our extension of Grothendieck's theorem, we give a new and simpler

proof to the formally real analogue of Springer's theorem ([Sch], Thm. 6.5). It is the fact

that we know the sheaves H2 and N 2 to be locally constant, which actually allows us to

work with just a dense subset of 
k. In particular, we obtain an a�rmative answer to the

question mentioned above, of whether domination of a homogeneous space locally over a
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dense subset of 
k su�ces to conclude the existence of a dominating k-torsor.

The paper is organized as follows. In Section 1 we introduce kernels and non-abelian H2

for algebraic groups, as well as the subset N2 of neutral elements. Section 2 constructs the

locally constant sheaves H2 and N 2 and studies their properties. The formally real ana-

logues of Grothendieck's theorem are proven in Section 3. Section 4 presents the alternative

approach based on Borovoi's abelianization technique. Finally, applications to local-global

principles for homogeneous spaces are discussed in Section 5.
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exposition. The �rst author thanks also P. Deligne for illuminating correspondence, TIFR,

Bombay, and Tel-Aviv University { in particular J. Bernstein, M. Borovoi, M. Jarden {

for hospitality and interest, and the NSF for the grant INT-9603014. The �rst and second

authors thank NATO for the grant CRG-970133. The third author gratefully acknowledges

the support of Alexander von Humboldt foundation and the hospitality of Universit�at Re-

gensburg.

Notations and conventions

Let k be a �eld with separable closure ks and absolute Galois group �k = Gal(ks=k). The

cohomological dimension cd(k) of k is the largest integer n for which there is a �nite discrete

�k-module A with Hn(�k; A) 6= 0 (resp. is 1 if no largest such n exists). The virtual

cohomological dimension vcd(k) is the common cohomological dimension of all su�ciently

large �nite separable extensions of k; equivalently, vcd(k) = cd k(
p�1). Note that vcd(k) <

cd(k) can happen only if k has an ordering, in particular, only if char(k) = 0 ([S2], II, Prop.

4.1). Generally we do not assume the base �eld k to be perfect, but our main results will

need this hypothesis.

The real spectrum of k, which we denote here by 
k and which is often written Sper k,

is the topological space of all orderings � of k. Its topology is generated by the subsets

f� 2 
k: a > 0 at �g for a 2 k. This is a boolean (= compact and totally disconnected)

topological space. Given � 2 
k, one denotes the real closure of k at � by k�. Note that


k is naturally homeomorphic to the topological quotient space of Inv(�k) (the space of

elements of �k of order two) modulo conjugation by �k. See e.g. [Scha], ch. 3, x5, for some

basic information on 
k.

Throughout the paper, by an algebraic group over k we mean a smooth group scheme

of �nite type over Spec k. If char(k) = 0, the smoothness assumption holds automatically

([DG], II, x6, no. 1). An algebraic group over k which is absolutely reduced (reduced over

an algebraic closure k of k) is smooth over k ([DG], II, x5, 2.1(v)).

1. Non-commutative H2 for algebraic groups.

In this section we de�ne kernels and noncommutative H2 for (not necessarily linear) alge-

braic groups. We will follow mainly Borovoi [B1], who rewrote part of Springer [Sp], but

only for linear groups and �elds of characteristic zero. For a general account in terms of

gerbes see Giraud [G], Deligne-Milne [DM], Breen [Br].

(1.1) Let k be a �eld and ks a �xed separable closure of k. Denote the pro�nite group
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Gal(ks=k) by �k, or just by �. Given s 2 �k, let s
� denote the morphism Spec ks ! Spec ks

induced by s. Note that (st)� = t�s�.

(1.2) Let G be an algebraic group over ks. Denote by Aut(G) the group of automorphisms

of G (where G is considered as a group scheme over ks). Given s 2 �k, let s�G denote

the base change of p:G! Spec ks by s
�. Then s�G is another group scheme over Spec ks,

which as a ks-scheme is isomorphic to (s�)�1
� p: G! Spec ks.

An s-semilinear automorphism of G is by de�nition an isomorphism of algebraic groups

over ks from s�G to G. A k-semilinear automorphism ' of G will mean an s-semilinear

automorphism of G for some s 2 �k. Note that s is uniquely determined by ', since

s� = p � ' � e, where e: Spec ks ! G is the identity point.

The set of k-semilinear automorphisms ofG forms a group which we denote by SAut(G=k).

If ': s�G! G (resp.  : t�G! G) is an s-semilinear (resp. t-semilinear) automorphism of G,

then the product  �' is by de�nition the t �s-semilinear automorphism  � t�': t�s�G! G

of G. Sending an s-semilinear automorphism to s de�nes an exact sequence

1! Aut(G)! SAut(G=k)! �k: (1)

The last map need not be surjective in general.

(1.3) There is a natural action of the group SAut(G=k) on the group G(ks), given as

follows. For s 2 �k let �s: G(ks) ! (s�G)(ks) be de�ned by �s(x) := x � s�. Then

�s is an isomorphism of groups. If ': s�G ! G is an s-semilinear automorphism, de�ne

'�: G(ks)! G(ks) by composing ' with �s, i.e. '�(x) := ' �x � s� for x 2 G(ks). Then '�
is an automorphism of the group G(ks); moreover ( ')� =  � �'� if  is another semilinear

automorphism of G.

Thus we have de�ned a group homomorphism SAut(G=k) ! AutG(ks), ' 7! '�. In

general this homomorphism need not be injective, e.g. if G is a �nite constant group scheme.

Usually we will simply write '(x) instead of '�(x).

Observe that SAut(G=k) acts also on ks[G] := �(G;OG). In this case the action is given

by '�(a) := a � ' (' 2 SAut(G=k), a 2 ks[G]; here we regard ' as a morphism of schemes

G! G which satis�es p � ' = (s�)�1
� p).

(1.4) A k-form of G is an algebraic group G over k together with an isomorphism G �=
G �k ks of algebraic groups over ks. If a k-form of G is �xed, the group G is also said

to be de�ned over k. Any k-form of G de�nes a splitting �k ! SAut(G=k) of (1), by

s 7! id�k(s
�1)�. For a converse see (1.15) below.

(1.5) Given x 2 G(ks) we write int(x) for the inner automorphism y 7! xyx�1 of G. Let

Int(G) be the subgroup of Aut(G) consisting of the int(x), x 2 G(ks). Thus Int(G) =

G(ks)=Z(ks) where Z is the center of G. The subgroup Int(G) is normal in SAut(G=k).

