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A. Statement of Main Result.

Let G be a p -adic reductive group, and � an automorphism of G of �nite order ` . A

G -module is a representation � : G! Aut V of the group G on a complex vector space V ,

which is smooth (terminology of Bernstein-Deligne-Kazhdan [BDK]; in Bernstein-Zelevinski

[BZ1] this is termed algebraic): the stabilizer of any vector in V is an open subgroup of

G . It will be denoted by (�; V ) , or simply � , or V . Put ��(g) = �(��1g) . Then

(��; V ) is a G -module. A G -module (�; V ) is called � - invariant if it is equivalent to

(��; V ) . Denote by Aut �G � the set of vector space automorphisms S : V
�
! V with

S�(g) = �(�g)S for all g 2 G and S` = 1 . Then � is � -invariant if and only if Aut �G �

is non-empty. In this case � extends to a G# -module by �(�) = S , where G# is the

semi-direct product Go < � > of G with the group < � > generated by � . When � is

irreducible then S is uniquely determined up to an ` th root � of unity in C .

Let M (G) be the category of G -modules. An element E of M (G) is called �nitely

generated if for any �ltered system of proper subobjects Ei in E , the subobject �iEi is

proper in E . Let K(G) be the Grothendieck group of �nitely generated G -modules, and

R(G) the Grothendieck group of G -modules of �nite length. The group K(G) coincides

with the Grothendieck group of projective (i.e. the functor E 7! Hom(P;E) is exact)

�nitely generated G -modules P . Indeed, each �nitely generated G -module has a projec-

tive resolution consisting of �nitely generated G -modules, and this resolution is �nite by

virtue of the Theorem of Bernstein [B] recorded in the Appendix. This Theorem asserts

that the category M (G) has �nite cohomological dimension.

The group R(G) is the free abelian group generated by the set Irr G of equivalence

classes of irreducible G -modules. Denote by Irr �(G) the subset of � -invariant elements

in Irr G . Let R�(G) (resp. K�(G)) be the quotient of the free abelian group generated

by the pairs (�; S) where � is a G -module of �nite length (resp. projective �nitely

generated) and S 2 Aut �G � , by the following relations.

(R 1 ) If 0! (�0; S0)! (�; S)! (�00; S00)! 0 is exact then (�; S) � (�0; S0) + (�00; S00) .

(R 2 ) If � = �i�i and for each i there is j such that S�i = �j , then (�; S) � �i(�i; Si) ,

where the sum ranges over all i such that S�i = �i , and Si = Sj�i for such i .

The abelian group R�(G) is generated by the pairs (�; S); � 2 Irr � G and S 2 Aut �G �

with S` = 1 . For any Z -modules R and T put RT for R
ZT . The quotient of R�(G)C
by the relations (�; �S) � �(�; S) for all � 2 Irr �(G); S 2 Aut �G �; � 2 C with �` = 1 ,

is the free C -module eR�(G)C generated by Irr �(G) .
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Fix a minimal parabolic subgroup P0 of G . Suppose that �P0 = P0 . If P0 = M0U0

is a Levi decomposition, then �M0 = u�1M0u for some u in (the unipotent radical) U0

with u�(u) � � ��`�1(u) = 1 . Since U0 is an extension of additive groups, its �rst galois

cohomology group is trivial, and there is u0 2 U0 with u = u0�(u0)�1 . Replacing M0 by its

conjugate by u0 we may assume that the Levi subgroup M0 is � -invariant: �M0 =M0 .

A standard Levi subgroup is a subgroup M � M0 of G which is a Levi component of a

parabolic subgroup P = P0M ; such P is called a standard parabolic subgroup. Notations:

M < G;P < G . Since P has a unique Levi subgroup containing a �xed minimal one, if

�P = P then �M =M for M < G .

For M < G , let iGM : M (M) ! M (G) be the functor of normalized induction.

Given an M -module (�;E) , the space V = iGME consists of all smooth maps f :

G ! E with f(mug) = �
1
2

P (m)�(m)f(g) (m 2 M; g 2 G; u 2 U(= unipotent radical

of P = MP0)) , where �P (m) = j( det : N ! N;n 7! m�1nm)j , and � = iGM� acts

on iGME by (�(x)f)(g) = f(gx) . If M < N < G and M = �M;N = �N , and

(�;E) is � -invariant, then (� = iNM�; V = iNME) is � -invariant: de�ne �(�) by

(�(�)f)(g) = (�(�)f)(��1g) . Denote by JH(E) the subset of Irr G consisting of all ir-

reducible constituents of the G -module E . The automorphism � of G de�nes a functor

M (G) ! M (G) . It is easy to see that �iGM (�) = iG;�M (��) , hence that � 2 JH(iGM�)

if and only if �� 2 JH(iG;�M(��)) .

Let rMG : M (G) ! M (M) be the normalized functor of coinvariants. If (�; V ) is

a G -module, then the space VU = rMGV is the quotient of V by the span V (U) of

�(u)v� v; v 2 V; u 2 U (= unipotent radical of P =MP0) . The action rMG� of M on

rMGV is by m : v+ V (U) 7! �
�1=2
U (m)�(m)v+ V (U) (note that �(M) stabilizes V (U)) .

If M < N < G; �N = N; �M = M , and (�; V ) is a � -invariant N -module, then

rMN� is � -invariant, since �(�)(V (U)) = V (U) . The functors iGM and rMG de�ne

homomorphisms iGM : R(M) ! R(G) and rMG : R(G) ! R(M) , and iGM : R�(M) !

R�(G); rMG : R�(G)! R�(M) , when M = �M . Let P be the parabolic subgroup of G

opposite to P (then M = P \ P ) , and let rMG be the normalized functor of invariants

de�ned using P instead of P . If P = �P then P = �P .

The group X(G) of complex-valued unrami�ed characters of G is naturally isomorphic

to C
�d for some d = d(G) � 0 , hence has a natural structure of a complex algebraic group.

It acts on Irr G and R(G) by  : � 7!  � . Let X�(G) be the group of  in X(G)

which are �xed by � . It is a subvariety of X(G) which acts on Irr �(G) and R�(G) .

Let H G be the Hecke algebra of (locally-constant complex-valued compactly-supported

measures on) G . Then H G = C1c (G)dg , where dg is a Haar measure. The automorphism

� acts on H G by �(h dg) = �hdg , where �h(g) = h(��1g) . Put H
#

G for the semi-direct

product H Go < � > . A measure h in H G de�nes a linear form Fh : R(G) ! C by

Fh(�) = tr �(h) , and F �h : R�(G)! C by F �h ((�; S)) = tr �(h�) ; here �(h�) = �(h)S ,

and �(h) is the convolution operator
R
G
h(g)�(g) . This �(h) is of �nite rank on V = V�

since � is admissible (smooth of �nite length, see [BZ1]), hence �(h�) is of trace class.

Note that F �h ((�; �S)) = �F �h ((�; S)) if �` = 1 . It is useful to note that H G is the tensor
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product with C over Q of the rational Hecke algebra of Q -valued measures with the above

properties. A similar comment applies to H K of xB below.

Let R��(G) = HomZ;�(R
�(G); C ) (= Hom C ( eR�(G)C ; C )) be the space of C -valued

linear forms F on R�(G) which are "genuine", namely satisfy F ((�; �S)) = �F ((�; S))

for all � 2 C with �` = 1 . Let R��(G) tr be the subspace of the forms F �h ; h 2 H G . A

form in this subspace is called a trace form. Any trace form F is genuine and it satis�es:

(i) There exists a � -invariant open compact subgroup K of G which dominates F .

Namely F ((�; S)) = 0 if � is a G -module which has no non-zero K -�xed vector, or

alternatively F ((�; S)) depends only on the space �K of K -�xed vectors in � , and the

restriction of S to �K .

(ii) For any standard Levi subgroup M = �M < G and � 2 Irr �(M) , the function  7!

F ((iGM ( �); iGM(�(�)))) is a regular function on the complex algebraic variety X�(M) .

Denote by R��(G) good the space of F in R��(G) which satisfy (i), (ii); such forms will

be called good.

Let ��(H G) be the quotient of H G by the linear span [H G�; H G ]�
�1 of the commutators

f�(h) � hf in H G . Then ��(H G) ' H G�=[H G�; H G ] , where [H G�; H G ] is the linear

span (in H
#

G ) of all commutators f� � h � h � f�; f; h 2 H G . Note that [H G�; H G ] =

H G� \ [H
#

G ; H
#

G ] .

Main Theorem. The map 	 : H G ! R��(G); h 7! F �h , yields an isomorphism ��(H G)
�
!

R��(G) good .

In the special case where ` = 1 and �= identity, one has R�(G) = HomZ(R(G); C ) =

Map ( Irr G; C ) and its subspaces R�(G) good � R�(G) tr . Put �(H G) = H G=[H G ; H G ] .

The assertion that the map H G ! R�(G) good is surjective, namely that R�(G) tr =

R�(G) good , is called the trace Paley-Wiener theorem; it is the main result of [BDK]. It

is an analogue of the classical Paley-Wiener theorem which characterizes the image of the

Fourier transform. The main ingredients in extending the proof of [BDK] to the twisted

case, where � is non-trivial, are explained in [F; I, x7]. As the twisted analogue requires

only minor changes to the exposition of [BDK], it is noted in [F] that there is no need to

reproduce the entire proof of [BDK] in the twisted setting.

