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A b s t r a c t .  Let r : U ~ C x be a generic character of the unipotent radical 
U of a Borel subgroup of a quasisplit p-adic group G. The number (0 or 1) 
of ~-Whittaker models on an admissible irreducible representation 7r of (7 was 
expressed by Rodier in terms of the limit of values of the trace of 7r at certain 
measures concentrated near the origin. An analogous statement holds in the 
twisted case. This twisted analogue is used in [F, p. 47] to provide a local proof 
of the multiplicity one theorem for U(3). This asserts that each discrete spectrum 
automorphic representation of the quasisplit unitary group U(3) associated with 
a quadratic extension E/F of number fields occurs in the discrete spectrum with 
multiplicity one. It is pointed out in [F, p. 47] that a proof of the twisted analogue 
of Rodier's theorem does not appear in print. It is then given below. Detailing 
this proof is necessitated in particular by the fact that the attempt in [F, p. 48] at a 
global proof of the multiplicity one theorem for U(3), although widely quoted, is 
incomplete, as we point out here. 

I n t r o d u c t i o n  

Let E/F be a quadratic extension of p-adic fields, p ~ 2, and consider the 
basechange lifting from the quasisplit unitary group H = U(3, E/F) in 3 variables 
to G = GL(3, E). Our main result is that there exists a family of suitably related 
functions r H,,~ on H = U(3, ElF) and r on G = GL(3, E) which are supported 
near the origin, such that the traces tr 7rH(r and twisted traces tr 7r(r x :) 
stabilize for sufficiently large n and become equal to the Whittaker multiplicity 
(multiplicity in the space of Whittaker vectors) of the irreducible admissible repre- 
sentations 7rH of H and 7r of G. This is a twisted analogue of a theorem of Rodier 
for the involution that defines H in G. 

Our motivation for considering such a twisted analogue of Rodier's theorem is 
that we found a gap in an attempted global proof ([F, p. 48]) of the multiplicity one 
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theorem for automorphic representations of  U(3, E/F)(AF). We use our result to 
provide a local proof, as suggested in IF, p. 47]. 

This gap is different from the observation of Harder [H, p. 173]. The latter deals 
with the question of  which representation in a packet is automorphic, assuming 
multiplicity one holds. 

In Section 1, we state a theorem of Rodier and define the Whittaker models, 
characters, and measures concentrated near the origin which enter the statement. 
We then state its twisted analogue of  interest to us. In Section 2, we use these 
theorems to complete a key step in the proof of [F, p. 47] of  the multiplicity one 
theorem for the global quasisplit unitary group U(3). In Section 3, we explain 
why the global proof [F, p. 48] of  this multiplicity one theorem is not complete. 
In Section 4, we recall the main lines of Rodier's proof. In Section 5, the twisted 
analogue is reduced to Rodier's theorem. This completes the proof of the theorems 
of Sections 1 and 2. In the Appendix, Section 6, we derive another description 
of  the Whittaker multiplicity, in terms of the coefficient of  the regular orbit in the 
germ expansion of  the character. 

1 W h i t t a k e r  m o d e l s  a n d  c h a r a c t e r s  

Rodier 's theorem [R, p. 161] (for a split group H)  computes the number of  CH- 
Whittaker models of the admissible irreducible representation 7rH of H in terms 
of values of  the character tr rrH or X.n of  7rH at the measures CH,ndh which are 
supported near the origin. 

We proceed to explain the notations to be used in Rodier's theorem. For 
simplicity and clarity, instead of  working with a general connected reductive (quasi) 
split p-adic group H as in JR], we let H be a specific unitary group. To define 
it, we take G = GL(r, E), where E/F  is a quadratic extension of p-adic fields 
of  characteristic zero, p r 2. Let x ~ ~ denote the generator of Gal(E/F). 
For 9 = (gij) in G we put ~ = (-ffij) and tg = (9ji). Then a(9) = j-it-if-l j ,  
J = ((-1)i-l(~i,r+l_j), defines an involution a on G. The group H = G ~ of  9 E G 
fixed by a is a quasisplit unitary group U(r, E/F). 

Denote by CH : UH --~ C • a character on the unipotent upper triangular sub- 
group UH of H. It is necessarily unitary, i.e., its values lie in the unit circle 
c x = {z e c :  Izl = 1}. 

