BERNSTEIN’S ISOMORPHISM AND GOOD FORMS

Yuval Z. Flicker

A. Statement of Main Result.

Let G be a p-adic reductive group, and ¢ an automorphism of G of finite order /. A
G -module is a representation 7 : G — Aut V of the group GG on a complex vector space V ,
which is smooth (terminology of Bernstein-Deligne-Kazhdan [BDK]; in Bernstein-Zelevinski
[BZ1] this is termed algebraic): the stabilizer of any vector in V' is an open subgroup of
G . It will be denoted by (w,V), or simply 7, or V. Put 7n(g) = w(c"'g). Then
(°m,V) is a G-module. A G-module (7, V) is called o -invariant if it is equivalent to
(°m,V). Denote by AutZm the set of vector space automorphisms S : V = V with
Sn(g) = m(og)S forall g€ G and S*=1. Then 7 is o -invariant if and only if Autg 7
is non-empty. In this case mextends to a G¥ -module by 7(c) = S, where G# is the
semi-direct product Gx < o > of G with the group < o > generated by 0. When 7 is
irreducible then S is uniquely determined up to an £th root ( of unity in C.

Let M(G) be the category of G -modules. An element E of M(G) is called finitely
generated if for any filtered system of proper subobjects FE; in E, the subobject 3;FE; is
proper in E. Let K(G) be the Grothendieck group of finitely generated G -modules, and
R(G) the Grothendieck group of G -modules of finite length. The group K (G) coincides
with the Grothendieck group of projective (i.e. the functor E +— Hom (P, E) is exact)
finitely generated G -modules P . Indeed, each finitely generated G -module has a projec-
tive resolution consisting of finitely generated G -modules, and this resolution is finite by
virtue of the Theorem of Bernstein [B] recorded in the Appendix. This Theorem asserts
that the category M(G) has finite cohomological dimension.

The group R(G) is the free abelian group generated by the set Irr G of equivalence
classes of irreducible G -modules. Denote by Irr?(G) the subset of o -invariant elements
in Irr G. Let R°(G) (resp. K?(G)) be the quotient of the free abelian group generated
by the pairs (m,S) where m is a G-module of finite length (resp. projective finitely
generated) and S € Aut g 7, by the following relations.

(R1)If 0— (n,S") = (m,S) — («”,S"”) = 0 is exact then (m,S) ~ (x',S") + (", S").
(R2) If 7 =@;m; and for each i thereis j such that Sm; = 7;, then (7, S) ~ X;(7;,S;) ,
where the sum ranges over all ¢ such that Sm; = m;, and S; = S|m; for such 7.

The abelian group R?(G) is generated by the pairs (7, S), 7 € Irr? G and S € Autg
with $* = 1. For any Z-modules R and T put Ry for R®7;T . The quotient of R(G)c
by the relations (w,(S) ~ ((m,S) for all 7 € Ir?(G), S € Autgm, ¢ € C with ¢! =1,

is the free C-module R (G)c generated by Irr?(G).
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Fix a minimal parabolic subgroup P, of G'. Suppose that cPy = Py. If Py = MyU,
is a Levi decomposition, then oMy = u~1Mou for some u in (the unipotent radical) Uy
with wo(u)- -0 1(u) = 1. Since Uy is an extension of additive groups, its first galois
cohomology group is trivial, and there is u' € Uy with v = u’o(u’)~1 . Replacing My by its
conjugate by v’ we may assume that the Levi subgroup My is o -invariant: oMy = M, .
A standard Levi subgroup is a subgroup M DO M, of G which is a Levi component of a
parabolic subgroup P = PyM ; such P is called a standard parabolic subgroup. Notations:
M < G,P < G. Since P has a unique Levi subgroup containing a fixed minimal one, if
oP =P then oM =M for M < G.

For M < G, let igy @ M(M) — M(G) be the functor of normalized induction.
Given an M -module (p, E), the space V = igyE consists of all smooth maps f :

")
G — E with f(mug) = 6p(m)p(m)f(g) (m € M,g € G, v € U(= unipotent radical
of P = MP,)), where dp(m) = |(det : N — N,n — m~Inm)|, and ™ = igyp acts
on igyE by (m(x)f)(g) = f(gz). f M < N < G and M = oM,N = oN, and
(p,E) is o-invariant, then (7 = iyypp,V = iymFE) is o-invariant: define 7w(o) by
(m(a)f)(g) = (p(a)f)(c7tg). Denote by JH(E) the subset of Irr G consisting of all ir-
reducible constituents of the G -module F . The automorphism ¢ of G defines a functor
M(G) — M(G) . It is easy to see that “iga(p) = ig,om(7p), hence that = € JH(igmp)
if and only if 7 € JH (ig,om(7p)) .

Let rye @ M(G) — M(M) be the normalized functor of coinvariants. If (7,V) is
a G -module, then the space Vy = rygV is the quotient of V' by the span V(U) of
m(u)v—v, v €V, u € U (= unipotent radical of P = M P,). The action rygm of M on
rucV o isby m:v+V(U) = 65 (m)x(m)v+ V(U) (note that w(M) stabilizes V(U)).
If M < N<G, oN =N, oM =M, and (m,V) is a o-invariant N -module, then
ryNT is o -invariant, since w(o)(V(U)) = V(U). The functors igpy and rpe define
homomorphisms igay : R(M) — R(G) and ryg : R(G) — R(M), and igpy : R7(M) —
R°(Q), ryg : R°(G) — R°(M), when M = oM . Let P be the parabolic subgroup of G
opposite to P (then M = PN P), and let 7a;¢ be the normalized functor of invariants

defined using P instead of P. If P=¢P then P=oP.

The group X (G) of complex-valued unramified characters of G is naturally isomorphic
to C*? for some d = d(G) > 0, hence has a natural structure of a complex algebraic group.
It acts on Irr G and R(G) by ¢ : 7 — ¢m. Let X?(G) be the group of ¢ in X(G)
which are fixed by o . It is a subvariety of X (G) which acts on Irr ?(G) and R7(G).

Let Hg be the Hecke algebra of (locally-constant complex-valued compactly-supported
measures on) G . Then Hg = C°(G)dg, where dg is a Haar measure. The automorphism
o acts on Hg by o(h dg) = “hdg, where h(g) = h(c~tg). Put ]Hlé for the semi-direct
product Hgx < o >. A measure h in Hg defines a linear form Fj : R(G) — C by
Fy(m) = tr w(h), and FY : R°(G) — C by F7((n,S)) = tr n(ho); here w(ho)=mn(h)S,
and 7(h) is the convolution operator [, h(g)m(g). This m(h) is of finite rank on V =V,
since 7 is admissible (smooth of finite length, see [BZ1]), hence w(ho) is of trace class.
Note that F?((m,(S)) = CF7((m,S)) if ¢! =1. It is useful to note that Hg is the tensor
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product with C over @) of the rational Hecke algebra of () -valued measures with the above
properties. A similar comment applies to Hi of §B below.

Let R%(G) = Homy (R7(G),C) (= Hom ¢(R%(G)¢,C)) be the space of C-valued
linear forms F on R?(G) which are ”genuine”, namely satisfy F((r,(S)) = (F((n,S))
for all ¢ € C with ¢*=1. Let R:(G)¢ be the subspace of the forms F7, h € Hg. A
form in this subspace is called a trace form. Any trace form F' is genuine and it satisfies:

(i) There exists a o -invariant open compact subgroup K of G which dominates F .
Namely F((w,S)) = 0 if 7 is a G -module which has no non-zero K -fixed vector, or
alternatively F((m,S)) depends only on the space m¥ of K -fixed vectors in 7, and the
restriction of S to 7& .

(ii) For any standard Levi subgroup M = oM < G and p € Irr? (M), the function ¢ —
F((icm(¥p),iam(p(o)))) is a regular function on the complex algebraic variety X7 (M) .

Denote by R} (G)gooa the space of F' in R} (G) which satisfy (i), (ii); such forms will
be called good.

Let 7,(Hg) be the quotient of Hg by the linear span [Hgo, Hglo™! of the commutators
fo(h) — hf in Hg. Then 7,(Hg) ~ Hgo/[Hgo,Hg|, where [Hgo,Hg| is the linear
span (in Hﬁ) of all commutators fo-h —h- fo; f,h € Hg . Note that [Hgo,Hg] =
Hgo N [HE, H) .