The injectivity of the map �(H G) ! R�(G) implies the following density theorem. If

h 2 H G satis�es tr �(h) = 0 for all � in R(G) then all orbital integrals �h(
) =R
h(g�1
g) (g 2 ZG(
)nG) of h at the regular elements 
 , are zero. The density theorem is

proven in Kazhdan [K1; Appendix] in characteristic zero, and subsequently in [K2; Theorem

B], in positive characteristics. The proof of [K1] is global (it uses the trace formula) and

requires non-trivial galois-cohomological constructions. The main ingredients in establishing

a twisted analogue of the density theorem along the lines of the proof of [K1; Appendix],

are explained in [F; I, x4].

The assertion of isomorphism in the Main Theorem above combines surjectivity (trace

Paley-Wiener theorem) and injectivity (density theorem). The proof given here is due to

J. Bernstein (in the case of � = identity). Its advantage over that of [BDK] is in proving
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injectivity simultaneously to surjectivity. The proof is purely local, using neither the trace

formula nor galois cohomology, and it applies with any characteristic . The new tool is the

theory of "d�evissage (unscrewing)" which is applied to a certain generalization (� -cocenter

of the category M (G)) of the Grothendieck group K�(G) . Thus we work with �nitely

generated G -modules which are not necessarily of �nite length, and study their support

on the variety �(G) of in�nitesimal characters. For completeness we reproduce here those

parts of [BDK] which we need.

I wish to express my very deep gratitude to Joseph Bernstein for explaining his proof to

me. My minor contribution is in carrying out the generalization to the twisted case, where

� is arbitrary. Since the present proof seems to be quite satisfactory, it is attempted here

to supply all details, also in the twisted case. Further, we refer to Bernstein's fundamental

lecture notes [B]. However, those results of [B] which we use can be found already in the

preliminary work [BD], with the exception of the "second adjointness theorem": i is left

adjoint to r ; see xF.

I wish to thank J.-L. Colliot-Th�el�ene, Bill Jacob, Wayne Raskind and Alex Rosenberg,

for an instructive and enjoyable summer school. Nato-grant CRG-921232 is gratefully ac-

knowledged.

B. Categorical center.

A cuspidal pair is a pair (M;�) consisting of a standard Levi subgroup M < G and the

equivalence class � 2 Irr M of a supercuspidal irreducible M -module. Denote by �(G)

the set of all cuspidal pairs up to conjugation by G . It is the disjoint union of in�nitely many

sets � = �(M;�) , each of which is the image of the map X(M)! �(G);  7! (M; �)=G ,

for some cuspidal pair (M;�) . Each such � is called a connected component of �(G) and

has the natural structure of a complex a�ne algebraic variety as the quotient of X(M) by a

�nite group. Then �(G) = [� has the structure of a complex algebraic variety consisting

of in�nitely many connected components.

For any � 2 Irr G there is a unique up to conjugation by G cuspidal pair (M;�)

such that � is a constituent of iGM (�) . The image � of (M;�) in �(G) is called the

in�nitesimal character of � , and the map � : Irr G ! �(G) , �(�) = � , is onto and

�nite to one (see [BZ1]). Note that � is X(G) -equivariant, where X(G) acts on �(G)

by  : (M;�) 7! (M; jM � �) .

For each connected component � in �(G) consider the set ��1(�) � Irr G , and the

corresponding abelian subcategory

M (�) = fE 2 M (G); JH(E) � ��1(�)g of M (G):

The Decomposition Theorem of [B] asserts that for � 6= �0 the categories M (�) and

M (�0) are orthogonal, namely Hom(E;E0) = 0 for E 2 M (�); E0 2 M (�0) . Moreover,

we have M (G) = ��M (�) , where the product ranges over all connected components �

in �(G) . Thus each G -module E has a unique decomposition E = ��E� = ��E�

with E� 2 M (�) . In particular H G is a G -module under the left action of G , and so
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H G decomposes as a direct sum ��H � of two sided ideals H � , and E� = H �E for any

G -module E .

The central algebra Z(M ) of an abelian category M is the algebra End (IdM ) of en-

domorphisms of the identity functor IdM : M ! M . Thus z 2 Z(M ) is a set of endomor-

phisms fzE : E ! E;E 2 M g such that for any morphism � : E ! F in M we have

zF � � = � � zE . Put Z(G) for Z(M (G)) .

A ring H is called an id-ring if for any �nite set h1; � � � ; hn in H there is an idempotent

e in H with ehi = hi = hie . Any id-ring can be presented as lim
!

IH i , where I is an

ordered �ltered set (for any i; j in I there is k in I with i < k; j < k ), and where

fH i(i 2 I)g is a directed system of rings with identity, but the morphisms H i ! H j (i < j)

are not assumed to map the identity of H i to that of H j . For example, H G is an id-

algebra (algebra which is an id-ring), I is the set of compact open subgroups K of G ,

and HK the convolution algebra of K -biinvariant measures in H G . Note that the subset

I� of � -invariant K in I is co�nal in I , hence H G = lim
!

HK (K 2 I�) .

A module E over an id-ring H is called non-degenerate if HE = E , equivalently if

E = lim
!
eE , where the limit ranges over the set of idempotents in H . From now on by an

H -module we shall mean a non-degenerate H -module. Denote by M (H ) the category of

(non-degenerate) H -modules. Note that M (H G) = M (G) , and M (H �) = M (�) for each

connected component � of �(G) . Write Z(H ) for Z(M (H )) . If H is an id-ring, the

morphism z 7! zH identi�es Z(H ) with the algebra End H�H opp (H ) of endomorphisms of

H which commute with right and left multiplication. In particular, if H has an identity

then Z(H ) is isomorphic to the center of H . For example, Z(HK ) is the center of H K .

The orthogonal decomposition M (G) = ��M (�) implies that Z(G) = ��Z(�) , where

Z(�) is the center of M (�) . A theorem of [B] asserts that Z(�) is naturally isomorphic

to the algebra ofregular (polynomial) functions on the variety � . Hence Z(G) = Z(H G)

is the algebra of regular functions on �(G) . In particular z 2 Z(G) acts on � 2 Irr (G)

by multiplication by the scalar z(�) , where � = �(�) .

For any compact open subgroup K of G put IrrK(G) = fE 2 Irr G;EK 6= 0g;EK is

the space of K -�xed vectors in E 2 M (G) . By a Proposition of [B] the subset �( IrrK(G))

of �(G) is a union of �nitely many components, and for any component � of �(G) there

is K = K� such that ��1(�) � IrrK(G) . The open compact subgroup K of G is

called special if IrrK(G) is equal to a union of pullbacks ��1(�) of components � . Put

M K (G) = fE 2 M (G);E is generated by EKg , and M
?
K (G) = fE 2 M (G);EK = 0g .

If K is special then M (G) is the direct sum of the abelian subcategories M K (G) and

M
?
K (G) , and M K (G) = M (H K ) , by a theorem of [B]. Consequently Z(M K (G)) = Z(H K )

is the ring of regular functions on the union �K of �nitely many connected components �

of �(G) with ��1(�) � IrrK(G) . Moreover, the algebra H K decomposes as ����KH � .

By [B] the algebra H � is �nitely generated Z(�) -module, and HK is a �nitely generated

Z(�K) -module (and Z(G) -module). Finally, it is shown in [B] that K is special if it has

an Iwahori decomposition for each M < G (thus K = K \ U � K \M � K \ U where

M = P \P is the intersection of the standard parabolic subgroup P =M0 =MU and its
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opposite parabolic P =MU) , and there exists a compact subgroup K0 which normalizes

K and satis�es G = K0P0 . Congruence subgroups and Iwahori subgroups are special.

For any standard Levi subgroup M < G the morphism iGM : �(M) ! �(G) de�ned

by (N; �) 7! (N; �) is �nite. It is not injective since cuspidal pairs conjugate under G may

be non-conjugate under M . Denote the adjoint morphism by i�GM : Z(G)! Z(M) . Then

Z(M) is a �nitely generated Z(G) -module. Put zM = i�GMz 2 Z(M) for z 2 Z(G) .

Then by a Propoposition of [B], for each M -module � we have iGM (zM ) = z on iGM� ,

and for each G -module � we have rMGz = zM on rMG� .

Recall that � 2 JH(iGN�) if and only if �� 2 JH(iG;�N(
��)) . Hence the morphism

� : �(G)! �(G) de�ned by (N; �) 7! (�N; ��) satis�es �(�(�)) = �(��) . Denote by �

also the dual map � : Z(G)! Z(G); �z(�) = z(��1�) .