We assume that CH is generic, i.e., nontrivial on each simple root subgroup. 
There is only one orbit of generic CH under the action of  the diagonal subgroup of  
H on UH by conjugation. Hence we can and do work with the specific character 
• H  : UH -'~ C1, defined by ~bH((IZij))  .~ ~)(El<j<r u j , J + l )  . Here r : F -~ (21 is an 
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additive character which is 1 on R and not identically 1 on 7r-lR. Further, R is 
the ring of  integers o f  F,  and ~r is a generator of  the maximal ideal of  R. Note that 
Ur--j ,r--j+l = Uj , j+I .  

By CU-Whittaker vectors we mean vectors in the space of  the induced represen- 
tation indHn ( r  They  are the functions ~ : H -~ C with ~(uhk) = ~bH(U)~(h ), 
u E UH, h E H, k E Kv, where Kv is a compact  open subgroup of  H depending on 
~, which are compact ly  supported on UH\H. The group H acts by right translation. 

The multiplicity dimc HOmH(indHn CU, 7rH) of  any irreducible admissible rep- 
resentation 71" H of  H in the space of  CH-Whittaker vectors is known to be 0 or 1. In 
the latter case, we say that 71" H has a Cg-Whi t taker  model or that it is CH-generic. 

Let Go be the ring of  r • r matrices with entries in the ring of  integers RE of  E. It 
is a subring of  the ring G of  r x r matrices with entries in E. Let  da be the involution 
de(X)  = - J - l t - R J .  Its set of  fixed points in G is denoted by 7/. Let  7/0 = 7/M C0 
be the set of  X in Go fixed by the involution de. Write Hn = exp(7/n), 7/n = lrnT/0. 
For n _> 1, we have Hn = tUH,nAH,nUH,n, where UH,,~ = UH M H,~ and AH,n is the 
group of  diagonal matrices in Hn. Define a character CH,n : H ~ C 1 supported 
o n  Hn by CH,n( tbu)  = r  Uj,j+ l?r-2n) at tb E tUH,nAH,n ,  u = (u i j )   9 UH,n. 
Alternatively, by 

CH,n(exp X) = chnn (X)r 

where chnn indicates the characteristic function of  7/n = lrnT/0 in 7 / a n d  BH is the 
r x r matrix whose nonzero entries are 1 at the places (j, j - 1), 1 < j _< r. Denote 
by ell, the constant measure of  volume one supported on the compact  subgroup 
Hn in the Hecke algebra of  H,  i.e., eH~ = IHn] -1ChH~ dh, where IH,~] denotes the 
volume of  Hn in dh. 

Since 71" g is admissible, for each test measure fH dh (dh is a Haar measure on H 
and fH is a locally constant compactly supported complex-valued function on H),  
the image of  7rH(fH dh) is finite dimensional and its trace tr 7rH(fH dh) is finite. 

Rodier 's  theorem is 

T h e o r e m  1. The multiplicity dimc HOmH(indHn C H, 7r H ) is equal to 

lim tr  7rH(r ). 
n 

In fact, the limit stabilizes for sufficiently large n. Throughout  this paper, 
"= limn a,~" means "equals an for all sufficiently large n". 

We need a twisted analogue of  Rodier 's  theorem. It can be described as follows. 
Let  7r be an admissible irreducible representation of  G which is a-invariant: 

7r ~ ~Tr, where '~Tr(a(g)) = 7r(g). Then there exists an intertwining operator 
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A : 7r --+ '~Tr with An(g) = 7r(a(g))A for all g E G. Since 7r is irreducible, by Schur 's  
lemma, A 2 is a scalar, which we may normalize by A 2 = 1. Thus A is unique up 
to a sign. Denote by G' the semidirect product G n (a). Then 7r extends to G' by 
7r(a) = A. 

Define OE : E ~ C 1 by OE(X) = r  + 5 ) .  Define a character O : U ~ C 1 on 
the unipotent upper triangular subgroup U of  G by O((uij)) = OE(ZI<j<r uj,j+l)" 
This one dimensional representation has the property that O(a(u)) = O(u) for all 
u i n U .  Note thatO(u)  = O H ( U  S ) a t u  E Utt = U A H .  There is only one orbit 
of  generic a-invariant characters on U under the adjoint action of  the group o f  
a-invariant diagonal elements in G. 