~

Main Theorem. The map V¥ :Hg — R%(G),h — F{ , yields an isomorphism 7,(Hg) —
R (G) good -

In the special case where £ =1 and o = identity, one has R*(G) = Homz(R(G),C) =
Map (Irr G,C) and its subspaces R*(G)good O R*(G) ¢ - Put 7(Hg) = He /[Hg, Hg] .
The assertion that the map Hg — R*(G)gooa is surjective, namely that R*(G)i =
R*(G) good » is called the trace Paley-Wiener theorem; it is the main result of [BDK]. It
is an analogue of the classical Paley-Wiener theorem which characterizes the image of the
Fourier transform. The main ingredients in extending the proof of [BDK] to the twisted
case, where o is non-trivial, are explained in [F; I, §7]. As the twisted analogue requires
only minor changes to the exposition of [BDK], it is noted in [F] that there is no need to
reproduce the entire proof of [BDK] in the twisted setting.

The injectivity of the map 7(Hg) — R*(G) implies the following density theorem. If
h € Hg satisfies tr w(h) = 0 for all 7 in R(G) then all orbital integrals ®,(vy) =
[h(g™vg) (g € Za(7)\G) of h at the regular elements +y , are zero. The density theorem is
proven in Kazhdan [K1; Appendix| in characteristic zero, and subsequently in [K2; Theorem
BJ, in positive characteristics. The proof of [K1] is global (it uses the trace formula) and
requires non-trivial galois-cohomological constructions. The main ingredients in establishing
a twisted analogue of the density theorem along the lines of the proof of [K1; Appendix],
are explained in [F; I, §4].

The assertion of isomorphism in the Main Theorem above combines surjectivity (trace
Paley-Wiener theorem) and injectivity (density theorem). The proof given here is due to
J. Bernstein (in the case of o = identity). Its advantage over that of [BDK] is in proving



injectivity simultaneously to surjectivity. The proof is purely local, using neither the trace
formula nor galois cohomology, and it applies with any characteristic . The new tool is the
theory of ”dévissage (unscrewing)” which is applied to a certain generalization (o -cocenter
of the category M(G)) of the Grothendieck group K?(G). Thus we work with finitely
generated G -modules which are not necessarily of finite length, and study their support
on the variety ©(G) of infinitesimal characters. For completeness we reproduce here those
parts of [BDK] which we need.

I wish to express my very deep gratitude to Joseph Bernstein for explaining his proof to
me. My minor contribution is in carrying out the generalization to the twisted case, where
o is arbitrary. Since the present proof seems to be quite satisfactory, it is attempted here
to supply all details, also in the twisted case. Further, we refer to Bernstein’s fundamental
lecture notes [B]. However, those results of [B] which we use can be found already in the
preliminary work [BD], with the exception of the ”second adjointness theorem”: i is left
adjoint to 7 ; see §F.

I wish to thank J.-L. Colliot-Thélene, Bill Jacob, Wayne Raskind and Alex Rosenberg,
for an instructive and enjoyable summer school. Nato-grant CRG-921232 is gratefully ac-
knowledged.

B. Categorical center.

A cuspidal pairis a pair (M, p) consisting of a standard Levi subgroup M < G and the
equivalence class p € Irr M of a supercuspidal irreducible M -module. Denote by O(G)
the set of all cuspidal pairs up to conjugation by G . It is the disjoint union of infinitely many
sets © = O(M, p) , each of which is the image of the map X (M) — O(G), ¥ — (M,p)/G,
for some cuspidal pair (M, p). Each such © is called a connected component of ©(G) and
has the natural structure of a complex affine algebraic variety as the quotient of X (M) by a
finite group. Then O(G) = UO has the structure of a complex algebraic variety consisting
of infinitely many connected components.

For any m € Irr G there is a unique up to conjugation by G cuspidal pair (M, p)
such that 7 is a constituent of iga(p). The image 6 of (M,p) in O(G) is called the
infinitesimal character of m, and the map x : Irr G — O(G), x(m) = 0, is onto and
finite to one (see [BZ1]). Note that x is X(G)-equivariant, where X (G) acts on O(QG)
by ¢ : (M,p) = (Mﬂ/}|MP)

For each connected component © in ©(G) consider the set x~1(0©) C Irr G, and the
corresponding abelian subcategory

M(0) = {F € M(G); JH(E) C x *(©)} of M(G).

The Decomposition Theorem of [B] asserts that for © # ©" the categories M(0) and
M(O') are orthogonal, namely Hom (E,E’) =0 for E € M(0),E’ € M(©"). Moreover,
we have M(G) = [IgM(©) , where the product ranges over all connected components ©
in ©(G). Thus each G-module E has a unique decomposition E = ®gFe = llgFe
with Fg € M(O) . In particular Hg is a G -module under the left action of G, and so



5

Hg decomposes as a direct sum @gHg of two sided ideals Hg , and Fg = Hg F for any
G -module E'.

The central algebra Z(M) of an abelian category M is the algebra End (Idy) of en-
domorphisms of the identity functor Idy: M — M. Thus z € Z(M) is a set of endomor-
phisms {zg : E — E;E € M} such that for any morphism « : E — F in M we have
zroa=aozg. Put Z(G) for Z(M(G)) .

A ring H is called an id-ring if for any finite set hy,---,h, in H there is an idempotent
e in H with eh; = h; = h;e. Any id-ring can be presented as lim [H; , where I is an
%

ordered filtered set (for any 4,7 in I there is k£ in I with ¢ < k,j < k), and where
{H; (¢ € I)} is a directed system of rings with identity, but the morphisms H; — H; (i < j)
are not assumed to map the identity of H; to that of H; . For example, Hg is an id-
algebra (algebra which is an id-ring), I is the set of compact open subgroups K of G,
and Hpg the convolution algebra of K -biinvariant measures in Hg . Note that the subset
I? of o-invariant K in I is cofinal in I, hence Hg = li_r>n]I-]IK (Kel%.

A module E over an id-ring H is called non-degenerate if HE = E, equivalently if
E =limeE , where the limit ranges over the set of idempotents in H. From now on by an
_)

H -module we shall mean a non-degenerate H-module. Denote by M(H) the category of
(non-degenerate) H-modules. Note that M(Hg) = M(G) , and M(Hg ) = M(0©) for each
connected component © of ©(G). Write Z(H) for Z(M(H)). If H is an id-ring, the
morphism z — zy identifies Z(H) with the algebra End gymorr (H) of endomorphisms of
H which commute with right and left multiplication. In particular, if H has an identity
then Z(H) is isomorphic to the center of H. For example, Z(Hg ) is the center of Hg .

The orthogonal decomposition M(G) = [IgM(0O) implies that Z(G) = [IeZ(0) , where
Z(0) is the center of M(©) . A theorem of [B] asserts that Z(0) is naturally isomorphic
to the algebra ofregular (polynomial) functions on the variety ©. Hence Z(G) = Z(Hg)
is the algebra of regular functions on O(G). In particular z € Z(G) acts on « € Irr (G)
by multiplication by the scalar z(#), where 6 = (7).

For any compact open subgroup K of G put Irr®(G) = {F € Irr G; EX # 0}; EX is
the space of K -fixed vectors in E € M(G) . By a Proposition of [B] the subset x(Irr ® (@)
of ©(G) is a union of finitely many components, and for any component © of ©(G) there
is K = Ke such that x~1(©) ¢ Irr®(G). The open compact subgroup K of G is
called special if Irr *(G) is equal to a union of pullbacks x~1(©) of components ©. Put
Mk (G) = {E € M(G); E is generated by EX}, and Mk (G) = {EF € M(G); EX = 0}.
If K is special then M(G) is the direct sum of the abelian subcategories Mg (G) and
Mz (G) , and Mg (G) = M(Hg) , by a theorem of [B]. Consequently Z(Mg (G)) = Z(Hg)
is the ring of regular functions on the union ©g of finitely many connected components ©
of ©(G) with x~'(©) C Irr ¥ (G). Moreover, the algebra Hy decomposes as ®oco, Ho -
By [B] the algebra Hg is finitely generated Z(©)-module, and Hg is a finitely generated
Z(0k)-module (and Z(G)-module). Finally, it is shown in [B] that K is special if it has
an Iwahori decomposition for each M < G (thus K = KNU-KNM - KNU where
M = PN P is the intersection of the standard parabolic subgroup P = My = MU and its
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opposite parabolic P = MU), and there exists a compact subgroup K, which normalizes
K and satisfies G = KyP, . Congruence subgroups and Iwahori subgroups are special.

For any standard Levi subgroup M < G the morphism igp : O(M) — ©(G) defined
by (N, p)+— (N, p) is finite. It is not injective since cuspidal pairs conjugate under G may
be non-conjugate under M . Denote the adjoint morphism by i%,, : Z(G) — Z(M). Then
Z(M) is a finitely generated Z(G)-module. Put zp = i,z € Z(M) for z € Z(G).
Then by a Propoposition of [B], for each M -module p we have igp(zp) = 2z on igump,
and for each G-module © we have ry gz = 2y on rygm.