Remark. Denote by �� , where � is a component of �(G) , the subset of � -�xed points of

� . The subset �� is empty unless �� = � , and it contains the in�nitesimal characters

of all � -invariant G -modules � with �(�) 2 � (however �� = � does not imply the

existence of � 2 Irr G with � = �(�) and � ' ��) . The set �� is a (closed) subvariety

of � . Indeed, if �� is not empty then it contains a point represented by a cuspidal pair

(M;�) . Let WG = W (M0; G) = Norm(M0; G)=M0 be the Weyl group of G . Then there

is s 2 WG with (�N; ��) = (sN; s�) . If (N; �);  2 X(N) , represents any other point

in �� , then there is s in WG with (�N; �( �)) = (s N; s ( )s (�)) . Since we have

sN = s N , there is w 2 W (N;G) = Norm(N;G)=N such that s = sw . Hence

sw ( ) � s� ' � � s� , or ((sw )( )=�( ))
 s� ' s� , and sw ( )=�( ) lies in a �xed

�nite group depending only on � (and � ). Consequently �� is (Zariski) closed in � .

C. Discrete modules.

Put R�I (G) =
P

M=�M<
6=
G

iGM (R�(M)) . A G -module � 2 Irr �(G) is called � -discrete

if it does not lie in R�I (G) . An element � of �(G) is called � -discrete if it is equal to �(�)

for a � -discrete � 2 Irr �(G) . Denote by R�� (G) the subgroup of R�(G) generated by the

G -modules with in�nitesimal character � . Denote by ��disc (G) the subset of � -discrete

� in �(G) , and for each connected component � of �(G) put ��disc = � \��disc (G) .

Theorem 1. For each connected component � of �(G) , the set ��disc is a union of

�nitely many X�(G) -orbits (and in particular is a subvariety of � ).

A main step in the proof of this Theorem is the following

Proposition 1.1. For each � the set ��disc is constructible (a �nite union of locally

closed, in the Zariski topology, subsets) in � .

Proof. We begin with some preliminaries. Let B be a commutative algebra over C . A

G � B -module is a G -module E equipped with a homomorphism B ! EndGE . Such

E is called a B -family of G -modules if E is �nitely generated as a G� B -module, and

for each open compact subgroup K of G the B -module EK is �nitely generated and
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projective. For any homomorphism B ! B
0 of algebras write EB0 = B

0

B E for the

induced B
0 -family of G -modules. If B is the algebra k[X] of regular functions on a

variety X , call E an X -family of G -modules. Given a morphism X 0
! X , denote

by EX0 the induced X 0 -family of G -modules. In particular for any point s in X (thus

s : Spec C ! X ) the corresponding G -module Es = C 
k[X]E is called the specialization

of the X -family E at s .

Given an X -family of G -modules E de�ne a function �E : X ! R(G) by �E(s) = Es ,

and a function �E : X ! R
�
(G) by �E(s) = Es , where Es is the image of Es 2 R(G)

in the quotient R
�
(G) of R�(G) by the relation (�; �S) � (�; S) if �` = 1;R

�
(G) is the

free abelian group generated by Irr �(G) . A function � : X ! R
�
(G) is called regular

if � = �E for some X -family E of G -modules. A regular function � : X ! R
�
(G) is

called irreducible if �(X) � Irr �(G) . Two irreducible functions �; �0 are called disjoint if

�(s) 6= �(s0) for every s 6= s0 in X .

Lemma 1.1.1. Given a regular function � : X ! R
�
(G) there exists a dominant �etale

morphism � : X1 ! X , �nitely many irreducible disjoint regular functions �j : X1 !

R
�
(G) , and positive integers nj , such that � � � = �jnj�j .

Proof. Let E be an X -family of G -modules such that � = �E . Then there is an open

compact � -invariant subgroup K of G such that E is generated by EK as a G -module.

The subgroup K can be chosen to be special, and then any non-zero subquotient E0 of

E is generated by its subspace E0
K

(which is non-zero) by a theorem of [B]. Consequently

it su�ces to prove the lemma with �nitely generated k[X] -families of H K -modules EK ,

instead of �nitely generated k[X] -families of G -modules E .

It su�ces to prove the lemma with X replaced by an irreducible component. Hence

we assume that X is irreducible. Write k(X) for the fraction �eld of k[X] . The H K �

k[X] -module EK is �nitely generated as a k[X] -module; hence k(X) 
k[X] E
K is a

�nite dimensional vector space over the �eld k(X) . Over an algebraic closure k(X) of

k(X) there is an HK -stable 
ag 0 = E
0

0�
6=
E
0

1�
6=
� � ��

6=
E
0

r of k(X) -vector spaces in E
0

r =

k(X)
k[X] E
K , such that each Ej = E

0

j=E
0

j�1 is an irreducible HK -module over k(X) .

Since k(X)
k[X]E
K is �nite dimensional over k(X) , there exists a �nite extension k(X)0

of k(X) in k(X) , namely a �nite �etale dominant morphism X 0 ! X , such that the HK -

module k(X 0) 
k[X] E
K is completely reducible. Thus there is an H K -stable 
ag 0 =

E00�
6=
E01�

6=
� � ��

6=
E0r of k(X 0) -vector spaces in E0r = k(X 0)
k[X] E

K , such that each ~Ej =

E0j=E
0
j�1 is an irreducible H K -module over k(X 0) . In particular H K spans End k(X0)

~Ej
over k(X 0) .

Choose a basis Bj of ~Ej over k(X 0) . Then L0j = (HK�k[X
0])Bj is a �nitely generated

projective H K � k[X 0] -module, and k(X 0) 
k[X0] L
0
j =

~Ej . Hence End k[X0] L
0
j is a ring

of matrices over k[X 0] of size jBjj . Since End k(X0)
~Ej is HK � k(X 0) , there exists an

open subset X 00 of X 0 such that End k[X00] L
00
j , where L00j = k[X 00]
k[X0] L

0
j , is equal to

HK � k[X 00] . Hence L00j is an irreducible HK � k[X 00] -module, and L00j;s = C 
k[X00] L
00
j is
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an irreducible HK - module for every s in X 00 . In R(G) we then have Es =
P
j

L00j;s for

all s 2 X 00 , and so �E � � =
P
j

�L00j on X 00 , where � is the morphism X 00
! X . The

regular functions �L00j are irreducible.

Write �j for the distinct functions among the �L00j ; then � =
P
j

nj�j for some nj � 1 .

Replacing X 00 by an open subset we may assume that the �j are disjoint; indeed, the set

of s 2 X 00 with �j(s) = �j0(s) is closed in the Zariski topology.

Denote by J the set of j such that the irreducible H K � k[X 00] -module ~Ej is � -

invariant. Then for each bi 2 Bj there are fik = f 0ik=f
00
ik with f 0ik; f

00
ik in k[X 00] such that

�bi =
P
k

fikbk . Replacing X 00 by its open subset which is de�ned by f 00ik 6= 0 for all i; k ,

we conclude that L00j is � -invariant for each j in J . The functions �L00j and ��L00j are

equal or disjoint. Hence, if L00j;s ' �L00j;s for some s in X 00 then L00j ' �L00j , and
~Ej is

� -invariant ( j lies in J ). It follows that for j 62 J , the image of L00j;s in R
�
(G) is zero

for every s in X 00 . This completes the proof of the lemma.

Corollary 1.1.2. Let �; �1; � � � ; �n : X ! R
�
(G) be regular functions, and � irreducible.

Denote by XI the set of s in X such that �(s) lies in the subgroup of R
�
(G) generated

by �1(s); � � � ; �n(s) . Then there is an �etale dominant morphism � : X 0 ! X such that

��1XI is empty or is X 0 .

Proof. There are irreducible disjoint regular functions �1; � � � ; �n : X ! R
�
(G) and

positive integers aij such that �i =
P
j

aij�j . We may assume that � = �1 . It remains to

solve in integers b1; � � � ; bn the equation
nP
i=1

biaij = �1;j .

Remark. A subset A of � is constructible if and only if it satis�es the condition:

(C) For any locally closed subvariety X of � there exists a dominant �etale morphism

� : X 0 ! X such that ��1(XI); XI = X �X \ A , is either empty or X 0 .

Proof of Proposition. To show that ��disc is constructible we shall verify (C) for A =

��disc . Suppose that (N; �) is a cuspidal pair which de�nes � , and let �� : X(N) ! �

be the morphism de�ned by  7! (N; �) . For each standard Levi subgroup M < G

with M = �M > N , denote by �M the regular function X(N) ! R
�
(M) de�ned by

 7! iNM ( �) . Let X be a locally closed subvariety of � . Then by Lemma 1.1.1 there is

a dominant �etale morphism � : X1 ! X such that �M � � =
P
j

nM;j�M;j , nM;j > 0 and

�M;j : X1 ! R
�
(M) are irreducible disjoint regular functions, for each such M = �M < G .

The set X2 of points s 2 X1 where each �G;j(s) lies in the subgroup of R
�
(G) generated

by the regular functions iGM (�M;k(s)) , is ��1(XI); XI = X � X \ ��disc . But then

Corollary 1.1.2 implies that ��1(XI) is empty or is X1 . Hence X satis�es (C) and the

proposition follows.

The following Lemma will be used in the proof below of Theorem 1.
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Lemma 1.2. Given an irreducible � -discrete G -module � there exists a tempered � -

discrete G -module �0 and  2 X�(G) with �(�) = �( �0) .