Let

Out(G) := Aut(G)= Int(G)

and

SOut(G=k) := SAut(G=k)
�
Int(G):
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Taking (1) modulo Int(G) we get the exact sequence

1! Out(G)! SOut(G=k)! �k: (2)

(1.6) De�nition. We equip SAut(G=k) with the weak topology with respect to the family

of evaluation maps evx: SAut(G=k)! G(ks), ' 7! '(x) (x 2 G(ks), see (1.3)), where G(ks)
is given the discrete topology. A map t 7! ft from a topological space T to SAut(G=k) will

be called weakly continuous if it is continuous with respect to this topology. This is the case

if and only if for every x 2 G(ks) the map T ! G(ks), t 7! ft(x) is continuous (= locally

constant), if and only if the natural map T �G(ks)! G(ks) is continuous.

(1.7) Proposition. Let G be an algebraic group over ks and f : �k ! SAut(G=k) a set-
theoretic section of (1). Let K � k be a �nite Galois extension such that there is a K-form
eG of G. Let �: �K ! SAut(G=K) � SAut(G=k) be the splitting of (1) associated with eG.
Consider the following conditions:

(i) f is weakly continuous (cf. (1.6));

(ii) for every s 2 �k the map

�K ! Aut(G); t 7! ��1
t f�1

s fst (3)

is locally constant.

Then (ii) implies (i), and the converse holds if char(k) = 0.

Moreover, if G is linear and char(k) is arbitrary, (ii) is equivalent to

(iii) for every a 2 ks[G] the map

�k ! ks[G]; s 7! f�s (a) (4)

is locally constant.

Proof. Let K, eG and � be as in the proposition. Fix s 2 �k and write 't := ��1
t f�1

s fst for

t 2 �K , so that fst = fs�t't. If the map �K ! Aut(G), t 7! 't is locally constant then

obviously the map �K ! G(ks), t 7! fst(x) is locally constant for every x 2 G(ks). From
this one concludes that (ii) implies (i).

Assume that G is linear. Since ks[G] is a �nitely generated ks-algebra, the map (3) is

locally constant if and only if for every a 2 ks[G] the map �K ! ks[G], t 7! '�t (a) is locally

constant. On the other hand, (iii) can be reformulated as saying that for every s 2 �k and

every a 2 ks[G] the map �K ! ks[G], t 7! f�st(a) is locally constant. Since fst = fs�t't, it

is clear that (ii) and (iii) are equivalent.

Finally assume char(k) = 0. Then the implication (i)) (ii) follows from the next lemma,

from which it follows that in order to verify that t 7! '(t) is locally constant, we only need

to check that t 7! 't(x) is, for �nitely many x 2 G(ks):
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(1.8) Lemma. Let k be an algebraically closed �eld of characteristic zero. Then for every

algebraic group G over k there exists a �nitely generated subgroup S of G(k) which is Zariski

dense in G.

Proof. We can assume that G is connected. Let H be the (unique) maximal element among

the identity connected components of Zariski closures of �nitely generated subgroups of

G(ks). If H 6= G then G=H is a non-trivial connected algebraic group for which the group

(G=H)(k) is locally �nite (i.e. every �nitely generated subgroup is �nite). But every non-

trivial connected algebraic group over k contains an element of in�nite order. This is obvious

for G a and G m , and is known for abelian varieties (e.g. [FJ], Theorem 10.1), from which

the general case follows. Therefore we must have H = G.

(1.9) Remarks.

1. Lemma (1.8) is also valid if k is a separably closed �eld of positive characteristic which

is not the algebraic closure of a �nite �eld, and if G has no nontrivial unipotent quotient

groups (same proof). Therefore the implication (i) ) (ii) of Proposition (1.7) holds in this

case as well.

2. In characteristic zero, Lemma (1.8) implies that the weak topology on Aut(G) (cf. (1.6))

is discrete. In positive characteristics this is in general not true. For example, the group

G = G a�G a has automorphisms of the form (x; y) 7! �
x+P (y); y

�
where P is any additive

polynomial. These automorphisms form a subgroup of Aut(G) which is not discrete.

From this example it follows easily that in (1.7), (i) does not always imply (ii) and (iii)

if char(k) = p > 0.

(1.10) De�nition. A section f of (1) will be called continuous if it satis�es condition (ii)

of Proposition (1.7). If f is continuous then it is weakly continuous, the converse being true

if char(k) = 0 (1.7).

(1.11) De�nition. A k-kernel in G is a group homomorphism �: �k ! SOut(G=k) which

splits (2) and lifts to a continuous map f : �k ! SAut(G=k). A pair L = (G; �) consisting

of an algebraic group G over ks and a k-kernel � in G will simply be called a k-kernel.
Other terms would be k-lien or k-band [G], [DM], [Br].

(1.12) Lemma. The weak topology on Int(G) is discrete.

Proof. We have to show that there is a �nitely generated subgroup S of G(ks) whose

centralizer is the center of G(ks). Since the Zariski topology is noetherian, there is a

minimal group among all centralizers of �nitely generated subgroups of G(ks). This group

is necessarily the center of G(ks).

(1.13) Corollary. Let � be a splitting of (2), and let f , f 0 be two weakly continuous maps

from �k to SAut(G=k) each of which lift �. If f is continuous then so is f 0.

Proof. This follows from Lemma (1.12).
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(1.14) Remarks. We add a few comments here on other de�nitions of kernels of algebraic

groups found in the literature. Let G be an algebraic group over ks.

Springer ([Sp], p. 176, bottom) de�nes more generally K=k-kernels for any Galois exten-

sion K=k. We consider his de�nition only in the case K = ks. In [Sp], a ks=k-kernel in

G is a group homomorphism �k ! OutG(ks), s 7! �(s), such that �(s) is induced by an

s-semilinear automorphism of G (s 2 �k) and such that � is a locally constant map. Assume

| as is done in [Sp], end of p. 176 | that the canonical map SAut(G=k) ! AutG(ks)

is injective, cf. (1.3). Then SOut(G=k) ! OutG(ks) is also injective, so � can be viewed

as a locally constant homomorphism �k ! SOut(G=k). But then a fortiori its composi-

tion with the canonical projection SOut(G=k)! �k is locally constant. By de�nition, this

composition is the identity of �k, which implies that �k is discrete.