Suppose that lr is O-generic, namely Homc(indvGO, Tr) ~. {0}. Here indue0 
consists of  the functions ~o : G -~ C with ~(ug) = O(u)~(9),  u E U, 9 C G, which 
are compact ly  supported on U\G. Then we normalize A by A~' = ~ ' ,  where 
~ ( g )  = ~o(a(g)), on the image ~' in 7r of  the % 

Write Gn = exp(Gn), where G,~ = 7rnG0. For n _> 1, we have Gn = *U~A~U~, 
where Un = U M Gn and An is the group of  diagonal matrices in Gn. Define a 
character On : G -+ C 1 supported on Gn by r -~ ~)E(~'~.l<j<r Uj,jW17r-2n), 
where tb E tUnA~, u = (uij) E U~. Alternatively, r : G ~ C 1 is defined by 

On (exp X) = ch6, (Z)r 

where 13 is the r x r matrix with entries 1 at the places (j, j - 1), 1 < j _< r and 0 
elsewhere. 

A first version of  a a-twisted analogue of  Rodier 's  theorem asserts that the 
Whittaker multiplicity is equal to the twisted trace tr 7r(r x a) for all sufficiently 
large n, where ea ,  is defined analogously to eH,. 

A more useful version for us is stated in terms of  the twisted character X~. Let  
us first restate Rodier 's theorem this way. 

Denote  by X,~ the character of  7rg. It is a complex-valued conjugacy in- 
variant function on H which is locally constant on the regular set and locally 
integrable on H (Harish-Chandra [HC], Theorem 1) defined by trTrH(fH dh) = 
fg  X~H (h)fg(h)dh for all f g  dh. 

Rodier 's  theorem can be stated as asserting that the Whittaker multiplicity of  
Theorem 1 is equal to 

lim f. (h)r (h). 

Analogously, the twisted character X~ of  7r is a complex valued a-conjugacy 
invariant function on G (that is, its value on {hga(h) -1} is independent of  h E 



CHARACTERS, GENERICITY, AND MULTIPLICITY ONE FOR U(3) 

G) which is locally constant on the a-regular set (g with regular 9a(g)), locally 
integrable (Clozel [C], Thm. 1, p. 153) and defined by tr ~( f  dg)A = fG X~ (9)f (9)dg 
for all test measures f dg. 

The a-twisted analogue of Rodier's theorem of interest to us is as follows. Let 
ea~ denote the constant measure of volume 1 supported on the compact subgroup 
G~ = {g = a9; g E Gn} of G. As G,~ is Hn, eG~ lies in the Hecke algebra of H. 

T h e o r e m  2. The multiplicity dime Homa, (indau r rr) = dime Homa (ind~ r 7r) 
is equal to fag X~(9)r (9)for all sufficiently large n. 

R e m a r k .  Recall that Homa(Tq, 7r~/) = Homa(Tr2, TRY), as both spaces can be 
identified with the space of (7rl, 7r2)-invariant bilinear forms. The contragredient 
(ind~ p)V is IndaH(~-~ p v) [BZ1, 2.25(c)]; Ind indicates noncompact induction, H 
is a closed subgroup of G, p is a representation of H, 7r of G). Frobenius reciprocity 
asserts {AHp,~IH ) HomG(ind~ p, 7r) = HomH \A--G-G 

and, equivalently, HomG(Tr, Ind~ p) = HOmH(TrlH, p) ([BZ1], (2.28) and (2.29)). 

2 Mult ipl ic i ty  one for U(3) 

Let us recall how the Theorems are used in the proof of  Proposition 3.5 of 
IF, p. 47]. Thus, in this section, we work only with H = U(r, E / F )  and G = 
GL(r, E), r = 2 or 3, of Section 1. We are given a square integrable irreducible 
admissible representation pofthequasisplit  group U(2, E/F) .  Its stable basechange 
to GL(2, E) is denoted by T. The unstable basechange is T | tO. Let 7r = I(T | ~) 
be the normalizedly induced representation of GL(3, E). This 7r is invariant under 
the involution a (ours and of [F]). It is generic. For all matching measures fdg  and 
fHdh on G = GL(3, E) and H = U(3, E/F) ,  using an identity of trace formulae 
and orthogonality relations for characters [F], we obtain an identity 

trTr(fdg x a) = (2m + 1) E t r T r n ( f n d h ) .  
7fH 

The sum ranges over finitely many (in fact, two times the cardinality of  the packet 
of p) inequivalent square integrable irreducible admissible representations 7rH of 
U(3, E/F) .  The number m is a nonnegative integer, independent of  7rH. 