Proof. Langlands' classi�cation [BW; xXI] implies that any � in Irr G determines a

unique triple (P; �;  M) consisting of a standard parabolic subgroup P = MU of G , a

tempered (irreducible) M -module � , and  M 2 X(M) which is positive with respect to

U (see [BW]), such that � is the unique irreducible quotient of iGM ( M�) . The triple

of �� is (�P; ��; � M ) , and so if � ' �� then �P = P; �� ' �; � M =  M .

If the in�nitesimal character of the M -module  M� is represented by the cuspidal pair

(N; �); N < M , then each constituent of the G -module iGM ( M�) is also a constituent

of the G -module iGN (�) , hence has the same in�nitesimal character � as � .

In R
�
(G) we have � = iGM ( M�) �

P
j

�j , where �j are the irreducible � -invariant

constituents of iGM ( M�) other than � . Moreover, if (Pj; �j;  j) is the triple determined

by �j , then  j <  M in the order < introduced in [BW; XI, (2.13)]. Since the map

� : Irr G! �(G) is �nite to one, �j lies in a �xed �nite set determined by � = �(�) . By

induction on the parameter  we may assume that each �j is a Z -linear combination of

G -modules of the form iGM 0( 0�0) , where M 0 = �M 0 < G;  0 2 X�(M 0) , and ��0 ' �0 is

tempered. Hence � = �iGM 0( 0�0) for some M 0 = �M 0 < G; 0 2 X�(M 0) , and tempered

� -invariant M 0 -modules �0 . Since � is � -discrete, at least one M 0 in the sum equals

G , and the corresponding �0 is � -discrete. The lemma follows.

Proof of Theorem 1. The involution + : R(G)! R(G) which assigns to each G -module

� its Hermitian contragredient �+ , maps Irr G to Irr G and Irr �(G) to Irr �(G) . It

commutes with iGM for each M < G , acts on X(M) and on the set of cuspidal pairs

(M;�) , and consequently de�nes an involution + on the complex algebraic variety �(G)

which commutes with � : Irr G! �(G) . It is clear that the action of + on the algebraic

varieties X(M) and �(G) is anti-holomorphic and in particular anti-algebraic.

By Lemma 1.2 each � 2 ��disc is of the form �( �) where  2 X�(G) and � is

an irreducible tempered � -invariant G -module. Since � is tempered it is unitary, and

so �+ = � . Hence �+ 2 X�(G)� . Consequently the subset �
�

disc = ��disc =X
�(G) of

the algebraic quotient variety � = �=X�(G) , which is constructible by Proposition 1.1, is

pointwise �xed by the anti-algebraic involution + . It follows that �
�

disc is �nite, namely

��disc consists of �nitely many X�(G) -orbits, as asserted.

D. Induction.

Let L be a �eld of characteristic zero. A G -module over L is a smooth representation

� : G ! Aut V of the group G on a vector space V over L . Denote by R(G;L) the

Grothendieck group of G -modules over L of �nite length, and by R�(G;L) the free abelian

group generated by the pairs (�; S) , where � is a G -module over L of �nite length and

S 2 Aut �G � , subject to the relations (Ri) in xA. Note that R�(G; C ) = R�(G) .
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Let c = (cM ;M = �M <
6=
G) be a sequence of rational numbers. Then the operator

Ac

� = 1+
P

M=�M<
6=
G

cM iGMrMG maps R�(G;L)Q to itself, and it is clear that for any � in

R�(G;L)Q we have Ac

�� � � mod R�I (G;L)Q , where R�I (G;L) =
P

M=�M<
6=
G

iGM (R�(M ;L)) .

We shall now show that the sequence c can be chosen so that Ac

� distinguishes between

induced and non-induced modules, in the following sense.

Theorem 2. There exists a sequence c = (cM 2 Q;M = �M <
6=
G) such that the

endomorphism Ac

� of R�(G;L)Q has the following property. Given � in R�(G;L)Q we

have Ac

�� = 0 if and only if � lies in R�I (G;L)Q .

Thus we need to �nd c = (cM ) such that Ac

�(R
�
I (G;L)Q) = 0 .

Recall that the Weyl group WG of G is Norm(M0; G)=M0 . For M < G consider

WM as a subgroup of WG . The standard Levi subgroups M;N < G are called associate

if there is w in WG with N = wMw�1 . Each such w de�nes an isomorphism w :

R(M ;L) ! R(N ;L) which depends only on the double class of w in WMnWG=WN .

If w0 : R(N 0;L) ! R(M ;L) is de�ned, denote by w � w0 the composition R(N 0;L) !

R(N ;L) .

Lemma 2.1. (i) For N 0 < N < M < G we have iMN 0 = iMN �iNN 0 ; rN 0M = rN 0N �rNM .

(ii) If N = wMw�1 then iGN � w(�) = iGM (�) for all � in R�(M ;L) .

(iii) For M;N < G , let WNM
G be the set of representatives of WNnWG=WM of minimal

length. Then we have the following equality of functors from M (M ;L) to M (N ;L) :

rNG � iGM =
X

w2WNM
G

iNNw � w � rMwM ;

where

Mw = w�1Nw \M; Nw = wMww
�1 = N \ wMw�1:

Proof. (i) follows from the de�nitions, (ii) is proven in [BDK], p. 189, and (iii) is [BZ2],

(2.12).

Suppose that M = �M < G . Then � acts on WM (and WG) . Since P0 is � -

invariant we have `(�w) = `(w) where ` is the length function on WG . If N = �N < G

then � acts on WNM
G . Denote by WNM

G (�) the subset of � -�xed elements in WNM
G .

Lemma 2.1. (iv). For M = �M;N = �N < G , the homomorphism rNG � iGM :

R�(M ;L)! R�(N ;L) is equal to

X
w2WNM

G
(�)

iNNw �w � rMwM :

Proof. The case of � = id follows at once from (iii). Denote by �1;�2; � � � ; the � -

orbits in WNM
G . The length function is constant on each orbit �i , and we index the �i
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to satisfy `(�i) � `(�i+1) . Then `(�i) = 1 if and only if �i � WNM
G (�) . Index the

elements w of WNM
G as w1; w2; � � � ; wt such that if si = j�ij , and ti = s1+ � � �+si , then

�i = fwti�1+1; � � � ; wtig . Put P = MP0 = MUM ; Q = NP0 = NUN (UM ; UN are the

unipotent radicals of the standards parabolic subgroups P;Q < G with Levi components

M;N ).

Given an M -module (�;E) , the space of iGM� consists of the functions f : G ! E

with f(mug) = �P (m)
1
2 �(m)f(g) (m 2 M;u 2 UM ) . Let Ek be the subspace of the f

which are supported on
S

1�i�k

PwiQ . Then Ek is Q -invariant, and [BZ2] de�ne F 0k(�)

to be the image of Ek under rNG . Moreover, [BZ2] show that F 01 � F 02 � � � � � F 0t is a

functorial �ltration of the functor F 0t = F = rNG � iGM : M (M ;L) ! M (N ;L) , such that

F 0i=F
0
i+1 = iNNwi � wi � rMwi

M . Put Fi = F 0ti . For any � 2 Irr �(M) \ R�(M ;L) , the

N -module Fi(�)=Fi�1(�) is the direct sum of si N -modules over L which are permuted

by the action of � . If si > 1 , the image of Fi(�)=Fi�1(�) in R�(N ;L) is then zero. Since

si = 1 precisely for the elements of WNM
G (�) , the lemma follows.

Corollary 2.2. For each M = �M < G , the operator TM = iGM � rMG : R�(G;L) !

R�(G;L) satis�es

TN � iGM =
X

w2WNM
G (�)

iGMw
� rMwM ; where Mw =M \ w�1Nw;(a)

TN � TM =
X

w2WNM
G

(�)

TMw
:(b)

Proof. (a) TN � iGM = iGN � rNG � iGM
(iv)
=
P
w

iGN � iNNw � w � rMwM

(i)
=
P
w

iGNw � w � rMwM
(ii)
=
P
w

iGMw
� rMwM :

(b) TN � TM = TN � iGM � rMG =
P
w

iGMw
� rMwM � rMG =

P
w

iGMw
� rMwG =

P
w

TMw
.

Proof of Theorem 2. For M = �M < G put d(M) = dim X(M) , and de�ne a

decreasing �ltration Ri� on R�(G;L) by Ri� =
P

fM=�M<G;d(M)�ig

iGM (R�(M ;L)) . Then

Ri� = R�(G;L) for i � d(G); R
d(G)+1
� = R�I (G;L) , and Ri� = 0 for i > d(M0) . Corollary

2.2 (a) implies that the operator TN for N = �N < G preserves the �ltration fRi�g . Put

[W �
N ] for the cardinality of the set W �

N of � -invariant elements in WN . Put d = d(N) .