Borovoi takes the problem of continuity into account. He only considers the case where

char(k) = 0 and the group G is linear ([B1], 1.3(b)). His de�nition of a k-kernel � in G

is the same as our De�nition (1.11) (in fact, it inspired our de�nition), except that his

notion of continuity, for maps f : �k ! SAut(G=k) which are sections of (1), is di�erent.

His condition requires that for any a 2 ks[G] the stabilizer of a in �k be open. Since f is not

assumed to be a homomorphism, this stabilizer is only a subset , not a subgroup, in general.

Examples show that his condition does not imply condition (iii) in Proposition (1.7), which

(under his hypotheses) is equivalent to our notion of continuity (and, under his hypotheses,

also to weak continuity). Therefore Borovoi's de�nition seems too weak in general.

(1.15) Remark. The splitting of (1) de�ned by a k-form G of G is continuous. Hence

reading this splitting modulo Int(G) gives a k-kernel in G. We will denote it by �G. Con-

versely, a continuous splitting of (1) de�nes a unique k-form of G. (See [BS], Lemme 2.12;

condition (b) holds by our de�nition of continuity, while (c) holds by [S1], ch. V no. 20,

Cor. 2.) If char(k) = 0, therefore, every weakly continuous splitting of (1) de�nes a unique

k-form of G.

(1.16) If L = (G; �) is a k-kernel and Z is the center of G then � induces a k-kernel in Z,

that is, � de�nes a k-form Z of Z. We call Z (which is a commutative algebraic group over

k) the center of the k-kernel L.

Let now L = (G; �) be a k-kernel. Recall the de�nition of the cohomology set H2(k; L):

(1.17) De�nition. A 2-cocycle with coe�cients in L is a pair (f; g) of maps

f : �! SAut(G=k); s 7! fs; and g: �� �! G(ks); (s; t) 7! gs;t;

such that

(1) f is continuous (1.10), and f mod Int(G) = �;

(2) g: (s; t) 7! gs;t is continuous (= locally constant), and for s; t; u 2 � one has

fs � ft = int(gs;t) � fst and fs(gt;u) � gs;tu = gs;t � gst;u: (5)



GROTHENDIECK'S THEOREM ON NON-ABELIAN H
2 9

Let Z2(k; L) denote the set of these 2-cocycles. Two cocycles (f; g) and (f 0; g0) are called

equivalent if there is a continuous (= locally constant) map h: �! G(ks) such that

f 0s = int(hs) � fs and g0s;t = hs � fs(ht) � gs;t � h�1
st (6)

for all s; t 2 �. The cohomology set H2(k; L) is de�ned to be the set of equivalence classes

in Z2(k; L). If G is commutative then H2(k; L) is the usual second (Galois) cohomology

group H2(k;G), where G is the k-form of G de�ned by �.

(1.18) The description of cocycles above follows [Sp], rather than [B1] who takes (f; g�1)

instead of (f; g). An alternative and useful (see (3.4) and (3.5) below) description ofH2(k; L)

in terms of group extensions is recalled next (compare [Sp]). Consider extensions

1! G(ks)
i! E

�! �! 1 (7)

of topological groups, where G(ks) (resp. � = �k) carries the discrete (resp. the natural

pro�nite) topology, and i and � are open onto their respective images. Two such extensions

E and E0 are called equivalent if there is an isomorphism E ! E0 of topological groups

which induces the identity on G(ks) and on �.

(1.19) Lemma. The set H2(k; L) is in natural bijection with the set of equivalence classes

of extensions (7) for which the induced homomorphism from � to OutG(ks) coincides with
the composite homomorphism

�
�! SOut(G=k)! OutG(ks): (8)

The second map in (8) is induced by the canonical map SAut(G=k)! AutG(ks) (1.3).

Proof. Given such an extension (7), choose a continuous section � ! E, s 7! zs. Such

sections exist since G(ks) is a discrete subgroup of E. For any s 2 � there is a unique

s-semilinear automorphism fs of G with fs(x) = zsxz
�1
s for every x 2 G(ks). Put gs;t :=

zsztz
�1
st for s; t 2 �. The pair (f; g) is a 2-cocycle with values in L. Indeed, it is obvious that

f is weakly continuous. Since � has a continuous lift by hypothesis, f is in fact continuous

by Corollary (1.13). Choosing a di�erent continuous section s 7! z0s yields an equivalent

cocycle.

Conversely, to a cocycle (f; g) 2 Z2(k; L) one associates an extension (7) by putting

E := G(ks)� � with multiplication rule (x; s) � (y; t) := �
x fs(y) gs;t; st

�
.

The group E is given the product topology, and i, � are de�ned in the obvious way. The

equivalence class of this extension depends only on the cohomology class of (f; g), and the

two processes are inverses of each other.
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(1.20) Given a k-kernel L = (G; �), the set H2(k; L) may be empty. One has the following

well-known criterion ([M], IV, x8; [G], VI, x2). Let Z be the center of G, considered as an

algebraic group over k via �. With L one associates a class obs(L) in the cohomology group

H3(k; Z) as follows:

Let s 7! fs be a continuous map � ! SAut(G=k) which lifts �, cf. (1.11). The map

(s; t) 7! fsftf
�1
st from � � � to Int(G) is locally constant by Lemma (1.12), hence there

exists a locally constant map �� �! G(ks), (s; t) 7! gs;t such that

fs � ft = int(gs;t) � fst:

Let z: �� �� �! Z(ks) be the locally constant map determined by

fs(gt;u) � gs;tu = zs;t;u � gs;t � gst;u:

Then z 2 Z3(k; Z), and the class of z in H3(k; Z) is independent of the choices made.

Denote it by obs(L). One has:

(1.21) Proposition. The set H2(k; L) is non-empty if and only if obs(L) = 0 in H3(k; Z).

Proof. See [M], IV, Thm. 8.7.

This yields the following local-global principle for non-emptiness of H2:

(1.22) Corollary. Assume vcd(k) � 2, and let L = (G; �) be a k-kernel. Then H2(k; L) 6=
; if and only if H2(k�; L) 6= ; for all � in a dense subset of 
k.

For the proof we need a straightforward (partial) generalization of [Sch], Thm. 3.1, which

we formulate in a greater generality than actually required here. The proof is analogous to

loc.cit. Recall that sheaves Hi(A) on 
k are attached in [Sch], (2.8), to any commutative

algebraic group A over k and i � 1. They are shown to be locally constant in [Sch], (2.13(a)),

and to have stalks Hi(k�; A) in [Sch], (2.9(b)).