P r o p o s i t i o n  3.5 o f  [F]. The nonnegative integer m is zero, and there is a 
unique generic 7rH in the sum. The other 2[{p}] - 1 ~'epresentations 7rH are not 
generic. 
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G. 
Note that our 7r, 7r H , f dg, f Hdh, G, H, are denoted in [F] by H, 7r, Cdg', f dg, G', 

P r o o f .  The identity for all matching test measures fdg and fndh implies an 

But CH,,~(%u) = r  + 5)~ "-2n) at such 

Now d(g 2) = dg when p # 2. It follows that 

1 = d i m c  HOmG(indGv r 7r) = f~,, X~(5)r (6) 
n 

= fH (2m + I) EZ=.(52)r (52) 
n Ti" H 

= (2m + 1) E dimc Homg(indH, Cg ,  7rH). 
7f H 

Hence m = 0, and there is just one generic 71" g in the sum ( d i m c #  0, necessarily 
= 1). [] 

The excluded case of p = 2 might follow on counting the factors of  2 in our 
argument. 

We repeat the conclusion of  [F]. Note that the unrestricted trace identity is 
proved in [F1] and the fundamental lemma in [F2]. Both proofs employ simple 

1 x z / 
u =  0 1 y ; 

0 0 1 

and this is = r + 5)1r -2n) if y = 5. 
u 6 UH (thus with y = 5). 

identity of  characters: 

X~(6) = (2m + 1) ~ X~,, (7) 
~ H  

for all 6 6 G = GL(3, E) with regular norm 3' 6 H = U(3, E / F ) .  Note that 
6 ~ X~ (5) is a stable a-conjugacy class function on G, while 7 ~ ~ ,~ ,  X,~ (7) is a 
stable conjugacy class function on H. We use Theorem 2 with G = GL(3, E) and 
H = G ' .  Then G,~ = H,~. On 5 6 G,~, the norm N5 of  the stable a-conjugacy class 
5 is just the stable conjugacy class of  62. Hence X~(6) = (2m + 1) ~ , ,  X,~u (62) at 
6 6 G[, = H.. 

We claim that for 5 = exp X, X 6 Q~ = 7"/n, we have n 

CE(tr[X~'-2'~fl]) = r 

For this, we note that fl = flH and %bE(X ) = r  "+ 5 ) .  

Moreover, we claim that r = r 2) for 5 6 G,~ = H , .  For this, note that 
r = CE((x + y)lr -2'~) if 
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methods: the usage of regular-Iwahori functions in [F1] removes the need to com- 
pute and compare weighted orbital integrals, and explicit double coset decomposi- 
tion reduces the fundamental lemma in [F2] to elementary volume computations. 

Coro l la ry .  Each discrete spectrum automorphic representation of 
U(3, ELF)(&) occurs in the discrete spectrum with multiplicity one. Each packet 
(defined in [F]) of  such an infinite dimensional representation contains precisely 
one irreducible representation which is generic. Each packet (defined in [F]) 
of tempered admissible representations of  U(3, E / F) contains precisely one irre- 
ducible representation which is generic. There are no generic representations in 
any (nontempered) quasipacket, locally and globally. 

This type of argument, relating the number of Whittaker models to the values 
of the characters at suitable measures supported near the origin, was first employed 
in [FK], which appeared in 1987, in an analogous situation of the metaplectic 
correspondence between GL(r) and its n-fold covering group. 

R e m a r k .  On the space L:(GL(r, F ) \  GL(r,A)) of automorphic forms r we 
define the involution a by (r(a)r = r On the space of Whittaker 
functions W (W(ng) = r g E GL(r, A), n E N(A), where N denotes the 
unipotent upper triangular subgroup of GL(r)), we choose the natural action of ~, 
by "W(g) = W(ag). The map r ~ We, where We(g) = fN(A)\N(A) r162 
respects the action of a. Thus the global normalization of the action of a is the 
product of the local normalizations ~ Wv (g) = Wv (ag). 

Note also that underlying the character identity is an embedding of the local 
representation ~r, which is a-elliptic, as a component of a global a-invariant cuspidal 
representation II of GL(3, AE) where E is a totally imaginary field. The character 
identity follows from using the trace formulae identity, applying "generalized linear 
independence of characters" and thus isolating II and, further, 7r. The normalization 
of a on the generic (II and) 7r implies that no sign occurs in the character identity. 