The action of TN on Rd�=R
d+1
� is given by

TN (iGM�) =

�
[W �

N ]iGM (�); if M = �M is conjugate to N; � 2 R�(M ;L);

0; if M = �M is not conjugate to N , and d(N) = d; � 2 R�(M ;L):

It follows that the operator Ad =
Q

fN=�N ;d(N)=dg

(TN � [W �
N ]) preserves the �ltration

fRi�g and annihilates Rd�=R
d+1
� . Put A0� = Ad(M0) � Ad(M0)�1 � � � � � Ad(G)+1 . Then
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A0�(R
�
I (G;L)) = 0 , and by Corollary 2.2 (b) the operator A0� takes the form A0� =

a(1 +
P

M=�M<
6=
G

cMTM ) with cM 2 Q; a 2 Z; a 6= 0 , and acM 2 Z . The operator

Ac

� = a�1A0� , where c = (cM ) , has the properties asserted in the theorem.

For M = �M � G , denote by i�GM : R��(G;L) ! R��(M ;L) and r�MG : R��(M ;L) !

R��(G;L) the homomorphisms adjoint to iGM and rMG . A form F in R��(G;L) is called

� -discrete if F (R�I (G;L)) = 0 . Denote by R��(G;L)
disc the space of � -discrete forms.

Note that R��(G;L) = HomZ;�(R
�(G;L); C ) is denoted by R��(G) when L = C .

Corollary 2.3. Given F in R��(G;L) , the form F d = F +
P

M=�M<
6=
G

cMr
�
MGi

�
GMF is

� -discrete.

Proof. For � in R�(G;L); F d(�) = a�1F (A0��) vanishes if � 2 R�I (G;L) .

E. D�evissage.

Given a G -module � there is a special compact open � -invariant subgroup K of

G such that �K generates � . Each subquotient �0 of � is generated by �0K . The

map � ! �K is an equivalence from the category M K (G) of G -modules � generated

by �K , to the category M (H K ) of (nondegenerate) HK -modules. Since M (H K ) has

�nite cohomological dimension ([B], see Appendix), the Grothendieck group K(HK ) of

�nitely generated H K -modules coincides with the Grothendieck group of �nitely generated

projective (and even free) HK -modules. The center ZK = Z(H K ) of the algebra H K is

(equal to the center Z(M (H K )) of the category M (H K ) and to) the ring k[�K ] of regular

functions on the variety �K ; �K is a �nite union of connected components � of �(G)

with ��1(�) � IrrK(G) .

Denote by Ann (�;ZK) the annihilator of the HK -module � in the ring ZK . This

is an ideal in ZK . The corresponding subvariety supp � of �K � �(G) is called the

support of � . If the distinct irreducible components of supp � are denoted by Y then

supp � = [Y .

Let A be a C -algebra and denote by � an automorphism of A of �nite order ` .

De�nition. The � -cocenter ��(M (A)) of the category M (A) of (non-degenerate) A -

modules is de�ned to be the quotient of the free abelian group generated over C by the

triples (P; S; �) , where P is a projective �nitely generated A -module, S 2 Aut �A P (thus

S : P ~!P is a vector space automorphism with S(hp) = �(h)�1S(p) for p 2 P; h 2 A;

and S` = 1) , and � 2 EndA P , subject to the following relations:

(1) (P; S; �) � (P 0; S0; �0)+(P 00; S00; �00) if 0! (P 0; S0; �0)! (P; S; �)! (P 00; S00; �00)! 0

is exact;

(2) (P; S; �+ �) � (P; S; �) + (P; S; �); (P; S; ��(�)� ��) � 0 , (P; �S; t�) � �t(P; S; �);

(�; � 2 EndA P; �
` = 1; t 2 C );
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(3) If P = �iPi; �(Pi) � Pi and for each i there is j such that SPi = Pj , then (P; S; �) �

�i(Pi; Si; �i) , where the sum ranges over the i with j(i) = i , and �i = �jPi; Si = SjPi .

Write ��(G) for ��(M (H G)) . Write ��(�) for ��(M (H �)) ; it is a direct summand

of ��(G) . When K is � -invariant and special, ��(�K) = ��(M (H K )) is also a direct

summand of ��(G) , being the direct sum of ��(�) over the � � �K . Put ��;I(G) =

�M=�M<
6=
GiGM (��(M)) .

De�ne ��;i(�) to be the quotient by the relations (1), (2), (3) of the free abelian group

generated over C by the triples (P; S; �) (P : projective �nitely generated H � -module,

S 2 Aut �
HG

P; � 2 End HG
P ) such that P is supported on a subvariety Y of � whose

image Y in the quotient variety � = �=X�(G) is of dimension at most i . Recall that the

dimension of a subvariety Y of � , corresponding to a prime ideal I in the ring k[�] , is

de�ned to be the supremum of the lengths n of all �nite strictly increasing chains P0 �

P1 � � � � � Pn of prime ideals Pi in k[�] , with Pn = I . The identity induces a natural

map ��;i(�) ! ��;i+1(�) , and for all su�ciently large i we have ��;i(�) = ��;i+1(�) .

De�ne ��;i(G) similarly, and note that ��;i(G) = ����;i(�) . Note that ��;0(�) � eR�(�)C
and ��;0(G) � eR�(G)C , where R�(�) is the subgroup of R�(G) generated by the pairs

(�; S) with supp � � � . As usual, RT = R
ZT for any Z -modules R and T , and eR�
indicates the quotient of R� by the relations (P; �S) � �(P; S); � 2 C ; �` = 1 . Note that

��;0(G) is generated by the (P; S; �) where P is projective of �nite length.

The triple (�; S; �) represents an element of ��;i(�) if supp � = [Y; Y � �; dim Y � i

for all i; � 2 End HG
� and S 2 Aut �

HG
� . The automorphism S satis�es S(hp) =

�(h)�1S(p)(h 2 H � ; p 2 �) . In particular S(zp) = �(z)�1S(p) for all z 2 Z� = Z(H �) �

H � , and so Ann ( ��;Z�) is an ideal in Z� which corresponds to [Y �Y .

For any subvariety Y of �K (or � ) put JY = Ann (Y;ZK) . It is an ideal in the ring

k[�K ] , which is prime if and only if Y is irreducible.

For any sub�eld L of C and algebra homomorphism � : ZK ! L , denote by R�(L)

the Grothendieck group of (non-degenerate) HK -modules of �nite length over L on which

ZK acts via � . Let R�� (L) be the quotient of the free abelian group generated by the pairs

(�; S) where � is an HK -module over L on which ZK acts via � , and S 2 Aut �
HK

� ,

by the relations (Ri) in xA.

Theorem 3. For every connected component � of �(G) , and i � 0 , the map

(�; S; �) 7!
X
Y

X
j�0

((J
j
Y �=J

j+1

Y �)
k[Y ] k(Y ); S; �);

where Y ranges over all irreducible subvarieties of ( supp � �)� with dim Y = i and

�Y = Y , yields an isomorphism

��;i(�)= Im ��;i�1(�) ~!�Y
eR�� (k(Y ))C :
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Here k(Y ) is the �eld of rational functions on the variety Y , and � = �Y is the generic

point � : (ZK !)k[�]! k[Y ] of Y (corresponding to Y ,! � ). We �x an embedding of

k(Y ) in C .

Remark. For each z in ZK we have z� = �z and Sz = ��1(z)S . If Y 6= �Y then

�Y 6= ��Y = ��Y , and R�� (k(Y )) = f0g . If Y = �Y then S induces an automorphism of

J
j
Y �=J

j+1

Y � , and so does � .

Proof. (i) It su�ces to show that the map of the theorem de�nes an isomorphism

��;i(�)Q= Im ��;i�1(�)Q ~!�Y R
�
� (k(Y ))Q , where ��;i(�)Q is de�ned to be the quotient of

the free abelian group generated by the (P; S; �) over Q , rather than C , by the relations

(1) - (3), where in (2) we take t 2 Q and � = 1 . In the course of this proof only we denote

��;i(�)Q by ��;i(�) .

(ii) The map is well-de�ned. Indeed, X = supp � is a subvariety of � corresponding to

the ideal I = Ann � in the noetherian ring A = k[�] . Let I = \kIk be a minimal primary

decomposition of I . The radical Jk = r(Ik) is a prime ideal. It is �nitely generated since

A is noetherian. Hence there is hk � 1 such that Jhkk � Ik , for each k . Let Yk be the

subvariety of � corresponding to Jk . Then JYk = Ann Yk is Jk . Now X = [kYk has

only �nitely many connected components Y (in particular with dim Y = i , and �Y = Y ).

Each J
j
Y �=J

j+1

Y � is annihilated by JY , hence is supported on Y � supp � . Put h(Y )

for hk if Y is Yk .