(1.23) Lemma. If k is perfect with vcd(k) � d and A is a commutative algebraic group
over k, then the map Hn(k;A) ! �

�

k; Hn(A)

�
is bijective for n > d and surjective for

n = d.

Proof of Corollary (1.22). Assume H2(k�; L) 6= ; for all � in a dense subset of 
k. Let Z

be the center of L. Writing L� for the restriction of L to k�, obs(L) maps to obs(L�) under

the restriction map H3(k; Z) ! H3(k�; Z). By (1.21), and by the assumption, obs(L) lies

in the kernel of H3(k; Z)! �
�

k; H3(Z)

�
. By Lemma (1.23) this kernel is zero.

(1.24) Let L be a k-kernel with center Z. There is a natural action of the abelian group

H2(k; Z) on the set H2(k; L), which is free and transitive provided H2(k; L) 6= ;. In fact,

the abelian group Z2(k; Z) acts on the set Z2(k; L) by z � (f; g) = (f; zg), and this action

descends to an action of H2(k; Z) on H2(k; L).
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For completeness we also mention the interpretation of the action in terms of group

extensions: Given an extension (7) whose class in H2(k; L) is �, and an extension

1! Z(ks)! B ! �! 1

whose class in H2(k; Z) is �, form the extension

1! G(ks)! (B �� E)=D! �! 1 (9)

where D is the subgroup f(z; z�1): z 2 Z(ks)g of the �ber product. Then (9) has a class in

H2(k; L), and this class is � � �.
Observe that the action is compatible with extension of the base �eld, i.e. with restriction

in cohomology.

(1.25) De�nition. A 2-cocycle (f; g) 2 Z2(k; L) is called neutral if gs;t = 1 for all s; t.

An element � 2 H2(k; L) is called neutral if it can be represented by a neutral cocycle.

The subset of H2(k; L) consisting of the neutral elements is denoted N2(k; L). The kernel

L = (G; �) is called trivial if N2(k; L) is nonempty.

(1.26) In terms of group extensions the neutral elements have the following description:

Given an extension (7) compatible with the kernel �, its class in H2(k; L) is neutral if and

only if the extension splits by a continuous homomorphic section �! E.

(1.27) The kernel L = (G; �) is trivial (i.e. N2(k; L) 6= ;, (1.25)) if and only if the homomor-

phism �: �! SOut(G=k) lifts to a continuous homomorphism �! SAut(G=k). By (1.15)

it is equivalent to saying that � belongs to some k-form G of G. Observe that N2(k; L) can

be empty even if H2(k; L) is non-empty (see also (3.6) below).

2. The sheaves H2 and N 2.

Given an algebraic group G over k, a natural sheaf H1(G) of pointed sets on the space 
k

of orderings of k, was de�ned in [Sch]. It is locally constant and its stalk at � is H1(k�; G).

As noted in (1.22), if G is commutative, locally constant sheaves Hn(G) of abelian groups

were de�ned for all n � 1; they have the analogous property of the stalks.

We now want to shea�fy the non-commutative cohomology sets H2 and N2 in a similar

way. We frequently present sheaves on boolean (i.e. compact and totally disconnected)

spaces (such as 
k) just by giving the sections over clopen subsets. This is justi�ed by

[Sch], Appendix C.1.

(2.1) Let L = ( �G; �) be a k-kernel, with center Z. The cohomology set H2(E;L) is de�ned

for every �nite separable extension E of k and, more generally, for every �nite �etale k-algebra

E. In the latter case, if E = K1� � � ��Kr with Ki=k �nite separable �eld extensions, then

H2(E;L) = H2(K1; L)� � � � �H2(Kr; L). Therefore we can imitate the de�nition in 2.3 of

[Sch]:
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(2.2) De�nition. The sheaf (of sets) H2(L) on 
k is de�ned by

U 7�! lim�!
(E;s)2JU

H2(E;L);

for U � 
k clopen. Here JU is the category of pairs (E; s) where E is an �etale k-algebra

and s:U ! 
E is a section of the restriction map 
E ! 
k over U (see [Sch], Sect. 2.3).

Observe that one has a canonical map H2(k; L)! �
�

k; H2(L)

�
.

Next we identify the stalks of the sheaves H2(L). For this we need

(2.3) Lemma. If K � k is a separable algebraic extension then H2(K;L) is the direct

limit of the sets H2(F;L), where F ranges over the �nite subextensions F � k of K � k.

Proof. From Proposition (1.21) it follows that the lemma holds if H2(F;L) = ; for all these
F . Hence we may assume H2(F;L) 6= ; for some F . Fixing an element � 2 H2(F;L) we get

a bijection H2(F 0; Z)
�! H2(F 0; L) for every F 0 � F , and these bijections are compatible

with restriction (1.24). So the assertion follows from the corresponding fact for abelian

cohomology of Z, which is well known.

(2.4) Corollary. The sheaf H2(L) is locally constant with �nite stalks. The stalk at � 2 
k

is canonically isomorphic to H2(k�; L). There is a canonical action of the sheaf H2(Z) (of
abelian groups) on the sheaf H2(L), which is (stalkwise) free and transitive.

Proof. The identi�cation of the stalks follows from Lemma (2.3). Also it is clear from (1.24)

that one has a canonical action of H2(Z) on H2(L), which is stalkwise free and transitive

(wherever the stalks of the second sheaf are non-empty). Since H2(Z) is known to be a

locally constant sheaf with �nite stalks ([Sch], Thm. 2.13a), the same will follow for H2(L)

once it is shown that the subset f�: H2(k�; L) 6= ;g is clopen in 
k. But this is the set of �

where obs(L)� = 0 in H3(k�; Z), and hence it is obviously clopen.

(2.5) Notation. Given � 2 H2(k; L), we write �� for the restriction of � to k�, so �� 2
H2(k�; L).

(2.6) Corollary. If vcd(k) � 1 then the map H2(k; L)! �
�

k; H2(L)

�
is bijective.

Proof. If H2(k; L) = ; this is true by (1.22). Otherwise use Corollary (2.4) together with

bijectivity of H2(k; Z)! �
�

k; H2(Z)

�
([Sch], Thm. 3.1a).