Recall that © € JH(ignp) if and only if “7m € JH(ig on(7p)). Hence the morphism
o:0(G) = O(G) defined by (N,p)+— (oN, 7p) satisfies o(x(7)) = x(?7) . Denote by o
also the dual map o : Z(G) — Z(G), oz(0) = 2(c710) .

Remark. Denote by ©7 , where © is a component of ©(G) , the subset of o -fixed points of
© . The subset 7 is empty unless 0© = ©, and it contains the infinitesimal characters
of all o-invariant G -modules 7 with x(7) € © (however o6 = 6 does not imply the
existence of m € Irr G with 0 = x(7) and m~ 7). The set ©7 is a (closed) subvariety
of ©. Indeed, if ®7 is not empty then it contains a point represented by a cuspidal pair
(M, p). Let Wg =W(My,G) = Norm (My,G)/My be the Weyl group of G. Then there
is s € Wg with (oN,op) = (sN,sp). If (N,¢p),1p € X(N), represents any other point
in ©7, then there is s, in Wg with (oN,o(¢p)) = (syN, sy (1)sy(p)) . Since we have
sN = syN , there is wy, € W(N,G) = Norm (N,G)/N such that s, = swy . Hence
swy () - sp = ap - sp, or ((swy)(W)/o()) ® sp ~ sp, and swy(10)/o(y) lies in a fixed
finite group depending only on p (and o). Consequently ©7 is (Zariski) closed in ©.

C. Discrete modules.

Put R{(G)= > iegm(R°(M)). A G-module 7 € Irr?(G) is called o -discrete
M:JM% G

if it does not lie in R7(G) . An element 6 of O(G) is called o -discreteif it is equal to x(7)

for a o -discrete m € Irr?(G) . Denote by R§(G) the subgroup of R?(G) generated by the

G -modules with infinitesimal character 6. Denote by ©%. . (G) the subset of o -discrete

disc
0 in ©(G), and for each connected component © of O(G) put 0%, . =60NO%. . (G).

disc disc

Theorem 1. For each connected component © of O(G), the set O% . is a union of
finitely many X°(G) -orbits (and in particular is a subvariety of © ).

A main step in the proof of this Theorem is the following

Proposition 1.1. For each O the set ©%,, is constructible (a finite union of locally

closed, in the Zariski topology, subsets) in © .

Proof. We begin with some preliminaries. Let B be a commutative algebra over C. A
G x B-module is a G -module E equipped with a homomorphism B — Endg E. Such
E is called a B-family of G -modules if F is finitely generated as a G x B -module, and
for each open compact subgroup K of G the B-module E¥ is finitely generated and
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projective. For any homomorphism B — B’ of algebras write Fp = B ®g F for the
induced B -family of G -modules. If B is the algebra k[X] of regular functions on a
variety X, call E an X -family of G -modules. Given a morphism X' — X, denote
by Ex: the induced X’-family of G -modules. In particular for any point s in X (thus
s: Spec C — X ) the corresponding G -module E; = C®yx) £ is called the specialization
of the X -family E at s.

Given an X -family of G -modules E define a function vg : X — R(G) by vg(s) = E;,
and a function 7g : X — R (G) by 7g(s) = E,, where E, is the image of E, € R(G)
in the quotient R’ (G) of R7(G) by the relation (m,(S) ~ (m,8) if ¢! =1;R’(G) is the
free abelian group generated by Trr?(G). A function v : X — R’ (G) is called regular
if v =7wg for some X -family E of G -modules. A regular function v : X — R’ (G) is
called irreducible if v(X) C Irr?(G) . Two irreducible functions v, v’ are called disjoint if
v(s) # v(s') for every s# s in X .

Lemma 1.1.1. Given a regular function v : X — R (G) there exists a dominant étale
morphism ¢ : X1 — X, finitely many irreducible disjoint regular functions A; : X1 —
R’ (G) , and positive integers nj , such that vo ¢ =3;n;\; .

Proof. Let F be an X -family of G -modules such that v = 7g . Then there is an open
compact o -invariant subgroup K of G such that E is generated by EX asa G -module.
The subgroup K can be chosen to be special, and then any non-zero subquotient E’ of
E is generated by its subspace E’™ (which is non-zero) by a theorem of [B]. Consequently
it suffices to prove the lemma with finitely generated k[X]-families of Hg -modules EX |
instead of finitely generated k[X]-families of G -modules E'.

It suffices to prove the lemma with X replaced by an irreducible component. Hence
we assume that X is irreducible. Write k(X) for the fraction field of k[X]. The Hg x
k[X]-module EX is finitely generated as a k[X]-module; hence k(X) ®px) EX is a
finite dimensional vector space over the field k(X). Over an algebraic closure k(X) of
k(X) there is an Hp -stable flag 0 = EIO %E; ; . ;E; of k(X)-vector spaces in E; =
k(X) Qr[X] EX | such that each E; = F}/E;_l is an irreducible Hg -module over k(X).
Since k(X)®jx] EX is finite dimensional over k(X), there exists a finite extension k(X)’

of k&(X) in k(X), namely a finite étale dominant morphism X' — X | such that the Hg -
module k(X') ®px] EX is completely reducible. Thus there is an Hpg -stable flag 0 =

E| ;Ei ; S ; E] of k(X')-vector spaces in E|. = k(X') ®yx) EX, such that each E; =
E;/E;_; is an irreducible Hy -module over k(X’). In particular Hg spans End jxr) E;
over k(X').

Choose a basis B; of E; over k(X'). Then L = (Hx xk[X']) B; is a finitely generated
projective Hg x k[X']-module, and k(X') ®yx) L; = Ej. Hence Endyx L} is a ring
of matrices over k[X'] of size |B;|. Since Endx E; is Hix x k(X'), there exists an
open subset X" of X' such that Endx» L}, where LY = k[X"] ®yx L}, is equal to
Hg x k[X"]. Hence L7 is an irreducible Hy x k[X"]-module, and L7 = C®pxmn LY is



8

an irreducible Hg - module for every s in X”. In R(G) we then have Eg =) L7  for
J

all s € X", and so vgo ¢ = ZVL;/ on X" where ¢ is the morphism X” — X . The

regular functions vpy are irreducible.

Write A; for the distinct functions among the vy ; then v = Y -njA; for some n; > 1.
J
Replacing X" by an open subset we may assume that the \; are disjoint; indeed, the set

of s € X" with X;(s) = Aji(s) is closed in the Zariski topology.

Denote by J the set of j such that the irreducible Hg x k[X"]-module E; is o-
invariant. Then for each b; € B; there are f;, = f/./f; with fl,, fl in E[X"] such that
ob; =) fitbr . Replacing X" by its open subset which is defined by f/; # 0 for all i,k

k

we conclude that L7 is o -invariant for each j in J. The functions vy and v,p» are
J J

equal or disjoint. Hence, if L ~ oL}  for some s in X" then LY ~ oL7, and Ej is
o -invariant (j lies in J). It follows that for j ¢ J, the image of L7  in R’(G) is zero

for every s in X" . This completes the proof of the lemma.

Corollary 1.1.2. Let A\vy, - ,v,: X — RU(G) be reqular functions, and X\ irreducible.
Denote by X the set of s in X such that \(s) lies in the subgroup of R’ (G) generated
by v1(s), - ,vn(s). Then there is an étale dominant morphism ¢ : X' — X such that
¢~ X1 is empty oris X' .

Proof. There are irreducible disjoint regular functions Ay, -, A, : X — R (G) and
positive integers a;; such that v; =) a;;j\; . We may assume that A = ;. It remains to
J

n
solve in integers by,---,b, the equation ) bja;; = d1 ;.
i=1

Remark. A subset A of © is constructible if and only if it satisfies the condition:

(C) For any locally closed subvariety X of © there exists a dominant étale morphism
¢: X" — X such that $~1(X1), X1 =X — XN A, is either empty or X' .

Proof of Proposition. To show that ©7%,,. is constructible we shall verify (C) for A =
©%. - Suppose that (N, p) is a cuspidal pair which defines ©, and let v, : X(N) — ©
be the morphism defined by v +— (IN,¢p). For each standard Levi subgroup M < G
with M = oM > N, denote by vy the regular function X(N) — R’ (M) defined by
Y inm(p). Let X be a locally closed subvariety of ©. Then by Lemma 1.1.1 there is
a dominant étale morphism ¢ : X; — X such that var o => narjAn;, na; >0 and
j
A0 X1 — R’ (M) are irreducible disjoint regular functions, for each such M = oM < G .
The set Xo of points s € X; where each A ;(s) lies in the subgroup of R’ (G) generated
by the regular functions igp(Aak(s)), is ¢~ H(Xr), Xy = X — X N O%, . . But then
Corollary 1.1.2 implies that ¢~1(X;) is empty or is X;. Hence X satisfies (C) and the
proposition follows.