To show that for each (�; S; �) the sum over j is �nite, note that for each variety Y

in the �rst sum, the module JhY � is annihilated by
Q

Y 0 6=Y

J
h(Y 0)

Y 0 ; here we put h = h(Y ) ,

and Y 0 ranges over the connected components of supp � other than Y . Hence JhY � is

supported on
S

Y 0 6=Y

Y 0 , and JhY �=J
h+1
Y � on Y \

S
Y 0 6=Y

Y 0 , a proper subvariety of Y (in

particular, of lower dimension). Hence

(J
j
Y �=J

j+1

Y �)
k[Y ] k(Y ) = 0 for j � h:

(iii) The map is surjective. Let � : ZK ! k(Y ) (i.e. Y ,! � ,! �K) be a generic point

of an irreducible subvariety Y = �Y of � with dim Y = i . An irreducible �1 in a pair

(�1; S1) in R�� (k(Y )) is a �nite dimensional vector space over the �eld k(Y ) , � -invariant

and irreducible as an H K -module, on which ZK acts by multiplication by � . Let B be a

� -invariant �nite set which spans �1 over k(Y ) . Then � = HKB is a �nitely generated �

-invariant H K -module on which ZK acts by multiplication via � . It is therefore supported

on Y (� �; dim Y = i; Y = �Y ) , and so (�; S; id) de�nes an element in ��;i(�) , where

S 2 Aut �HK � exists since � is � -invariant. Note that S is unique up to an ` th root of

unity, since � is irreducible. Choose S to coincide with S1 on �1 . Note that since � is

irreducible, any � 2 End HK
� is a scalar by Schur's lemma. Then JY � = 0 , and since

� 
Z
K~�
k(Y ) = �1 , our (�1; S1) is the image of (�; S; id) .

(iv) The map is injective. To show this, note that any element of ��;i(�) can be represented

as a di�erence n1(�1; S1; �1)�n2(�2; S2; �2) , where nk � 0 are rational, �k are projective
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�nitely generated H � -modules, Sk 2 Aut �HG �k and �k 2 End HG
�k . Suppose this

di�erence maps to zero by the map of the theorem. Multiplying by the denominators of nk
we may assume that the nk are non-negative integers. Moreover, replacing �k by nk�k ,

or �k by 0 , we may assume that nk = 1 .

To simplify the notations, �x k(= 1 or 2) , and delete it from the notations. In the nota-

tions of (ii), we may replace (�; S; �) by �Y�0�j�h(J
j
Y �=J

j+1

Y �; S; �) in ��;i(�)= Im ��;i�1(�) .

To prove injectivity it su�ces to assume that the sum ranges over a single Y . Namely we

may assume that � is a sum of �nitely many modules, denoted again by � to simplify the

notations, and these are supported on Y = �Y with dim Y = i , and JY � = 0 .

As in the proof of Lemma 1.1.1, we �x a special open compact � -invariant subgroup K of

G such that � is generated by �K as a G -module, and we work with the H K -module �K .

As there, there is a �nite �etale dominant morphism Y 0 ! Y such that the H K � k(Y 0) -

module k(Y 0) 
k[Y ] �
K is completely reducible. Let 0 = E00 � E01 � � � � � E0r be a

composition series; the quotients E` = E0`=E
0
`�1 are irreducible H K -modules over k(Y 0) .

In each E` we can �nd a lattice L` (�nitely generated projective HK �k[Y ] -module with

k(Y 0)
k[Y ]L` = E`) which is generically irreducible. Since the endomorphism � commutes

with H K , it maps each E0` to itself, and induces an endomorphism, denoted �` , on E` .

The lattice L` can, and will, be chosen to satisfy �`L` � L` . By induction we may (and

will) choose the E0` to have the property that there are 1 � `1 < `2 < � � � < `t = r such that

SE0`s = E0`s and E`s+1 = E0`s+1=E
0
`s

is the direct sum of the orbit of E`s+1 = E0`s+1=E
0
`s

under the action of S , and `s+1 � `s is the length of the orbit. Denote by S`s+1 the

restriction of S to E`s+1 when `s+1 = `s + 1 (i.e. E0`s+1 is invariant under S ). We may

and will choose the lattice L` to be invariant under S` if S` is de�ned (` = `s+1 = `s+1) .

Returning to the original notations (undeleting k ), we conclude that there are �nitely

many generically irreducible H K -modules Lk` , suppported on Y (= �Y; dim Y = i) with

JY = Ann (Lk`; k[�]) , and Sk` 2 Aut �
HK

Lk` , and �k` 2 End HK
Lk` , such that

(�k; Sk; �k) � �`(Lk`; Sk`; �k`) in ��;i(�)= Im ��;i+1(�) (k = 1; 2):

This is a "pre-semi-simpli�cation" of �k . The "semi-simpli�cation" of k(Y )
k[Y ] �k is

�`(k(Y )
k[Y ] Lk`) .

To prove injectivity we assume that �`(E1`; S1`; �1`) = �`(E2`; S2`; �2`) , where Ek` =

k(Y ) 
k[Y ] Lk` . Since the Ek` are all irreducible, the existence and uniqueness of the

Jordan-Holder composition series implies that up to reordering indices we have (E1`; S1`; �1`)

= (E2`; S2`; �2`) for all ` . But L1` and L2` are both lattices in the same vector

space Ek` . Their intersection L1` \ L2` is a lattice, and the quotient Lk`=L1` \ L2`

is supported on a lower dimensional variety. Hence in ��;i(�)= Im ��;i�1(�) we have

(�k; Sk; �k) = �`(L1` \ L2`; S1`; �1`) for both k = 1 and k = 2 , as required.

Corollary 3.1. The map eR�(G)C ! ��(G)= Im ��;I(G) , induced by the natural map

R�(G)! K�(G) and K�(G)! ��(G) by (P; S) 7! (P; S; id) , is surjective.

Proof. Let Y be an irreducible subvariety of � � �K as in Theorem 3, and � : ZK !

k[Y ] its generic point, corresponding to Y ,! � ,! �K . Denote by k(Y ) an algebraic
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closure of the �eld k(Y ) of rational functions on Y , and �x an embedding k(Y ) ,! C ; k[Y ]

is naturally embedded in its fraction �eld k(Y ) , and so in k(Y ) . Then � de�nes also maps

ZK ! k(Y ) and ZK ! C , denoted again by � .

If L0=L is a �nite �eld extension, � : ZK ! L a homomorphism, and �0 is its compo-

sition with the embedding L ,! L0 , then R�� (L) embeds in R��0(L
0) via j0 = j=[L0 : L0] .

Here j maps VL 2 R
�
� (L) to VL0 = VL
LL

0 2 R��0(L
0) . Indeed, the restriction of the L0 -

module j0(VL) to L is VL . Let L denote an algebraic closure of L , and � : ZK ! L the

composition of � with L ,! L . We conclude that R�� (L) embeds in R�
�
(L) = lim

!
R��0(L

0)

(limit over L0; L � L0 � L) .

If L � E are algebraically closed, and � : ZK ! E is the composition of � : ZK !

L and L ,! E , then R�� (L) ~!R�� (E) . Indeed, any irreducible H K -module over L is

absolutely irreducible, namely it stays irreducible after tensorring with E over L . On the

other hand, given an irreducible in R�� (E) with a basis B as a vector space over E , it

is obtained from H KB 
Q L in R�� (L) on tensorring with E over L . Here HK is the

Hecke algebra over Q associated with K . Note that any element of R�
�
(L) lies in R��0(L

0)

for some �nite extension L0 of L in L .

In view of these commments we have the natural inclusions

R�� (k(Y )) ,! R�� (k(Y )) ,! R�� (C ):

Theorem 1 implies that if � is � -discrete, namely � 2 ��disc (G) , then dim �(=

dim Y ) = 0 . In particular R�� (C ) � R�I (G)C if dim � > 0 . Theorem 2 asserts the

existence of an operator A� = Ac

� on eR�(G)C such that for any �eld L of charac-

teristic zero and � 2 eR�(G;L)C we have A�� = 0 i� � 2 eR�I (G;L)C . Consequently

� 2 eR�� (k(Y ))C � eR�� (C )C lies in eR��;I(k(Y ))C i� A�� = 0 , namely i� � 2 eR��;I(C )C (by

a double application of Theorem 2), and if dim � > 0 , by Theorem 1.

Theorem 3 provides an isomorphism

��;i(�)= Im ��;i�1(�) ' �Y��
eR�� (k(Y ))C (irreducible Y = �Y; dim Y = i):

If i > 0 then eR�� (k(Y ))C � eR�I (G)C as was just observed. Hence by Theorem 2 we have

that A�[��;i(�)= Im ��;i�1(�)] = 0 . It follow that for some j � 0 we have Aj�(��(G)) =

��;0(G) � eR�(G)C . In other words, given (�; S; �) in ��(G) , it is equal to Aj�(�; S; �) 2eR�(G)C up to (�; S; �)�Aj�(�; S; �) 2 ��;I(G) . Hence the map
eR�(G)C ! ��(G)= Im ��;I(G)

is surjective.

F. Categorical cocenter.

We need to relate the categorical � -cocenter ��(M (H K )) of xE with the algebra � -

cocenter ��(HK ) which occurs in the statement of the Main Theorem. Instead of H K we
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shall work with a C -algebra A with identity, and denote by � an automorphism of A of

�nite order ` . The semi-direct product A# = Ao < � > contains the coset A� . Put

�A = A=[A;A]; �A# = A#=[A#; A#];

and

��A = A= < a�(b)� ba; a; b 2 A >' A�=[A�;A] = A�=A� \ [A#; A#]:

Let M (A) (resp. M (A#)) be the category of (non-degenerate) A -modules (resp. A# -

modules). An A# -module is a pair (P; S) consisting of an A -module P and an element

S in the set Aut �A P of vector space automorphisms S : P ~!P of order ` which satisfy

S(ap) = ��1(a)S(p)(a 2 A; p 2 P ) ; � acts on P via S .