(2.7) De�nition. The sheaf (of sets) N 2(L) on 
k is de�ned by

U 7�! lim�!
(E;s)2JU

N2(E;L);

for U � 
k clopen. It is clear that this is a subsheaf of H2(L).
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The proof that this subsheaf N 2(L) of H2(L) has the right stalks, and that it is again

locally constant requires slightly more work than for H2(L). We �rst prove

(2.8) Lemma. Let � 2 H2(k; L) be an element whose restriction to k� is neutral, where
� 2 
k is �xed. Then there is a �nite subextension k � K � k� such that already the

restriction of � to K is neutral.

Proof. Let (f; g) be a cocycle which represents �. We can assume that (f; g) is normalized,

i.e. that f1 = id and g1;s = gs;1 = 1 for s 2 �. Fix a real closure k� � ks with respect to �,

and let t be the corresponding involution in �. That � is neutral at � means (see (6)) that

there is h 2 G(ks) such that

h � ft(h) � gt;t = 1:

Choose an open normal subgroup U of � with t =2 U , and put V := U [ tU . If one takes U
su�ciently small then the following properties hold:

a) If x; y 2 V then gx;y = 1 if x or y is in U , and gx;y = gt;t otherwise;

b) fx(h) = h and fxt(h) = ft(h) for every x 2 U .
b) follows since f is (weakly) continuous. Now the restriction of the cocycle (f; g) to the

open subgroup V of � is neutralized by the continuous map V ! �G(ks) which is 1 on U

and h on tU .

(2.9) Proposition. The subsheaf N 2(L) of H2(L) is locally constant. Its stalk at � is the
subset N2(k�; L) of H

2(k�; L).

Proof. It is clear that the stalk of N 2(L) at � is contained in N2(k�; L). The other inclusion

follows directly from Lemma (2.8). A subsheaf of the locally constant sheaf H2(L) is locally

constant if and only if it is (not only open but also) closed in H2(L), both sheaves being

regarded as espaces �etal�es. This follows immediately from [Sch], Lemma C.3, which asserts

that a sheaf on a boolean space is locally constant with �nite stalks if and only if its espace

�etal�e is compact. Therefore we have to show: Given a section c of H2(L) over a clopen

subset U � 
k, the set of � 2 U with c� 2 N2(k�; L) is closed. For this in turn it su�ces to

show for every �nite extension E of k and every � 2 H2(E;L) that the set f� 2 
E : �� is

neutralg is closed. But this follows again from Lemma (2.8).

3. A formally real analogue of Grothendieck's theorem.

Grothendieck's theorem, by which we mean Theorem 3.5 in [Sp], asserts: If k is a perfect

�eld with cd(k) � 1, and L = (G; �) is a k-kernel, then H2(k; L) consists of precisely one

element, and this element is neutral. In particular, any k-kernel is trivial.

The following theorem specializes to Grothendieck's theorem if the �eld k has no order-

ings. It can be regarded as its \formally real" analogue.

(3.1) Theorem. Let k be a perfect �eld with vcd(k) � 1, and let L = (G; �) be a k-kernel.

a) The sheaf H2(L) on 
k is locally constant. Its stalk at � is the �nite set H2(k�; L).
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b) The subsheaf N 2(L) of H2(L) is again locally constant. Its stalk at � is the subset
N2(k�; L) of H

2(k�; L).

c) The natural map H2(k; L) ! �
�

k; H2(L)

�
is bijective, and its restriction to N2(k; L)

is a bijection onto �
�

k; N 2(L)

�
.

(3.2) Corollary. Let �, � 2 H2(k; L).

a) � = � , �� = �� for all � in a dense subset of 
k.

b) � is neutral , �� is neutral for all � in a dense subset of 
k.

c) H2(k; L) contains a neutral element , H2(k�; L) contains a neutral element for all � in

a dense subset of 
k.

Proof. a) and b) follow from (3.1c), using the characterization of the stalks of the sheaves

H2(L) and N 2(L). c) follows from (3.1c) together with the fact that the sheaf N 2(L) is

locally constant.

Our proof does not assume Grothendieck's theorem, i.e. the case of (3.1) where k has no

orderings; rather this case will be covered by our proof as well.

For the proof of Theorem (3.1) we will need the following two lemmas. The �rst is the

general principle underlying the main induction step in the proof.

(3.3) Lemma. Let k be a perfect �eld and let P be a property of algebraic groups over
k. (Recall that all algebraic groups are assumed to be smooth of �nite type.) Suppose that
P(G) holds under each of the following conditions (i) to (iv):

(i) G is �nite;

(ii) G is commutative;

(iii) G is connected linear semisimple with trivial center;

(iv) there is an algebraic k-subgroup N of G which is invariant under all semilinear automor-
phisms of G and such that P(N) and P(G=N) hold.

Then P(G) holds for every G.

Proof. Assume that the lemma is false. From the descending chain condition for closed

algebraic subschemes, there exists a minimal element among all counterexamples. We may

therefore assume that there is a counterexample G such that P(H) holds for every proper

algebraic k-subgroup H of G. Applying (iv) with N = G0, and using [DG], II, x5, 2.1(ii)
(\G is smooth if and only if G0 is smooth"), (i) implies that G is connected. Applying (iv)

with N = largest connected linear subgroup L of G, and using [R], Thm. 16, (ii) implies

that G is linear. Note that in [R] all algebraic groups are reduced over k, hence they are

smooth over their �eld of de�nition (see [DG], II, x5, 2.1(v)); the \k-closed" subgroup L of

[R], Thm. 16, is de�ned over k since k is perfect, hence it is smooth over k. Inductively

one also sees that P(H) holds whenever H is solvable. Applying (iv) with N = radical of

G one sees that S := G=N is also a counterexample. Using (iv) with N = center of S one

sees from (i) (or (ii)) and (iii) that P(S) holds, thereby giving a contradiction.
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If H is any (abstract) group, let Inv(H) = fh 2 H: h2 = 1, h 6= 1g denote the set of

involutions in H. The following lemma is used in the proof of Theorem (3.1) to verify step

(iv) in Lemma (3.3), the property P being the local-global principle for neutral elements.

(3.4) Lemma. Let k be a perfect �eld with vcd(k) � 1, let H be an algebraic group over

k = ks and let

1! H(k)! F
�! �! 1 (10)

be an extension of the type considered in (1.18), where � := �k.

a) Suppose (10) splits locally, i.e. Inv(F ) ! Inv(�) is surjective. Then there exists a con-
tinuous map � : Inv(�) ! Inv(F ) with � � � = id and such that for every t 2 Inv(�) and

x 2 F , the elements x�(t)x�1 and �
�
�(x) � t ��(x)�1

�
are conjugate under H(k). We call

such � an Inv-section of (10).

b) If (10) splits, then for any Inv-section � of (10) there is a splitting �: � ! F of (10)

such that for every t 2 Inv(�), �(t) is conjugate to �(t) under H(k).