The following Lemma will be used in the proof below of Theorem 1.
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Lemma 1.2. Given an irreducible o -discrete G -module 7 there exists a tempered o -
discrete G -module @' and 1 € X°(G) with x(m) = x(¥7') .

Proof. Langlands’ classification [BW; §XI] implies that any 7 in Irr G determines a
unique triple (P, p,1n) consisting of a standard parabolic subgroup P = MU of G, a
tempered (irreducible) M -module p, and ¢y € X (M) which is positive with respect to
U (see [BW]), such that 7 is the unique irreducible quotient of igar(¥prp). The triple
of ?m is (6P, “p, “¢Ypr), and so if m =~ %7 then oP = P, 9p ~ p, "¢y = .
If the infinitesimal character of the M -module vp;p is represented by the cuspidal pair
(N,7), N < M, then each constituent of the G -module iga(¥app) is also a constituent
of the G'-module ign(7), hence has the same infinitesimal character 6 as 7.

In R°(G) we have m = iga(¢arp) — Y. 7, , where 7; are the irreducible o -invariant

constituents of igar(1arp) other than 7. {\/Ioreover, if (Pj, pj,1;) is the triple determined
by m;, then 1; < tpr in the order < introduced in [BW; XI, (2.13)]. Since the map
x : Irr G — O(G) is finite to one, 7; lies in a fixed finite set determined by 6 = x(7). By
induction on the parameter 1) we may assume that each 7; is a Z-linear combination of
G -modules of the form igpp (¢¥'p'), where M' =ocM' < G, ' € X7 (M'),and “p' ~ p' is
tempered. Hence m = Yiga (¢'p’) for some M' = oM’ < G,y € X7 (M), and tempered
o -invariant M’ -modules p’. Since m is o -discrete, at least one M’ in the sum equals
G, and the corresponding p’ is o -discrete. The lemma follows.

Proof of Theorem 1. The involution + : R(G) — R(G) which assigns to each G -module
7 its Hermitian contragredient 7%, maps Irt G to Irr G and Irr?(G) to Irr?(G). It
commutes with igps for each M < G, acts on X (M) and on the set of cuspidal pairs
(M, p), and consequently defines an involution + on the complex algebraic variety ©(G)
which commutes with x : Irr G — ©(G) . It is clear that the action of 4+ on the algebraic
varieties X (M) and ©(G) is anti-holomorphic and in particular anti-algebraic.

By Lemma 1.2 each 6 € ©7%, . is of the form x(¢)m) where ¢ € X?(G) and 7 is

disc
an irreducible tempered o -invariant G -module. Since 7 is tempered it is unitary, and
so 7t = m. Hence 07 € X7(G)0. Consequently the subset O = % /X7 (G) of
the algebraic quotient variety ® = ©/X?(G) , which is constructible by Proposition 1.1, is
pointwise fixed by the anti-algebraic involution 4. It follows that ©%,.. is finite, namely

©%,.. consists of finitely many X7(G) -orbits, as asserted.

D. Induction.

Let L be a field of characteristic zero. A G -module over L is a smooth representation
m: G — Aut V of the group G on a vector space V over L. Denote by R(G;L) the
Grothendieck group of G -modules over L of finite length, and by R?(G; L) the free abelian
group generated by the pairs (m,5), where 7 is a G -module over L of finite length and
S € Aut g, subject to the relations (R;) in §A. Note that R°(G;C) = R?(G) .
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Let ¢ = (cp; M = oM < () be a sequence of rational numbers. Then the operator

AS =14+ > cmieurme maps R7(G;L)g to itself, and it is clear that for any = in
M:JM%G

R?(G;L)g wehave ASm =7 mod R(G;L)g , where Rf(G;L) = >,  igu(R(M;L)).
M:UM&G

We shall now show that the sequence ¢ can be chosen so that A¢ distinguishes between
induced and non-induced modules, in the following sense.

Theorem 2. There exists a sequence ¢ = (cy € Q;M = oM < G) such that the
endomorphism AS of R°(G;L)q has the following property. Given m in R°(G;L)qg we
have ASm =0 if and only if = lies in R7(G;L)q .

Thus we need to find ¢ = (car) such that AS(R7(G;L)g) =0.

Recall that the Weyl group Wg of G is Norm (My,G)/My. For M < G consider
Wy as a subgroup of Wg . The standard Levi subgroups M, N < G are called associate
if there is w in Wg with N = wMw™'. Each such w defines an isomorphism w :
R(M;L) — R(N;L) which depends only on the double class of w in Wy \Wg/Wy .
If w': R(N';L) — R(M;L) is defined, denote by w o w’ the composition R(N';L) —
R(N;L).

Lemma 2.1. (1) For N' < N <M < G we have ipynN' = ipgyNOINN'TN'M = F'N'NOTNM -
(ii) If N=wMw™! then ign ow(p) =igm(p) for all p in R°(M;L).

(iii) For M,N < G, let WéVM be the set of representatives of Wn\Wa /Wy of minimal
length. Then we have the following equality of functors from M(M; L) to M(N;L) :

TNG O lGM = E INN, OWOTM, M,

wEWéVM
where
M, =wNwnM, N, =wM,w '=NnwMw?

Proof. (i) follows from the definitions, (ii) is proven in [BDK], p. 189, and (iii) is [BZ2],
(2.12).

Suppose that M = oM < G. Then o acts on Wy (and Wg). Since Py is o-
invariant we have £(ocw) = £(w) where ¢ is the length function on Wg. If N =0N < G
then o acts on WIM . Denote by WAM (o) the subset of o -fixed elements in WM .

Lemma 2.1. (iv). For M = cM,N = oN < G, the homomorphism rng © igm :
R?(M; L) — R°(N; L) is equal to

E INN, ©WO TN, M-
’lUEWéVM(U)

Proof. The case of o = id follows at once from (iii). Denote by 3i,%5,---, the o-
orbits in WA M . The length function is constant on each orbit ¥;, and we index the ¥;
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to satisfy £(3;) > £(Zi11). Then £(3;) = 1 if and only if ¥; ¢ WM (o). Index the
elements w of WM as wy,ws, -+ ,w; such that if s; =|%;|, and ; = s;+---+s; , then
¥ ={wy, 41, wy, . Put P=MPy = MUy, Q= NPy = NUy (Up,Un are the
unipotent radicals of the standards parabolic subgroups P, () < G with Levi components
M,N).

Given an M -module (p, F), the space of igap consists of the functions f: G — E
with f(mug) = dp(m)zp(m)f(g) (m € M,u € Uy). Let Ej be the subspace of the f

which are supported on |J Pw;Q. Then Ej is @ -invariant, and [BZ2| define F}(p)
1<i<k

to be the image of Fj under ryg. Moreover, [BZ2] show that F| C Fj, C --- C F] is a

functorial filtration of the functor F} = F = ryg oigy : M(M; L) — M(N; L) , such that

F}/F/ =iNnN,, ow;orm, m. Put F; = F/ . For any p € Irr?(M) N R7(M;L), the

N -module Fj(p)/F;_1(p) is the direct sum of s; N -modules over L which are permuted

by the action of o . If s; > 1, the image of F;(p)/F;—1(p) in R?(N;L) is then zero. Since

s; = 1 precisely for the elements of WM (5), the lemma follows.

Corollary 2.2. For each M = oM < G, the operator Thy = igym o Tme @ R7(G; L) —
R?(G; L) satisfies

(a) Ty oigy = Z iga, © Tar, v, where My, = M Nw™ ! Nw;
weWlM (o)
weWM (o)

Proof. (a) TN olgM = IGN OTNG QlgM = EZGN OINN, CWO TN, M
w
() (1)
—ZZGNU, CWormM,M — ZZGMU, CTMy,M-
w w

(b) TnoTy =Tn cigm o rmMe = Y iGM, © 'M,M © TMG = 2 4GM, © "M, G = 2 L, -

Proof of Theorem 2. For M = oM < G put d(M) = dim X(M), and define a
decreasing filtration R: on R°(G;L) by R! = > igm (R°(M; L)) . Then

{M=0cM<G;d(M)>i}
R = R°(G; L) for i < d(G), REDT™ = R9(G; L), and RE =0 for i > d(M). Corollary
2.2 (a) implies that the operator T for N = 0N < G preserves the filtration {R}. Put
[Wg| for the cardinality of the set W§g of o -invariant elements in Wy . Put d = d(N).
The action of Ty on RZ/RI*! is given by

T (i )= (WZlicm(p), if M =oM is conjugate to N, p € R7(M; L),
NUGMP) =1 o, if M = oM is not conjugate to N, and d(N) =d,p € R°(M;L).
It follows that the operator A; = I (T — [W§]) preserves the filtration

{N=0oN;d(N)=d}
{RZ,} and annihilates Rg/Rg“. Put A = Ag(my)y © Ad(mg)—1 © -+ © Agigy+1 - Then
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A’ (R7(G;L)) = 0, and by Corollary 2.2 (b) the operator Al takes the form Al =

a(l + Ny %:4 GCMTM) with ¢y € Q,a € Z,a # 0, and acyy € Z. The operator
=0 g

AS =a"1A!l | where ¢ = (cp), has the properties asserted in the theorem.