The cocenter �(M (A)) of the category M (A) is the quotient of the free abelian group

generated over C by the pairs (P; �) consisting of a projective �nitely generated A -module

P and � 2 EndA P , by the relations

(1) (P; �) � (P 0; �0) + (P 00; �00) if 0! (P 0; �0)! (P; �)! (P 00; �00)! 0 is exact;

(2) (P; � + �) � (P; �) + (P; �); (P; ��) � (P; ��); (P; t�) � t(P; �) (t 2 C ;�; � 2

EndA P ) .

Similarly �(M (A#)) is the quotient of the Grothendieck group of pairs (P; �) of a

projective �nitely generated A# -module P and � 2 EndA# P , by the analogous relations.

The � -cocenter ��(M (A)) has already been de�ned in xE; it coincides with �(M (A)) when

� = identity.

Theorem 4. We have ��(M (A)) ' ��A ; in particular �(M (A)) ' �A .

Proof. Let P be a free �nitely-generated A -module, and e1; � � � ; ek a basis of P over

A . Fix S in Aut �A P ; then P extends to an A# -module by �(p) = S(p) . Given

� 2 End A P we shall associate to (P; S; �) an element in ��A as follows. Since �� is an

endomorphism of P there are �ij in A such that

��ei =
X
j

�ijej : De�ne tr P (��) to be
X
i

�ii(2 A):

We claim that tr P (��) is a well-de�ned element of A= < a�(b)� ba > : We need to

show that tr P (��) is independent of the choice of the basis feig . If f1; � � � ; fk is another

basis of P over A then ��fi =
P
j

�ij fj (�ij 2 A) ; moreover, there are fij ; eij 2 A with

fi =
P
j

fijej ; ei =
P
j

eijfj . Consequently
P
j

fijejk = �ik =
P
j

eijfjk . Then

X
jk

�ijfjkek =
X
j

�ijfj = ��fi =
X
j

��1(fij)��(ej) =
X
jk

��1(fij)�jkek;
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and

�`k =
X
ij

��1(e`i)�
�1(fij)�jk =

X
ij

��1(e`i)�ijfjk �
X
ij

�ijfjke`i(mod < ��1(b)a�ab >):

Hence

tr P (��) =
X
i

�ii �
X
i

�ii (mod < ��1(b)a� ab >)

is well-de�ned, as claimed.

If P is projective then there is a �nitely generated A -module Q such that P � Q

is free. De�ne �Q to be the vector space Q on which a 2 A acts by ��1(a) . Put

Q� = Q� �Q� � � �� �`�1Q: Then Aut �AQ� is non-empty, and we de�ne tr P (��) to be

tr P�����P�Q�(�� � 0� � � � � 0) ; it is independent of the choice of Q .

A basis of the trivial A -module A is its identity, which is �xed by � . If a denotes

multiplication of A by a 2 A , then trA(a�) = trA a = a . It follows that the map

tr : ��(M (A)) ! ��A is surjective.

If ��ei =
P
j

�ijej and �ei =
P
j

�ijej (�ij ; �ij 2 A) , where � 2 EndA P , then

� � ��ei =
X
jk

�ij�jkek; �� � �ei =
X
jk

��1(�ij)�jkek;

and so

tr P (�� � � � � � ��) =
X
ij

[��1(�ij)�ji � �ji�ij ] 2 h�
�1(b)a� abi:

To prove injectivity , given � 2 EndA P with tr P (��) 2 h��1(b)a � abi we need to

exhibit �; 
 2 EndA P with �� = 
� � � � � � 
� . If tr P (��) =
P
i

(��1(bi)ai � aibi) ,

let P1 be a free A -module with basis feig , and �; 
 2 EndA P1 endomorphisms with


�ei = aiei; �ei = biei . Then tr P1(� �
��
���) =
P
i

(aibi��
�1(bi)ai) , and tr P�P1 [���

(� � 
� � 
� � �)] = 0 . Consequently, we may assume that tr P (��) =
P
i

�ii is zero (on

replacing (P; �) by (P � P1; � � 0)) . Again we need to present an A -module P1 with

� -action and �; 
 2 EndA P1 such that (P; �) � (P1; 
� � � � � � 
�) in M (A) . By (1) it

su�ces to take P1 free on a basis e1; e2 , and assume that (i) ��e1 = be2; ��e2 = ae1; or:

(ii) ��e1 = ae1; ��e2 = �ae2 . In the �rst case (i), take � with �e1 = e1; �e2 = 0 , and 


with 
�e1 = be2; 
�e2 = �ae1 ; then (
� ��� � � 
�)e1 = be2; (
� � �� � � 
�)e2 = ae1 . In

the second case (ii), take �; 
 with �e1 = e2; �e2 = e1; 
�e1 = e2; 
�e2 = (a+1)e1 . Then

(
� � � � � � 
�)e1 = (a+ 1)e1 � e1 = ae1; (
� � � � � � 
�)e2 = e2 � (a+ 1)e2 = �ae2 , as

required.

Consider the map 	 : ��(HK ) = HK =hh1�(h2)� h2h1i ! R��(G); given by 	(h) = Fh ,

where Fh((�; �)) = tr �(h�) . Since ��(HK ) = ��(M (H K )) by Theorem 4, 	 de�nes a
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map ��(M (H K )) ! R��(G) , also denoted by 	 . By de�nition 	((P; S; �)) = Fh where

h = tr P (�S) .

The functors r; i on M (G) de�ne homomorphisms

iM = iGM : R�(M)! R�(G) and rM = rMG : R�(G)! R�(M)

of the Grothendieck groups where M = �M < G , and dual maps

i�M = i�GM : R��(G)! R��(M) and r�M = r�MG : R��(M)! R��(G)

on the dual spaces. Recall that rMG is de�ned using the standard parabolic subgroup

P =MP0 , and rMG using the opposite parabolic P =MP 0 .

Corollary 4.1. The homomorphism 	 : ��(M (H G))! R��(G) intertwines the homomor-

phisms iGM ; rMG with the homomorphisms r�MG; i
�
GM . Namely

	(iGM (PM ; SM ; �M)) = r�MG(	M ((PM ; SM ; �M)))

and

	M (rMG(P; S; �)) = i�GM (	((P; S; �)))

for all (PM ; SM ; �M) 2 ��(M (M)) and (P; S; �) 2 ��(M (G)) .

Proof. Denote by Ext i(P; �) = Ext i
H
#

G

(P; �) the i th Ext group of the H
#

G -modules P

and � ; it is an H
#

G -module. We �rst claim that the value of 	 at (P; S; �) 2 ��(M (H K ))

is the homomorphism which takes (�; �) 2 R�(G) to

tr [��; Ext �(P; �)] =
X
i

(�1)i tr [��; Ext i(P; �)]:

Since ��(M (H G)) is generated by the (P; S; �) , where P is a projective module, we

may assume that P is projective. Then Ext i(P; �) = �i;0 Hom(P; �) . Note that PK =

Cc(G=K) is a projective generator of the category M (H K ) . Namely each projective module

P in M (H K ) is a direct summand of PK . Extend � by 0 to PK ; then � 2 End PK ,

and

tr �(��) = tr �K(��)

= tr [��;�K = HomK(11K ; �jK) = HomG(iGK11K ; �) = Hom(PK ; �)]

= tr [��; Ext �(PK ; �)]

as claimed. To complete the proof of the corollary, we quote (from Bernstein [B]) the

following

Second Adjointness Theorem ([B]). The functor rM is right adjoint to the functor

iM .
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Hence

[	(iM (EM ; SM ; �M))]((�; �)) = FiM (EM ;SM ;�M )((�; �)) = tr [iM�M � �; Ext �(iMEM ; �)]

= tr [�M � �; Ext �(EM ; rM�)] = [(r�M	)(EM ; SM ; �M )]((�; �))

for all (�; �) 2 R�(G) proving the �rst claim.

The other assertion of the corollary, that 	 intertwines rM on ��(M (H G)) with i�M
on R��(G) , follows from the Frobenius reciprocity (see [BZ1]), which says that rM is left

adjoint to iM .

G. Trace Paley-Wiener theorem.

The following is (a twisted generalization of) the trace Paley-Wiener theorem of [BDK].

Theorem 5. The map 	 : ��(H G) ! R��(G) good , by h 7! Fh , where Fh((�; �)) =

tr �(h�) , is surjective.

For any subset X of R�(G) denote by R��(X) good and R��(X) trace the spaces of

restrictions of elements of R��(G) good and of R��(G) trace to X . The corresponding forms

will be called good or trace forms on X . Put R��(G)
disc
good for R��(�

�
disc (G)) good .

Proposition 5.1. The map 	 : ��(H G)! R��(G)
disc
good is surjective.

Proof. By Theorem 1, for every connected component � of �(G) the variety ��disc is a

�nite union of X�(G) -orbits. Since an element of R��(G) good is supported only on �nitely

many groups R�(�) , it su�ces to show that for any �nite union X of X�(G) -orbits in

� the map 	 : ��(H G)! R��(X) good is onto.