Proof. a) We repeatedly use the following obvious fact: If p:X ! T is a surjective map of

topological spaces which is a local homeomorphism, and if T is a boolean space, then p has

a (continuous) section. By this device there exist continuous sections �: Inv(�) ! Inv(F )

and %: � ! F of �. The canonical map Inv(�) ! Inv(�)=conj: = 
k is known to have a

continuous section ([H], Lemma 5.3(a)). Hence there is a closed subset Z of Inv(�) which

is a system of representatives of conjugacy classes in Inv(�). Let �: � � Inv(�) ! Inv(�)

be the conjugation action of � on Inv(�). Let � be the involution on � � Z de�ned by

�(s; t) = (st; t). Then � induces a homeomorphism (��Z)=� �! Inv(�). Since � has no �xed

points, there is a closed subset Y of ��Z such that �jY is a homeomorphism Y
�! Inv(�).

De�ne � by �(sts�1) := %(s)�(t)%(s)�1 for (s; t) 2 Y .
b) Fix a splitting % of (10), and write xa := %(x) a %(x)�1 for x 2 �, a 2 H(k). Let the

map c: Inv(�) ! H(k) be de�ned by �(t) = c(t)%(t) for t 2 Inv(�). The map c is locally

constant. Using that � is an Inv-section one �nds easily that c satis�es

c(t) � tc(t) = 1 for t 2 Inv(�)

and

for t 2 Inv � and x 2 � there is a 2 H(k) with xc(x�1tx) = a�1 � c(t) � ta.
In other words, c 2 Z1


k
(H(k)), in the terminology of [Sch], Lemma 2.7. By Prop. 2.9 of

loc. cit., c represents a global section of the sheaf H1(H), where H denotes the k-form of

H de�ned by %. By [Sch], Thm. 5.1 there is a class  2 H1(k;H) which maps to this

global section. Let (hs)s2� be a cocycle representing , and de�ne the splitting � of (10)

by �(s) := hs � %(s). Then � has the desired property.

(3.5) We shall now prove Theorem (3.1). Assertions a), b) and the �rst part of c) have

already been proved in (2.4), (2.9) and (2.6), respectively. Therefore it remains to show the

following local-global principle for neutral elements:
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(�) An element � 2 H2(k; L) whose restriction �� to k� is neutral for every � 2 
k is neutral.

Our proof is based on an induction over G, using Lemma (3.3). Take K = k in the lemma,

and let P(G) be the property that (�) holds for all k-kernels in G. Property (i) required

in (3.3) is known (see [Sch], Sect. 5.12). Property (ii) is part of [Sch], Thm. 3.1. To prove

property (iii) we remark that if L = (G; �) is a k-kernel with G connected reductive, then

N2(k; L) is not empty. (Here k may be any �eld; cf. [D] and also [B1], Prop. 3.1.) If further

G has trivial center, then by (1.24) H2(k; L) has exactly one element, which is neutral.

It remains to show that property (iv) from (3.3) holds as well. So let L = (G; �) and

� 2 H2(k; L) be given with �� 2 N2(k�; L) for all �, and let N be an algebraic subgroup of

G which is invariant under all semilinear automorphisms of G and such that (�) holds for
N and for G=N . Let � = �k, and let

1! G(k)! E
�! �! 1 (11)

be the extension corresponding to �, cf. (1.19). The hypothesis says that the map Inv(E)!
Inv(�) induced by � is surjective. We have to show (1.26) that (11) splits. The subgroup

N(k) of E is normal, and by hypothesis we know that (11) splits modulo N(k), i.e. that

1! G(k)
�
N(k)! E

�
N(k)

��! �! 1 (12)

splits. Since (11) splits locally, there is an Inv-section � of (11), by part a) of Lemma (3.4).

Since (12) splits, and since �� := � mod N(k) is an Inv-section of (12), part b) of that lemma

shows that there is a splitting � of (12) for which �(t) is conjugate to ��(t) under G
�
N(k),

for every t 2 Inv(�).

Fix this �, and let S be the preimage of �(�) under E ! E
�
N(k). Then S is a

subextension

1! N(k)! S ! �! 1 (13)

of (11). The extension (13) corresponds to a k-kernel in N . Indeed, let s 7! zs be a locally

constant section of (13), and let fs be the (unique) s-semilinear automorphism of G which

induces int(zs) on G(k). Then s 7! fs is weakly continuous, hence continuous by (1.13)

since � is a kernel. But this implies that also s 7! fsjN is continuous. Therefore s 7! image

of fsjN in SOut(G=k) is a k-kernel to which (13) belongs.

Since for every t 2 Inv(�), S contains a G(k)-conjugate of �(t), the extension (13) splits

locally. By the induction hypothesis, therefore, (13) splits, and a fortiori (11) splits.

An alternative approach to the above induction process, which applies only for connected

linear groups, is introduced in Sect. 4. Using Borovoi's construction of abelianized noncom-

mutative H2, an independent proof is given there for the local-global principle for neutral

elements, if the kernel is connected and linear. Using this result one may in the above proof

directly proceed from general G to its connected component, and then to the maximal linear

connected subgroup of G.
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(3.6) Remark. From Theorem (3.1) it is clear that it can happen (over suitable k with

vcd(k) = 1) that a k-kernel L is trivial over some real closure k�, but not over another (and

a fortiori not over k), even if H2(k; L) 6= ;. As an illustration we give the following explicit

example: Let

1! G! E ! Z=2! 1 (14)

be an extension of �nite groups which does not split modulo the center of G. (Example:

Take E to be group of all transformations aX + b over the �eld with �ve elements, and G

the subgroup consisting of those with a = �1.) Let � be the involution in Out(G) de�ned

by (14). Then � does not lift to an involution in Aut(G).