For M = oM < G, denote by ig,, : R:(G;L) — R:(M;L) and r};o : RE(M; L) —
R} (G; L) the homomorphisms adjoint to iga and rp¢ . A form F in RX(G; L) is called
o -discrete if F(RI(G;L)) = 0. Denote by RX(G; L)% the space of o -discrete forms.
Note that R%(G;L)= Homzy ((R°(G;L),C) is denoted by R%(G) when L =C.
Corollary 2.3. Given F in R:(G;L), the form F? = F + o emryaieuF is

M:JM%G
o -discrete.

Proof. For m in R’(G;L),F%(r) =a 'F(A.x) vanishes if m € RJ(G;L).

E. Dévissage.

Given a G -module 7 there is a special compact open o -invariant subgroup K of
G such that 7% generates 7. Fach subquotient 7/ of 7 is generated by n’¥ . The
map 7 — X is an equivalence from the category Mg (G) of G -modules m generated
by 7% to the category M(Hg) of (nondegenerate) Hy -modules. Since M(Hg) has
finite cohomological dimension ([B], see Appendix), the Grothendieck group K (Hg) of
finitely generated Hg -modules coincides with the Grothendieck group of finitely generated
projective (and even free) Hg -modules. The center Zx = Z(Hg) of the algebra Hg is
(equal to the center Z(M(Hf)) of the category M(Hg ) and to) the ring k[Og] of regular
functions on the variety Og; Ok is a finite union of connected components O of O(G)
with x~1(©) C Irr ®(G).

Denote by Ann (7, Zk) the annihilator of the Hg -module 7 in the ring Zg . This
is an ideal in Zg . The corresponding subvariety supp m of Ox C O(G) is called the
support of m. If the distinct irreducible components of supp 7w are denoted by Y then
supp ™ = UY .

Let A be a C-algebra and denote by ¢ an automorphism of A of finite order £.

Definition. The o -cocentert,(M(A)) of the category M(A) of (non-degenerate) A -
modules is defined to be the quotient of the free abelian group generated over C by the
triples (P, S,«), where P is a projective finitely generated A-module, S € Aut% P (thus
S : PP is a vector space automorphism with S(hp) = o(h)~1S(p) for p € P,h € A,
and S*=1), and a € End 4 P, subject to the following relations:

(1) (P,S,a) ~ (P, S", /) +(P",S",a") if 0 = (P',S", /) — (P,S,a) = (P",58",a") =0
is exact;

(2) (P,S,a+p) ~ (P,S,a)+ (P,S,B), (P,S,ac(f) — pa) ~ 0, (P,(S,ta) ~ (P, S, a),
(a,B€ End4 P, (* =1, t € C);
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(3)If P=@®;P;,a(P;) C P; and for each ¢ thereis j suchthat SP; = P;, then (P, S, a) ~
Yi(P;, Si, «;) , where the sum ranges over the ¢ with j(i) =i, and o; = a|P;, S; = S|P; .

Write 7,(G) for 7,(M(Hg)). Write 7,(©) for 7,(M(Hg)); it is a direct summand
of 7,(G). When K is o-invariant and special, 7,(Og) = 7,(M(Hg)) is also a direct
summand of 7,(G), being the direct sum of 7,(©) over the © C O . Put 7, (G) =
YM=omgciam(To(M)) .

Define 7,;(©) to be the quotient by the relations (1), (2), (3) of the free abelian group
generated over C by the triples (P,S,«a) (P: projective finitely generated Hg -module,
S € Autg, P, a € Endg, P) such that P is supported on a subvariety Y of © whose
image Y in the quotient variety © = ©/X°(G) is of dimension at most i. Recall that the
dimension of a subvariety Y of ©, corresponding to a prime ideal I in the ring k[O], is
defined to be the supremum of the lengths n of all finite strictly increasing chains Py C
P, C --- C P, of prime ideals P; in k[©], with P, = I. The identity induces a natural
map 7,,(0) = 7,,;4+1(0), and for all sufficiently large ¢ we have 7,,;(0) = 7,,41(0).
Define 7,;(G) similarly, and note that 7,;(G) = ®e74.:(0) . Note that 7,(0) C R?(0)¢
and 7,0(G) C R?(G)c, where R7(©) is the subgroup of R’(G) generated by the pairs
(m,S) with supp 7 C ©. Asusual, Ry = R®; T for any Z-modules R and T, and R°
indicates the quotient of R by the relations (P,(S) ~ ((P,S),¢ € C,¢(* = 1. Note that
T,0(G) is generated by the (P, S,«) where P is projective of finite length.

The triple (7, S, ) represents an element of 7, ;(0) if supp 7 =UY,Y C O, dim Y <
for all 4, o € Endg, 7 and S € Autf, 7. The automorphism S satisfies S(hp) =
o(h)~1S(p)(h € Hg,p € 7). In particular S(zp) = o(2)~1S(p) for all 2z € Zg = Z(Hg) C
Ho , and so Ann ( 7, Zg) is an ideal in Zg which corresponds to Uy oY .

For any subvariety Y of ©g (or © ) put Jy = Ann (Y, Zk). It is an ideal in the ring
k[®k]|, which is prime if and only if Y is irreducible.

For any subfield L of C and algebra homomorphism 6 : Zx — L, denote by Rg(L)
the Grothendieck group of (non-degenerate) Hy -modules of finite length over L on which
Zk acts via 0. Let R§(L) be the quotient of the free abelian group generated by the pairs
(m,S) where 7 is an Hg -module over L on which Zg acts via 6, and S € Autg 7,
by the relations (R;) in §A.

Theorem 3. For every connected component © of ©(G), and i > 0, the map

(.S, a) = > Y ((Hm /T ) 1 E(Y), S, ),

Y 5>0

where Y ranges over all irreducible subvarieties of (supp 7 C)© with dimY = i and
oY =Y, yields an isomorphism

724(0)/ T 7,.,_1(0)= @y R (k(Y))c.
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Here k(Y') is the field of rational functions on the variety Y , and 0 = 0y is the generic
point 0 : (Zx —)k[O] — k[Y] of Y (corresponding to Y — © ). We fiz an embedding of
k(Y) in C.

Remark. For each z in Zx we have za = az and Sz = o7 1(2)S. If Y # oY then
Oy # 0,y = 0y ,and RJ(k(Y))={0}. If Y =0Y then S induces an automorphism of

Jin ) r, and so does o

Proof. (i) It suffices to show that the map of the theorem defines an isomorphism

75:(0)o/ Im 75,-1(0) o= By R (k(Y))q , where 7,,(0)¢ is defined to be the quotient of
the free abelian group generated by the (P,S,«) over @, rather than C, by the relations
(1) - (3), where in (2) we take ¢t € Q and ¢ = 1. In the course of this proof only we denote

75:(0)g by 7,:(0).

(ii) The map is well-defined. Indeed, X = supp 7 is a subvariety of © corresponding to
the ideal I = Ann 7 in the noetherian ring A = k[©]. Let I = Nyl be a minimal primary
decomposition of I. The radical Ji = r(I)) is a prime ideal. It is finitely generated since
A is noetherian. Hence there is hj > 1 such that J,?’“ C Iy, for each k. Let Y be the
subvariety of © corresponding to Ji. Then Jy, = Ann Y is Ji. Now X = U,Y} has
only finitely many connected components Y (in particular with dim Y =i, and oY =Y ).
Each J{}W/Jij,“ﬂ is annihilated by .Jy , hence is supported on Y C supp 7. Put A(Y)
for hy if Y is Y} .

To show that for each (m, S, ) the sum over j is finite, note that for each variety Y

in the first sum, the module J&7 is annihilated by [] JhY ; here we put h = h(Y),
Y'£Y
and Y’ ranges over the connected components of supp m other than Y . Hence J{}W is

supported on |J Y7, and Jix/JET'm on YN | Y, a proper subvariety of Y (in
YI£Y YI£Y
particular, of lower dimension). Hence

(Hom)JH ) @y k(Y) =0 for j > h.