Had we not fixed the choice of the sign ofr(a)  at all places, the twisted character 
in our trace identity (at our place) might in principle be replaced by its negative. 
However, the identity (in two avatars) 

-tr7r(fdg x a) = (2m + 1 ) Z t r ~ r H ( f H d h ) ,  
71" H 

= (2m + I) 
7 r H  

cannot hold, as evaluating it with our fdg = Cnea~ and fHdh = ~3H,neH,, n large, 
would give -1  on the left, and a nonnegative integer on the right. This provides an 
independent verification that our normalization of the sign of r(a) is correct. 
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3 Incomplete global proof 

The second proof of Proposition 3.5 of IF], on p. 48, is global, but incomplete. 
The false assertion is on lines 21-22: "Proposition 8.5(iii) (p. 172) and 2.4(i) of  
[GP] imply that for some 7r with m(rr) ~ 0 above, we have m(rr) = 1". Indeed, 
[GP], Prop. 2.4, defines L 2 to be the orthocomplement in the space L0 ~ (of cusp 0,1 
forms) of  "all hypercusp forms", and claims: "(i) L2,1 has multiplicity 1". ([GP], 
8.5 (iii), asserts that 7r is in L~,I.) Now the sentence of  [F], p. 48, 1.21-22 assumes 
that [GP], 2.4(i), means that any irreducible 7r in L 2 occurs in L 2 with multiplicity 0,1 
one. But the standard techniques of [GP], 2.4, show only that any irreducible 
7r in L20,1 occurs in L20,1 with multiplicity one. A-priori there can exist 7r' in L~, 
isomorphic and orthogonal to 7r C L02,1. In such a case, we would have m(Tr) > 1. 
Such a 7r' is locally generic (all of  its local components are generic), isomorphic to 
a generic cuspidal 7r; and the question boils down to whether this implies that ~r' is 
generic (the linear form L(r : fU,,(F)\U~(A) r162 is nonzero on 7r C L~). 
This last claim might follow on using the theory of the Theta correspondence, 
but this has not been done as yet. In summary, a clear form of [GP], 2.4(i) is: 
"Any irreducible 7r in L20,1 occurs in L'~0,1 with multiplicity one." In the analogous 
situation of  GSp(2), such a statement is made in [So]. It is not sufficiently strong 
to be useful for us. 

We noticed that the global argument of [F, p. 48], which was first proposed in 
a preprint version of [F] in 1983, is incomplete while generalizing it in [F3] to the 
context of  the symplectic group, where work of Kudla, Rallis, Langlands, Shahidi 
on the Siegel-Weil formula and on L-functions is available to show that a locally 
generic cuspidal representation which is equivalent at almost all places to a generic 
cuspidal representation is generic. A local proof, based on a twisted analogue of  
Rodier's result, is also used in [F4], in the context of  the symmetric square lifting. 

4 Review of Rodier's proof 

We shall reduce Theorem 2 to Theorem 1 for G (not H), so we begin by 
recalling the main lines in Rodier's proof in the context of G. Choose d = 
diag(lr-r+l ,Tr-r+3, . . .  ,Trr-1). It lies in the unitary group, namely a(d) = d, since 
a" is in F.  Put V,~ = dnGnd -n and Cn(v) = Cr~(d-nva m) (v E V,,). Recall that ~bn is 
defined to be supported on Gn. Note that a(G~) = Gn, a(Un) = Un, a~b,~ = ~Pn, and 
that the entries in the j th  line (j ~ 0) above or below the diagonal of  v = (vii) in Vn 
lie in 7r(1-2J)~RE (thus vi,i+ j E ~(1-2j)nRE if j > 0, and also when j < 0). Thus 
V,~ fq U is a a-invariant strictly increasing sequence of  compact and open subgroups 
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of U whose union is U, while Vn (7 (tUH) - -  where tUH is the lower triangular 
subgroup of G - -  is a strictly decreasing sequence of compact open subgroups of 
G whose intersection is the element I of G. Note that en = r on Vn M U. 

Consider the induced representations indav, en  and the intertwining operators 

Am: indav, en  -4 indavm r  

(Am~ qo)(g) = ( (eVm~)m) * qo)(g) = f(;, em(lZ)qO(?z--lg)evm ('It) 

(g in G, ~ in indGyn en,  eVr. = [Vml-lly.,dg, IVml denotes the volume of Vm and 
1Yr. denotes the characteristic function of Vm). For m > n > 1, we have 

(Am~)(g) = ((eymnur * ~)(g) = f e  r  g)ev"nv(u)" 

HenceAemoA m Atn f o r s  n_> 1. So " a m = (mdvnen,An (m > n > 1 ) ) i s an  
inductive system of representations of G. Denote by (I, An : indya e n  -4 I) (n _> 1) 
its limit. 