Let k be a �eld with vcd(k) = 1, and let K=k be a quadratic extension such that K is

formally real and there is an ordering of k which does not extend toK. (Example: k = R(t),

K = k(
p
t).) Let �: �k ! Z=2 be the homomorphism with kernel �K , and let

1! G! ~E ! �k ! 1 (15)

be the extension obtained by pulling back (14) via �. This extension de�nes a k-kernel

L = (G; �) (G is considered as a constant �nite group scheme here) and an element in

H2(k; L). For every ordering � of k which extends to K, (15) is trivial over k�, and hence

N2(k�; L) 6= ;. On the other hand, if � does not extend to K then N2(k�; L) is empty since

� does not lift to an involution in Aut(G).

4. Hypercohomological approach.

The aim of this section is to introduce another technique which provides an alternative

proof of the induction step in Theorem (3.1). We consider only connected linear algebraic

groups in this section. The main tool here is the abelian Galois hypercohomology group

H2 of a complex of length two, which was used by Borovoi [B1] in the context of number

�elds.

(4.1) Let L = (G; �) be a connected reductive k-kernel (i.e. G is a connected linear reductive

algebraic group over ks). Let G
ss
= [G;G] be its derived group; it is semisimple. We denote

by G
sc
the simply connected cover of G

ss
and by � the composite map

G
sc ! G

ss ! G:

Let Z (resp. Z
ss
, Z

sc
) be the center of G (resp. G

ss
, G

sc
). Observe that � de�nes k-forms

Z, Zss and Zsc of Z, Z
ss
and Z

sc
since these groups are abelian. Further, if L = (G�kks; �G)

for some k-group G (cf. (1.15)), then the k-groups Z, Zss and Zsc are the respective centers

of G, Gss and Gsc (cf. (1.16)). The restricted homomorphism � : Zsc ! Z is then de�ned

over k. This induces a short complex of discrete �k-modules

1! Zsc(ks)
�! Z(ks)! 1 (16)

placed in degrees �1 and 0. Borovoi [B1], Sect. 5, de�nes the abelianized cohomology groups

Hi
ab(k; L), i � 0 by

Hi
ab(k; L) := H i(k; Zsc ! Z)
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where the right hand side denotes the �k-hypercohomology of the complex (16). Borovoi

also constructs an abelianization map [B1], Sect. 5.3,

ab2 : H2(k; L)! H2
ab(k; L):

These constructions are valid for a �eld k of any characteristic, although [B1] assumes that

char(k) = 0.

(4.2) To extend the de�nition of the abelianization map to the case of any connected linear

k-kernel L = (G; �) (i.e. G is a connected linear algebraic group over k), we assume that k

is perfect. This assumption remains in force for the rest of this section.

Let G
red

denote the connected reductive group which is the quotient of G by its unipotent

radical and let Lred = (G
red
; �) be the induced kernel. There is a natural map [B1], Sect. 4,

r : H2(k; L)! H2(k; Lred). Borovoi proved [B1], Prop. 4.1, that an element � 2 H2(k; L)

is neutral if and only if r(�) is neutral. Note that [B1], Prop. 4.1, holds for any perfect

�eld k. Indeed, Lemma 4.3 of [B1] holds for all such �elds, since [DG], IV, x2, Cor. 3.9,

asserts that a (connected smooth) unipotent k-group has a central composition series with

quotients G a . Setting H
2
ab(k; L) = H2

ab(k; L
red), the map ab2 is de�ned as the composite

H2(k; L)
r! H2(k; Lred)

ab2! H2
ab(k; L

red):

The main advantage of the abelianization map is that it helps detect neutral elements. More

precisely, we have

(4.3) Proposition. Let k be a perfect �eld with vcd(k) = 1 and let L = (G; �) be a

connected linear k-kernel. An element � 2 H2(k; L) is neutral if and only if ab2(�) is 0.

Proof. The proof is the same as in [B1], Sect. 5.8, once we replace [B1], Lemma 5.7, by

(4.4) Lemma. Let G be a semisimple simply connected linear algebraic group over a perfect
�eld k with vcd(k) � 1 and put Gad = G=Z, where Z is the center of G. Then the connecting
map � : H1(k;Gad)! H2(k; Z) is surjective.

Proof. (See [Sch], Cor. 5.4, for another proof). Since cd(k(i)) � 1, Steinberg's theorem

([S2], III, x2.3) implies that H1(k(i); G) is trivial and G is quasi-split over k(i). Therefore

G has a Borel subgroup B de�ned over k(i). Further, B can be chosen such that B \ �B
(where � is the involution of k(i) over k) is a torus T (necessarily maximal in G and

de�ned over k; cf. [Sch], Prop. 4.9). The torus T has the property that H2(k�; T ) = 0

(cf. [Sch], Prop. 1.6 and proof of Corollary 1.7) for every ordering � 2 
k. Since the map

H2(k; T ) ! Q
�H

2(k�; T ) is injective [Sch], Thm. 3.1, the group H2(k; T ) is itself trivial.

Using this in the long exact cohomology sequence associated to the short exact sequence

1! Z ! T ! T ad ! 1

which de�nes T ad, we see that the map H1(k; T ad)! H2(k; Z) is surjective. Hence in the

commutative diagram
H1(k; T ad) � H2(k; Z)

# k
H1(k;Gad) ! H2(k; Z);

the surjectivity of the top arrow implies the surjectivity of the bottom arrow.
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The following proposition proves (�) of Sect. 3 (cf. (3.5)) for connected linear algebraic

groups.

(4.5) Proposition. Let L = (G; �) be a connected linear k-kernel, where k is a perfect �eld
with vcd(k) � 1. Then � 2 H2(k; L) is neutral if and only if its localizations �� 2 H2(k�; L)

are neutral for all orderings � in a dense subset of 
k.

Proof. We may assume without loss of generality (cf. (4.2)) that G is connected and re-

ductive. Hence H2(k; L) has a neutral element (cf. [B1], Prop. 3.1). Denote by G the

corresponding k-form of G. Let T be a maximal k-torus of G, p : Gsc ! Gss the simply

connected cover of the derived group Gss of G, put T ss = T \Gss and T sc = p�1(T ss).