(iii) The map is surjective. Let 0 : Zx — k(Y) (i.e. Y < © < ©Ok) be a generic point
of an irreducible subvariety Y = oY of © with dim Y = i. An irreducible 7; in a pair
(m1,51) in R§(k(Y)) is a finite dimensional vector space over the field k(Y), o -invariant
and irreducible as an Hg -module, on which Zx acts by multiplication by 6. Let B be a
o -invariant finite set which spans 7; over k(Y). Then nm = Hg B is a finitely generated o
-invariant Hg -module on which Zx acts by multiplication via 6 . It is therefore supported
on Y(C ©,dimY =i,V =0Y), and so (m,S,id) defines an element in 7,;(0), where
S € Autg, 7 exists since 7 is o-invariant. Note that S is unique up to an £th root of
unity, since 7 is irreducible. Choose S to coincide with S; on m;. Note that since 7 is
irreducible, any o« € Endy, 7 is a scalar by Schur’s lemma. Then Jym = 0, and since
T®z, ; k(Y)=m,our (m,S51) is the image of (m,S,id).

(iv) The map is injective. To show this, note that any element of 7, ;(©) can be represented
as a difference nq(my, S1, @1) —na(ms, S2, a), where ng > 0 are rational, m; are projective
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finitely generated Hg -modules, S € Aut ]%IG 7, and o € Endpy, mp. Suppose this
difference maps to zero by the map of the theorem. Multiplying by the denominators of ng
we may assume that the nj are non-negative integers. Moreover, replacing oy by ngay ,
or m, by 0, we may assume that ny =1.

To simplify the notations, fix k(=1 or 2), and delete it from the notations. In the nota-
tions of (ii), we may replace (m, S, ) by EyEOSjSh(J{,W/J{/“W, S,a) in 7,,;(0)/ Im 7,,-1(0) .
To prove injectivity it suffices to assume that the sum ranges over a single Y . Namely we
may assume that 7 is a sum of finitely many modules, denoted again by 7 to simplify the
notations, and these are supported onY = oY with dimY =i, and Jy7r =0.

As in the proof of Lemma 1.1.1, we fix a special open compact o -invariant subgroup K of
G such that 7 is generated by 7% asa G -module, and we work with the Hg -module 7% .
As there, there is a finite étale dominant morphism Y’ — Y such that the Hg x k(Y”)-
module k(Y') ®gpy) 7% is completely reducible. Let 0 = Ej C E{f C --- C E. be a
composition series; the quotients E; = E,/E, ;| are irreducible Hg -modules over k(Y’).
In each E, we can find a lattice L, (finitely generated projective Hg X k[Y]-module with
k(Y')®ky1Le = Ey) which is generically irreducible. Since the endomorphism o commutes
with Hg , it maps each Ej to itself, and induces an endomorphism, denoted oy, on E,.
The lattice Ly can, and will, be chosen to satisfy a,L; C L,;. By induction we may (and
will) choose the Ej to have the property that there are 1 < ¢y < f3 < --- < £, = r such that
SE, = E, and E, , =E; /E; is the direct sum of the orbit of Ey 41 = Ej ,,/Ej
under the action of S, and /,;1 — /£, is the length of the orbit. Denote by Sy, the
restriction of S to Ep ,, when {sy1 = /{5 +1(i.e. E) , is invariant under S). We may
and will choose the lattice L, to be invariant under Sy if S, is defined (¢ = f511 = £5+1).

Returning to the original notations (undeleting k), we conclude that there are finitely
many generically irreducible Hy -modules Ly, , suppported on Y (= oY, dim Y = i) with
Jy = Ann (Lkg, k[@]) ,and Sie € Aut ]%[K Ly, and ape € Endpg, Lge, such that

(7Tk, Sk, Ozk) = Eg(Lkg, Skg, Ozkg) in Tg,i(@)/ Im Tgﬂ;_i_l(@) (k = 1, 2).

This is a ”pre-semi-simplification” of 7 . The ”semi-simplification” of k(Y) @y mx is
De(k(Y) @riyy Lie) -

To prove injectivity we assume that X,(Fqg, S1g, a10) = Xg(E2¢, Sop, ag) , where Eyp =
k(Y) ®gry] Lie - Since the Ky, are all irreducible, the existence and uniqueness of the
Jordan-Holder composition series implies that up to reordering indices we have (FE14, S1¢, av10)
= (E2, S2s,9¢) for all £. But Liy and Loy are both lattices in the same vector
space Epg. Their intersection Lip N Loy is a lattice, and the quotient Lys/L1p N Loy
is supported on a lower dimensional variety. Hence in 7,;(0)/ Im 7,,_1(©) we have
(ks Sky ;) = Xp(L1e N Lag, S14, 1) for both k=1 and k = 2, as required.

Corollary 3.1. The map R°(G)c — 7,(G)/ Im 75.1(G) , induced by the natural map
R?(G) — K°?(G) and K°(G) — 17,(G) by (P,S)+— (P,S,id), is surjective.

Proof. Let Y be an irreducible subvariety of ©® C ©k as in Theorem 3, and 0 : Zx —
k[Y] its generic point, corresponding to ¥ < © < O . Denote by k(YY) an algebraic
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closure of the field k(Y') of rational functions on Y, and fix an embedding k(YY) — C; kY]
is naturally embedded in its fraction field £(Y), and so in k(Y). Then 6 defines also maps

Zg — k(Y) and Zg — C, denoted again by 6.

If L'/L is a finite field extension, 0 : Zx — L a homomorphism, and ' is its compo-
sition with the embedding L < L', then R§(L) embeds in R§ (L') via j' =j/[L': L'].
Here j maps Vi € RJ(L) to Vi =V ®r L' € R, (L) . Indeed, the restriction of the L'-
module j'(Vz) to L is V. Let L denote an algebraic closure of L, and 6 : Zx — L the
composition of 6 with L < L. We conclude that RJ(L) embeds in RZ (L) = li_r>n Rg, (L)

(limit over L', L C L' CL).
If L ¢ E are algebraically closed, and 6 : Zx — E is the composition of 6 : Zx —

L and L — E, then R(L)>RS(E). Indeed, any irreducible Hg -module over L is
absolutely irreducible, namely it stays irreducible after tensorring with E over L . On the

other hand, given an irreducible in R§(E) with a basis B as a vector space over E, it
is obtained from Hx B ®q L in RJ(L) on tensorring with E over L. Here Hg is the

Hecke algebra over @ associated with K . Note that any element of RZ(L) lies in R, (L')
for some finite extension L’ of L in L.

In view of these commments we have the natural inclusions

Rg(E(Y)) = Rg(k(Y)) = Rg(C).

Theorem 1 implies that if 6 is o -discrete, namely 6 € 0% .(G), then dim 0(=
dimY) = 0. In particular Rj(C) C R7(G)c if dim# > 0. Theorem 2 asserts the
existence of an operator A, = A% on R7(G)¢ such that for any field L of charac-
teristic zero and m € R%(G;L)c we have A,m = 0 iff 7 € R7(G;L)c. Consequently
m € R§(k(Y))c C Rg(C)c lies in R, (k(Y))c iff Ao =0, namely iff = € Rg,(C)c (by

a double application of Theorem 2), and if dim § > 0, by Theorem 1.

Theorem 3 provides an isomorphism
744(0)/ Im 75,;_1(0) ~ ®ycoR (k(Y))c (irreducible Y = oY, dim Y = i).

If i >0 then Eg(k(Y))@ C RI(G)c as was just observed. Hence by Theorem 2 we have
that A,[75,:(©)/ Im 7,,-1(0©)] = 0. It follow that for some j > 0 we have AJ(7,(G)) =
To0(G) C R°(@)c . In other words, given (m,S,a) in 7,(G), it is equal to Al (m, S, a) €
R7(G)c up to (m, S, a)—Al(r,S,a) € 7,(G) . Hence the map R?(G)¢c — 7,(G)/ Tm 7, 1(G)

is surjective.

F. Categorical cocenter.

We need to relate the categorical o -cocenter 7,(M(Hg)) of §E with the algebra o -
cocenter 7,(Hg ) which occurs in the statement of the Main Theorem. Instead of Hg we
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shall work with a C-algebra A with identity, and denote by ¢ an automorphism of A of
finite order ¢. The semi-direct product A#¥ = Ax < ¢ > contains the coset Ao . Put

TA=AJ[A A, TAF = AF [[A*, A#),

and
o A=A/ < ao(b) —ba;a,b € A >~ Ac/[Ac, A] = Ac /Ao N [A¥ | A#].

Let M(A) (resp. M(A#)) be the category of (non-degenerate) A-modules (resp. A# -
modules). An A# -module is a pair (P, S) consisting of an A-module P and an element
S in the set Aut 9 P of vector space automorphisms S : PP of order ¢ which satisfy
S(ap) =07 (a)S(p)(a € A,pE P); o actson P via S.