If X�(G) is �nite then X is a �nite set. Then the restriction to X of any linear

form F : R�(G) ! C is a trace form, and in particular R��(X) trace = R��(X) good . In-

deed, the twisted characters of irreducible � -invariant G -modules are linearly independent

functionals on H G .

In general X has the natural structure of an algebraic variety, as the union of �nitely

many X�(G) -orbits. By de�nition of good forms we have

R��(X) trace � R��(X) good � k[X];

where k[X] is the algebra of regular functions on X .

Choose a � -invariant cocompact lattice � in the center Z of G . Put X(�) =

Hom(�; C �) , and Y = X�(�) for the subgroup of � -invariant characters. Then Y

is an a�ne algebraic variety. The restriction map X�(G) ! Y is a �nite epimorphism

of algebraic groups. Denote by !� the central character of � 2 Irr G ; consider the map

Irr �(G) ! Y; � 7! !�j� . Its restriction X ! Y to X is a �nite X�(G) -equivariant

submersive morphism of algebraic varieties. Hence k[X] is a �nitely generated k[Y ] -

module. Note that Rg = R��(X) good is a k[Y ] -submodule of k[X] , where k[Y ] acts by
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(fF )(�) = f(!�j�)F (�) (f 2 k[Y ]; F 2 Rg) . Also Rt = R��(X) trace is a k[Y ] -submodule

via f � tr �(h�) = tr zf ��(h�) ; here zf 2 k[X] is the image of f 2 k[Y ] under the natural

map k[Y ]! k[X] .

For any y 2 Y let My � k[Y ] be the maximal ideal consisting of those polynomial

functions in k[Y ] which vanish at y . For each k[Y ] -module E put Ey = E=MyE for the

�ber of E at y . Since u : X ! Y is �nite and submersive, the set Xy = u�1(y) is �nite,

and the �ber k[X]y coincides with k[Xy] . Since Xy is a �nite set, we have R
�
�(Xy) trace =

R��(Xy) good as noted above; hence Rg � Rt+Myk[X] . Put E = k[X]=Rt; E
0 = Rg=Rt �

E . Then E0 � MyE for each y 2 Y . Since E is a �nitely generated k[Y ] -module it

is locally free generically, namely at almost each y 2 Y . Moreover, E is locally free at

every y 2 Y since E is X�(G) -equivariant. Then E0 �MyE for all y 2 Y implies that

E0 = 0 , since a function which vanishes at each point of a variety is necessarily the zero

function. Hence Rt = Rg as required.

Proof of Theorem 5. We argue by induction on M ; the case of M0 follows from Proposi-

tion 5.1, since R��(M0) good = R��(M0)
disc
good . By Corollary 2.3 there are cM 2 Q such that

for each F 2 R��(G) good there is F d 2 R��(G)
disc
good with F = F d +

P
M<

6=
G

cMr
�
MG(i

�
GMF ) .

Then FM = i�GMF lies in R��(M) good , and by induction there is some hM 2 ��(HM )

which maps to FM by the map 	M of the theorem. Then 	M (hM ) = FM , and by

Corollary 4.1 we have 	G(iGMhM ) = r�MGFM = r�MG	M (hM ) . Hence r�MGi
�
GMF is in

the image of 	G , and so is F since F d is in the image by Proposition 5.1.

H. Density theorem.

The following is (a twisted generalization of) the density theorem of [K1, Appendix].

Theorem 6. The map 	 : ��(H G)! R��(G) trace = R��(G) good of Theorem 5 is injective.

This can be phrased as follows. Given h 2 H G with tr �(h�) = 0 for all (�; �) 2

Irr �(G) , then h lies in the span [H G�; H G ]�
�1 of h1�(h2) � h2h1 (h1; h2 2 H G) . Here

�(h�) =
R
G
�(g�)h(g) is a trace class operator.

We claim that it su�ces to prove the theorem under the assumption that X�(G) is

�nite. Indeed, let ! be a character of the center Z of G . By a standard reduction step

we may work with the Hecke algebra of functions h which transform under Z by !�1 and

are compactly supported modulo Z , and forms on the Grothendieck group of G -modules

� which transform under Z via ! . For � 2 Irr �(G) with central character ! , we have

! = �! . Multiplying � by a � -invariant unrami�ed character we may assume that ! is

trivial on a � -stable lattice � of �nite index in Z . Replacing G by G=� we may assume

that X�(G) is �nite.

Suppose then that X�(G) is �nite. It su�ces to show for each connected compo-

nent � of �(G) that the map ��(H �) ! R��(�) good is injective. Put ��(H �)
d =

��(H � )=��;I(H �) . Corollary 3.1 and Theorem 4 assert that the map eR�(�)C ! ��(H �)
d

is surjective, and Proposition 5.1 implies the surjectivity of the map 	 : ��(H �)
d !
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R��(�)
disc
good . Since eR�I (�)C maps to zero in eR�(�)C ! ��(H �)

d , we obtain a surjec-

tive map eR�(�)d
C
= eR�(�)C = eR�I (�)C ! R��(�)

disc
good :

Since ��disc is a �nite set for each � (by Theorem 1, under our assumption that X�(G) is

�nite), the complex vector space eR�(�)d
C
is �nite dimensional, and has the same dimension

as its dual R��(�)
disc
good . In particular, the map above is an isomorphism, and if h 2 eR�(�)C

maps to zero in R��(�) good , then h lies in eR�I (�)C .
To prove the theorem consider h in ��(H �) which maps to zero in R��(�) good . For

any M = �M < G , the image of 0 by i�GM : R��(�) good ! R��(�M ) good , where

�M = i�1GM (�) , is 0 . By induction on M , when M = �M <
6=
G the inverse image

of 0 2 R��(�M ) good by 	M : ��(H �M ) ! R��(�M ) good is zero. Corollary 4.1 asserts

that 	M (rMGh) = i�GM (	Gh) . Hence rMGh = 0 . It follows that h lies in the inter-

section of ker rMG; M = �M <
6=
G . Consequently h = A�h for A� = Ac

� as in

Theorem 2. As in the proof of Corollary 3.1, for a su�ciently large j we have that Aj�h

lies in eR�(�)C (! ��(H �)) . Hence h lies in eR�(�)C , and it maps to 0 under the mapeR�(�)C (! ��(H �)) ! R��(�) good mentioned above. Therefore it lies in eR�I (�)C , and
A�h = 0 by Theorem 2. We conclude that h = A�h is zero, as required.

Theorems 5 and 6 establish the surjectivity and injectivity of the map of the Main

Theorem, whose proof is now complete.

Appendix. Cohomological dimension.

Theorem. The category M (G) has �nite cohomological dimension bounded by d0 =

dim X(M0) .

Proof. We should show that each G -module X has a projective resolution of length

� d0 .

(1) We proceed to construct the standard resolution of the trivial G -module C on using

the theory of buildings (see Tits [T]). Recall that the building B = B(G) associated with

the group G is a CW -complex equipped with an action of G (on B ). It has the following

properties.

(i) All cells of B are polyhedra, and the action of G preserves cell decomposition.

(ii) For each cell � of B , its stabilizer G� is an open compact subgroup of G which �xes

all points in � .

(iii) Modulo the action of G there are only �nitely many cells. The dimension of any cell

is bounded by d0 .

(iv) The building B is contractible as a topological space.

Consider the chain complex C = f0! Cd0 ! Cd0�1 ! � � � ! C0 ! 0g of B with com-

plex coe�cients. This is a complex of G -modules. If �1; � � � ; �k is a set of representatives
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of cells modulo the action of G , then �jCj =
L

1�i�k

ind (G;G�i ; C ) and (ii) implies that

Cj are projective G -modules. Since B is contractible, we have Hi(C) = 0 for i 6= 0 and

H0(C) = C ; thus C is a projective resolution of C called the standard resolution of the

trivial G -module C .

(2) Let X be a G -module. Consider the complex CX = fCi 
C Xg . Clearly this is a

resolution of the G -module X of length d0 ; we need to check that it is projective. Then

let P be a projective G -module. We have to show that P
CX is also projective. For each

G -module Y we have HomG(P 
X;Y ) = HomG(P; Hom
0
C (X;Y )) . Here Hom 0

C (X;Y )

is the smooth part of the G -module Hom C (X;Y ) . Hence it su�ces to check that the

functor Y 7! Hom 0
C (X;Y ) is exact. Fix an open compact subgroup K of G . As a vector

space, Hom 0
C
(X;Y ) depends only on the K -module structure of Y . Since the category

M (K) of K -modules is completely reducible, each exact sequence in M (K) splits. Hence

the functor Y 7! Hom 0
C (X;Y ) is exact, and P 
C X is projective, as required.

Remark. The standard resolution CX constructed above is not �nitely generated in

general, even when X is irreducible. If X is �nitely generated then one can construct a

resolution 0! Pd0 ! Pd0�1 ! � � � ! P0 ! X ! 0 in which all Pi are �nitely generated

and Pd0�1; Pd0�2; � � � ; P0 are projective. The Theorem implies that Pd0 is also projective.
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