In this set up, Borovoi [B2], Sect. 3, showed that the complexes (T sc ! T ) and (Zsc ! Z)

are quasi-isomorphic. Therefore we have

Hi
ab(k; L) = H i(k; T sc ! T ) = H i(k; Zsc ! Z):

We consider a maximal torus T = B \ �B as in the proof of Lemma (4.4). Associated

to the short exact sequence

1! (1! T )! (T sc ! T )! (T sc ! 1)! 1

of short complexes placed in degrees �1 and 0, there is a commuting diagram of long exact

hypercohomology sequences as follows:

H2(k; T sc) ! H2(k; T ) ! H2
ab(k; L) ! H3(k; T sc)

# # # #Q
� H

2(k�; T
sc) ! Q

� H
2(k�; T ) ! Q

� H
2
ab(k�; L) ! Q

�H
3(k�; T

sc):

As noted in the proof of Lemma (4.4), the terms on the left are zero, hence the second

horizontal arrows are injections. By [Sch], Cor. 3.2, the second and fourth vertical arrows

are injective, even when � ranges only over a dense subset of 
k. Hence the third vertical

map is injective. Our proposition follows from the commutative diagram

H2(k; L)
ab2! H2

ab(k; L)

# #
Q

�H
2(k�; L)

ab2�! Q
�H

2
ab(k�; L);

on using Proposition (4.3) and the injectivity of the vertical arrow on the right.

(4.6) Proposition (4.5) establishes (�) of (3.5), and consequently (iii) of Lemma (3.3), for

a connected linear algebraic group, which is not necessarily semisimple or of trivial center.

This eliminates a few steps in the proof of Theorem (3.1).
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5. Applications.

As an application of Grothendieck's theorem (more precisely, of the local-global principle

for neutral elements) we get a new proof of Theorem 6.1 of [Sch]. We can also answer now

the question raised in loc.cit. after 6.5.

(5.1) Let k be a �eld, let G be an algebraic group over k and let X be a homogeneous (right)

G-space, de�ned over k. From X one constructs canonically a k-kernel LX and an element

�X 2 H2(k; LX). The class �X is neutral if and only if there is a principal homogeneous

G-space T which dominates X (over k).

Let us recall this construction ([Sp], Sect. 1.20; [B1], Sect. 7.7). Choose a point x0 2
X(ks), and let H be the stabilizer of x0. This is an algebraic subgroup of G := G �k ks.

There is a locally constant map � = �k ! G(ks), s 7! as, such that s(x0) = x0 �as for every
s 2 �. Then int(as) � s is an s-semilinear automorphism of G which leaves H invariant. Let

fs be its restriction to H; the map s 7! fs from � to SAut(H=k) is continuous (1.10), and

s 7! fs mod Int(H) is a k-kernel in H. Denote it by �X , and write LX = (H; �X). Up to

a canonical isomorphism, this kernel does not depend on the choices. The pair (f; g) with

f as above and gs;t := ass(at)a
�1
st is a 2-cocycle for LX , and �X is its class in H2(k; LX).

Again, this class does not depend on the choices. It is neutral if and only if X is dominated

by a principal homogeneous G-space, as one may verify by a direct cocycle calculation.

In terms of group extensions the class �X has a more natural appearance: Let G(ks) � �
be the natural semidirect product, and let E = EX;x0 be its subgroup consisting of all

products gs with g 2 G(ks), s 2 � such that s(x0) = x0 � g. Then E is a subextension of

the split extension G(ks) � � as follows:

1! H(ks)! E ! �! 1: (17)

This extension belongs to the k-kernel �X , and the class of (17) in H2(k; LX) is �X .

(5.2) Theorem. Let k be a perfect �eld with vcd(k) � 1. Let X be a homogeneous space
under an algebraic group G, both de�ned over k, and suppose that for every � in a dense
subset of 
k, X is dominated by some principal homogeneous G-space over k�. Then there
exists a principal homogeneous G-space over k which dominates X over k.

This was proved in [Sch], Thm. 6.5, under the stronger hypothesis that X is dominated by

a principal homogeneous space over every k�, and the question was raised there (p. 341)

whether the above sharpening holds. The proof is very easy now:

Proof. Let the kernel LX and the class �X 2 H2(k; LX) be as constructed in (5.1). By the

above, the hypothesis says that the class �X becomes neutral over k� for all � in a dense

subset. By Corollary (3.2), �X is neutral over k. Again by (5.1), this translates into the

existence of a principal homogeneous G-space as desired.

In [Sch], the above-mentioned Thm. 6.5 was derived from the following main result:
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(5.3) Theorem ([Sch], Thm. 6.1). Let k be a perfect �eld with vcd(k) � 1, and let X be
a homogeneous space under an algebraic group G, both de�ned over k. Suppose X(k�) 6= ;
for all � in a dense subset of 
k. Then there exists a principal homogeneous G-space T

over k which dominates X over k and is trivial over every k�.

We show how conversely Theorem (5.3) can be derived from Theorem (5.2) (and thus from

our main results in Sect. 3); in fact, the weaker version of (5.2) proved in [Sch] su�ces for

this.

First of all we have X(k�) 6= ; for all orderings �, by general reasons (e.g. [Sch], Cor. 2.2).
Therefore by [Sch], Thm. 6.5 | cf. (5.2) above | there exists a G-torsor P together with

a G-equivariant map �: P ! X, both de�ned over k. Let H be the algebraic group over

k which consists of those G-equivariant automorphisms of P which commute with �. For

any extension K=k the set H1(K;H) parametrizes the K-forms �: Q ! X of �: P ! X.

So we have a commutative diagram

H1(k;H) ! H1(k;G)

# #
�(
k; H1(H)) ! �(
k; H1(G))

(18)

in which the upper horizontal arrow takes �: Q! X to Q.

For every � let � 2 H1(k�; H) be the class of a G-map T� ! X over k�, where T� is the

trivial G-torsor over k�. The family (�)� is locally constant, i.e. is a global section of the

sheaf H1(H). Since the vertical maps in (18) are surjective by [Sch], Thm. 5.1, there exists

a G-torsor �: Q! X over X which is trivial over each k�.

Keep the assumption that k is perfect with vcd(k) � 1, and suppose that G is connected

and linear. Recall that any G-torsor which is trivial over k� for all � in a dense subset of 
k

is trivial over k ([Sch], Cor. 4.2). Combining this with Theorem (5.3) immediately implies

the following Hasse principle for general homogeneous spaces under G:

(5.4) Corollary ([Sch], Cor. 6.2). Let k be a perfect �eld with vcd(k) � 1, G a connected
linear algebraic group and X a homogeneous G-space, both de�ned over k. If X has a

k�-point for all � in a dense subset of 
k, then X has a k-point.

As noted after (6.2) of [Sch], the conclusion holds for any G for which the natural map

H1(k;G)!Q
�H

1(k�; G) has trivial kernel.
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