The cocenter 7(M(A)) of the category M(A) is the quotient of the free abelian group
generated over C by the pairs (P, ) consisting of a projective finitely generated A -module
P and o € End 4 P, by the relations

(1) (Pa) ~ (P,a)+ (P",a") if 0— (P',d/) = (P,a) = (P",a") — 0 is exact;
2) (Pia+f) ~ (Pa) + (P,B), (Pap) ~ (P,fa), (Pita) ~ H(Pa) (t € Gao,f €
End 4 P).

Similarly 7(M(A#)) is the quotient of the Grothendieck group of pairs (P,«a) of a
projective finitely generated A% -module P and o € End 4« P, by the analogous relations.
The o -cocenter 7,(M(A)) has already been defined in §E; it coincides with 7(M(A)) when
o = identity.

Theorem 4. We have 7,(M(A)) ~ 7, A ; in particular T(M(A)) ~TA.

Proof. Let P be a free finitely-generated A-module, and eq,---,e; a basis of P over
A. Fix S in Autq P; then P extends to an A# -module by o(p) = S(p). Given
a € End 4 P we shall associate to (P, S,«) an element in 7,4 as follows. Since ao is an
endomorphism of P there are @;; in A such that

aoe; = Zaijej' Define tr p(ao) to be Zah(e A).

j i
We claim that tr p(ao) is a well-defined element of A/ < ao(b) —ba > . We need to

show that tr p(ao) is independent of the choice of the basis {e;}. If fi,---, fi is another
basis of P over A then aof; =3 B;; f; (B;; € A); moreover, there are fi;, e;; € A with

J
fl = Z fijej, €; = Zeijfj . Consequently Z fijejk = 6zk = Zeijfjk . Then
J J J J

ZBijfjkek = ZBz]f] =aof; = ZO' fl] ao e] ZO' fl] QjLek,
Jk J
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and

gy, = ZO’ (eei)o ™ (fij) @k = ZO‘ (ei)Bij fin = Zﬂ”f]ke& (mod < o~ (b)a—ab >).

Hence

tr p(ao) Za“_ZB“ (mod < o~ *(b)a—ab>)

is well-defined, as claimed.

If P is projective then there is a finitely generated A-module () such that P & Q
is free. Define o) to be the vector space ( on which a € A acts by o~ !(a). Put
Qo =Q0cQd---®c* Q. Then Aut% Q, is non-empty, and we define tr p(ac) to be
tr pe...oPeQ, (@0 ® 0@ --- @ 0); it is independent of the choice of Q.

A basis of the trivial A-module A is its identity, which is fixed by o. If a denotes
multiplication of A by a € A, then tr4(ac) = traa = a. It follows that the map
tr : 7,(M(A)) — 7,A is surjective.

If aoe; =) @;je; and Be; =) Bije; (j, fij € A), where € End 4 P, then
J J

B-ace; = @ifker,  ao-fe; = ZU (Bij)jker,
ik

and so
trp(ac-B— 0 ac) = Z[a—l(ﬁﬁ)aﬁ —@;jifij] € (071 (b)a — ab).

]

To prove injectivity , given o € End 4 P with tr p(ao) € (0~(b)a — ab) we need to
exhibit 3,7 € End o P with ac = yo -3 —3-vo. If trp(ac) = > (6= (b;)a; — a;b;),

let P; be a free A-module with basis {e;}, and 3,7 € End 4 P, endomorphisms with
yoe; = aze;, Be; = bie; . Then trp (B-vo—v0-B) = (a;bi—o~1(b;)a;), and tr pgp, [ac®

7
(B-~0 —~0-pB)] = 0. Consequently, we may assume that trp(ac) = > @ is zero (on

(2

replacing (P,«) by (P ® P;,a®0)). Again we need to present an A-module P; with
o -action and (3,7 € End 4 P; such that (P,«a) ~ (Py,yo-08—[(-v0) in M(A). By (1) it
suffices to take P; free on a basis e, ey, and assume that (i) aoe; = bes, aoes = aeq, or:
(ii) aoe; = aey, aoes = —aey . In the first case (i), take § with fe; = ey, fes =0, and ~
with yoe; = beg, yoea = —aey ; then (yo - — [ -vyo)ey = bes, (yo-—[-v0)ea =aey. In
the second case (ii), take (3,v with fe; = ey, fes = e1,y0e1 = e3,v0es = (a+ 1)e; . Then
(yo-B—pP-vyo)er =(a+1)eg —ey =aey, (yo-B—-vy0)ea =€z — (a+ 1)es = —aesy, as
required.

Consider the map VU : 7, (Hg ) = Hg /(h10(h2) — haoh1) — R%(G), given by ¥ (h) = Fj, ,
where Fj((m,0)) = tr w(ho). Since 7,(Hg) = 7-(M(Hg)) by Theorem 4, ¥ defines a
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map 7,(M(Hg)) — R:(G), also denoted by W. By definition ¥((P,S,«)) = Fj, where
h = tr p(aS).

The functors 7,7 on M(G) define homomorphisms
iy =igm : R°(M) — R°(G) and rpyp = ryg 2 R°(G) — R7 (M)
of the Grothendieck groups where M = oM < G, and dual maps
iy =igy  Ry(G) = Ry(M) and 3y = riyq : Ra(M) — RL(G)
on the dual spaces. Recall that rj;¢ is defined using the standard parabolic subgroup

P = MP,, and Tj;g using the opposite parabolic P = M P, .

Corollary 4.1. The homomorphism ¥ : 7,(M(Hg)) — R:(G) intertwines the homomor-
phisms gy, MG with the homomorphisms Ty q,tGy, - Namely

V(igm (Purs Suryanr)) =Ty (Y (P Swry anr)))

and

\IJM(TMG(Pv Sv a)) = ZZ*M(\II((Pv Sv a)))
for all (Par, Sy, an) € 7o (M(M)) and (P, S, a) € 7,(M(GQ)) .
Proof. Denote by Ext®(P,7) = Ext ]iﬂ# (P, ) the ith Ext group of the Hﬁ -modules P
G

and 7 ; it is an HZ -module. We first claim that the value of ¥ at (P, S, ) € 7,(M(Hg))
is the homomorphism which takes (m,0) € R7(G) to

tr[ao; Ext ™ (P, m)] = Z(—l)i tr [ao; Ext (P, 7)].

(3

Since 7,(M(Hg)) is generated by the (P, S,«) , where P is a projective module, we
may assume that P is projective. Then Ext’(P,m) = &;o Hom (P, 7). Note that Px =
C.(G/K) is a projective generator of the category M(Hg ) . Namely each projective module
P in M(Hg) is a direct summand of Pg . Extend a by 0 to Pk ; then a € End Pk,
and

tr m(ao) = tr 75 (ao)
= tr[ao; 7% = Hom g (I g, 7| K) = Hom ¢ (igx Ik, ) = Hom (Pg, )]

= tr|ao; Ext*(Pg, )]
as claimed. To complete the proof of the corollary, we quote (from Bernstein [B]) the
following

Second Adjointness Theorem ([B]). The functor Tp; is right adjoint to the functor
M -
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Hence

(W (ine (Enes Snay o)) ((7,0)) = By (B, Sas000) ((W5,0)) = tx [ingans - 05 Bxt ™ (i By, )]
= tr]any - o; Ext*(Ey, Tum)] = [(FyY) (B, Su, am)] (7, 0))

for all (m,0) € R°(G) proving the first claim.

The other assertion of the corollary, that ¥ intertwines 7y on 7,(M(Hg)) with @3},
on RX(G), follows from the Frobenius reciprocity (see [BZ1]), which says that ry; is left
adjoint to i/ .

G. Trace Paley-Wiener theorem.
The following is (a twisted generalization of) the trace Paley-Wiener theorem of [BDK].

Theorem 5. The map VU : 7,(Hg) = R:(G)good » by h — Fy, where Fp((m,0)) =
tr w(ho) , is surjective.

For any subset X of R*(G) denote by R;(X)go0a and R} (X)grace the spaces of
restrictions of elements of R%(G)gooa and of R} (G)irace to X . The corresponding forms

will be called good or trace forms on X . Put R (G) g(if(fd for R} (0% (G)) good -

Proposition 5.1. The map ¥ : 7,(Hg) — RE(G) g(if(fd is surjective.

Proof. By Theorem 1, for every connected component © of ©(G) the variety ©%. . is a
finite union of X7(G) -orbits. Since an element of R} (G)gooa is supported only on finitely
many groups R7(0©), it suffices to show that for any finite union X of X?(G) -orbits in

© the map V¥ :7,(Hg) = R5(X)gooa is onto.

If X?(G) is finite then X is a finite set. Then the restriction to X of any linear
form F : R?(G) — C is a trace form, and in particular R} (X) trace = Rjp(X) good - In-
deed, the twisted characters of irreducible ¢ -invariant G -modules are linearly independent
functionals on Hg .

In general X has the natural structure of an algebraic variety, as the union of finitely
many X7(G)-orbits. By definition of good forms we have

R;(X)trace C R:—(X) good C k[X],

where k[X] is the algebra of regular functions on X .

Choose a o -invariant cocompact lattice A in the center Z of G. Put X(A) =
Hom (A,C*), and Y = X?(A) for the subgroup of o -invariant characters. Then Y
is an affine algebraic variety. The restriction map X?(G) — Y is a finite epimorphism
of algebraic groups. Denote by w, the central character of m € Irr GG; consider the map
Irr?(G) — Y,m — wy|A. Its restriction X — Y to X is a finite X?(G)-equivariant
submersive morphism of algebraic varieties. Hence k[X] is a finitely generated k[Y]-
module. Note that Ry = R} (X)gooa is a k[Y]-submodule of k[X], where k[Y] acts by
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(fF)(m) = f(wx|A)F(m) (f € k[Y],F € Ry). Also Ry = R}(X) trace is a k[Y]-submodule
via f-tr m(ho) = tr zg-w(ho); here z;y € k[X] is the image of f € k[Y] under the natural
map k[Y] — k[X].

For any y € Y let M, C k[Y] be the maximal ideal consisting of those polynomial
functions in k[Y] which vanish at y. For each k[Y]|-module E put E, = E/M,E for the
fiber of E at y. Since u: X — Y is finite and submersive, the set X, = u~!(y) is finite,
and the fiber k[X], coincides with k[X,]. Since X, is a finite set, we have R} (Xy) trace =
R’ (Xy) gooa as noted above; hence R, C R+ Myk[X|. Put £ =k[X|/R;,E' = Ry/R; C
E. Then E' C MyE for each y € Y. Since E is a finitely generated k[Y]-module it
is locally free generically, namely at almost each y € Y. Moreover, E is locally free at
every y € Y since E is X?(G)-equivariant. Then E' C M,E for all y € Y implies that
E’ = 0, since a function which vanishes at each point of a variety is necessarily the zero
function. Hence R; = R, as required.

Proof of Theorem 5. We argue by induction on M ; the case of M, follows from Proposi-

tion 5.1, since R} (Mo) good = Ri(Mo) g(if(fd . By Corollary 2.3 there are cps € ( such that

for each F € R:(G) gooa there is F? € R%(Q) gifocd with F=F+ Y ceyrialicyF) -
M<G

Then Fyr = ig ) F lies in R} (M) gooa , and by induction there is some hps € 7,(Har)

which maps to Fj; by the map Wy of the theorem. Then Wy (hp) = Fir, and by

Corollary 4.1 we have Vg (igahn) = miyyaFr = 1o Ym(har) . Hence ri,50%,,F is in

the image of ¥, and so is F since F'? is in the image by Proposition 5.1.

H. Density theorem.
The following is (a twisted generalization of) the density theorem of [K1, Appendix].
Theorem 6. The map ¥ : 7,(Hg) = R:(G) trace = R5(G)gooa of Theorem 5 is injective.

This can be phrased as follows. Given h € Hg with tr w(ho) = 0 for all (m,0) €
Irr 7 (G) , then h lies in the span [Hgo, Hglo~! of hio(hs) — hahy (hi, hs € Hg). Here
m(ho) = [om(go)h(g) is a trace class operator.

We claim that it suffices to prove the theorem under the assumption that X7(G) is
finite. Indeed, let w be a character of the center Z of G'. By a standard reduction step
we may work with the Hecke algebra of functions h which transform under Z by w™! and
are compactly supported modulo 7, and forms on the Grothendieck group of G -modules
7 which transform under Z via w. For m € Irr?(G) with central character w, we have
w = %w. Multiplying m by a o -invariant unramified character we may assume that w is

trivial on a o -stable lattice A of finite index in Z . Replacing G by G/A we may assume
that X°(G) is finite.

Suppose then that X?(G) is finite. It suffices to show for each connected compo-
nent © of O(G) that the map 7,(Ho) — R:(0)go0a is injective. Put 7,(He)? =

T-(Ho )/7s,1(He ) . Corollary 3.1 and Theorem 4 assert that the map R7(©)¢ — 75(He)?
is surjective, and Proposition 5.1 implies the surjectivity of the map ¥ : 7,(Hg)¢ —
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R:(O) gésocd . Since é}’(@)@ maps to zero in R°(0)¢ — 7,(He)%, we obtain a surjec-

tive map

R7(©)¢ = R7(©)c/R7(O)c — R} (©) dxe, |

Since ©°¢,

Tisc 1s a finite set for each © (by Theorem 1, under our assumption that X7 (G) is
finite), the complex vector space R"(@)ﬁé is finite dimensional, and has the same dimension

as its dual R*(©)d5¢ | In particular, the map above is an isomorphism, and if h € R°(© C
o good

maps to zero in R’ (0)go0a , then A lies in RI(O)c.

To prove the theorem consider h in 7,(Hg) which maps to zero in R} (©)go0a - For
any M = oM < G, the image of 0 by i&) @ Ri(©)good — Ri(Onr)good » Where
Oy = ic_;]l\/[(@), is 0. By induction on M, when M = oM < G the inverse image
of 0 € R (Or)gooa by Vs : 7o(He,, ) = R5(Om)gooa is zero. Corollary 4.1 asserts
that Uar(rmgh) = i (Yeh). Hence rygh = 0. It follows that h lies in the inter-
section of ker ryg, M = oM < G. Consequently h = Ash for A, = A5 as in
Theorem 2. As in the proof of Corollary 3.1, for a sufficiently large j we have that AJh
lies in R%(O©)¢(— 7o(Ho)). Hence h lies in R7(O)c, and it maps to 0 under the map
R°(©)c(— 7,(Hg)) — R:(O) good mentioned above. Therefore it lies in RZ(©)c, and
Ayh =0 by Theorem 2. We conclude that h = A,h is zero, as required.

Theorems 5 and 6 establish the surjectivity and injectivity of the map of the Main
Theorem, whose proof is now complete.

Appendix. Cohomological dimension.

Theorem. The category M(G) has finite cohomological dimension bounded by dy =
dim X (M) .

Proof. We should show that each G -module X has a projective resolution of length
<djy.

(1) We proceed to construct the standard resolution of the trivial G'-module C on using
the theory of buildings (see Tits [T]). Recall that the building B = B(G) associated with
the group G is a CW -complex equipped with an action of G (on B'). It has the following
properties.

(i) All cells of B are polyhedra, and the action of G preserves cell decomposition.

(ii) For each cell 7 of B, its stabilizer G, is an open compact subgroup of G which fixes
all points in 7.

(iii) Modulo the action of G there are only finitely many cells. The dimension of any cell
is bounded by d .

(iv) The building B is contractible as a topological space.

Consider the chain complex C' = {0 — Cy, — C4,—1 — --- = Cyp — 0} of B with com-
plex coefficients. This is a complex of G -modules. If 7,---, 7 is a set of representatives
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of cells modulo the action of G, then &,C; = €& ind(G,G,,,C) and (ii) implies that
1<i<k

C; are projective G -modules. Since B is contractible, we have H*(C) =0 for i #0 and

H°(C) = C; thus C is a projective resolution of C called the standard resolution of the

trivial G'-module C.

(2) Let X be a G-module. Consider the complex Cx = {C; ®c X}. Clearly this is a
resolution of the G -module X of length dj; we need to check that it is projective. Then
let P be a projective G'-module. We have to show that P®c X is also projective. For each
G -module Y we have Homg(P® X,Y) = Hom g(P, Hom2(X,Y)). Here Hom(X,Y)
is the smooth part of the G -module Hom¢(X,Y). Hence it suffices to check that the
functor ¥ — Hom2(X,Y) is exact. Fix an open compact subgroup K of G. As a vector
space, Horn(%(X, Y) depends only on the K -module structure of Y . Since the category
M(K) of K -modules is completely reducible, each exact sequence in M(K) splits. Hence
the functor Y — HomQ(X,Y) is exact, and P ®c¢ X is projective, as required.

Remark. The standard resolution Cx constructed above is not finitely generated in
general, even when X is irreducible. If X is finitely generated then one can construct a
resolution 0 — Py, — Py,—1 — -+ — Py — X — 0 in which all P; are finitely generated
and Py, ,_1,Py4,—2, -+, Py are projective. The Theorem implies that Py, is also projective.
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