The intertwining operators en : ind,.  en  "-+ indGv r 

(r = ( r  * qa)(g) = [r  

satisfy em o A m = en if m _> n > 1. Hence there exists a unique intertwining 
operator r : I ~ ind~ r with r o An = en for all n _> 1. Proposition 3 of [R] asserts 
that 

L e m m a  1. The map r is an isomorphism of  G-modules. [] 

L e m m a  2. There exists no >_ t such thatr  * ~m * ~bn = IV~llV~ n Wn[r 
all m > n > no. 

Proof .  This is Lemma 5 of [R]. We review its proof (the first displayed 
formula in the proof of this Lemma 5, [R], p. 159, line -8, should be erased). 

There are finitely many representatives ui in U M Vm for the cosets of Vm modulo 
VnM Vm. Denote by e(g) the Dirac measure in a point g of G. Consider 

(e(ui) * enlv,,nv,,)(g) = f e(ui)(gh-1)(r 
JG 
~n(U~- lg )  --1 = = r  r  

Note here that if the left side is nonzero, then g E ui(Vm Cl Vn) C 1~. Conversely, if 
g E Vm, then g E ui(Vm Cl Vn) for some i. Hence d2 m = ~ i  em (ui)e(ui) *r ; 
thUS 

en *r  *On = * * r *On" 
i 
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Since CnlVr.nV. * Cn = lyre n VnlCn, this is 

= Cm(u,)lVm n Vnlr  9 
i 

But the key Lemma 4 of [R] asserts that Cn * e(u) * Cn r 0 implies that u 6 Vn. 
Hence the last sum reduces to a single term, with ui = 1, and we obtain 

= lYre n Vnlr  ,r = lYre fq VnllVnlCn. 

This completes the proof of  the lemma. [] 

L e m m a  3. Foran inductive system {In}, Homa (li_m In, 70 = li+_m Homa (In, 70. 

P r o o f .  See, e.g., Rotman [Ro], Theorem 2.27. It is also verified in [R]. [] 

C o r o l l a r y .  We have dime Homa( ind~r  rr) = limn IG,~I -~ trrr(r 

P r o o f .  As the numbers dirncHoma(inday.r increase with n, if  they 
are bounded they are independent of  n for sufficiently large n. Hence the 
left side of  the corollary equals limn dime Homc(ind~. Cn, rr), which is equal to 
l imndimcHoma( ind~ .  %bn,rr) since Cn(v) = Cn(d-nvdn) .  This equals 
limn dime Homo.  (r rrlGn) by Frobenius reciprocity, which is equal to the fight 
side of  the corollary since I Gn I- 1 rr (r is a projection from rr to the space of  { in rr 
with rr(g){ = r (g E Gn), a space whose dimension is then IGn1-1 tr 7r(r 

[] 

5 T h e  t w i s t e d  c a s e  

We now reduce Theorem 2 to Theorem 1 for G. Note that since a r  n = Cn, the 
representations indav. r are a-invariant, where a acts on ~o 6 ind , .  Cn by ~o ~ a~,  
(a~o)(g) = qo(ag). Similarly, a r  = r and i n d ~ r  is a-invariant. We then extend 
these representations ind of  G to the semidirect product G' = G )~ (a) by putting 

= 

Let ~ be an irreducible admissible representation of  G which is a-invariant. 
Thus there exists an intertwining operator A : ~r -+ ~ ,  where ~u(g) = 7c(a(g)), 
with ATe(g) = ~(a(g))A.  Then A 2 commutes with every 7r(g) (g 6 G), hence A 2 is 
a scalar by Schur's lemma and can be normalized to be 1. This determines A up to 
a sign. We extend r from G to G' = G x (a) by putting u(a) = A once A is chosen. 

If  HomG (indGu r r)  # 0, its dimension is 1. Choose a generator g : indGu r -4 ~. 
Define A : 7r ~ ~ by Ag(~) = g(i(a)~). Then 

HomG(ind~ ~, zr) = HomG, (indu a r  7r). 
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Similarly, we have Homa(indav. Cn, 7r) = Homa, (indav~ Cn, 7@ 
The right side in the last equality can be expressed as 

Homa, ( ind , .  r 7r) = Home- ( r  7r]G~) (G" = Gn x (a)). 

The last equality follows from Frobenius reciprocity, where we extended r to a 
! o" character ~ on G~ by Cn (a) = 1. Thus ~'~ 73~ + % ,  with r (9 x/3) = 5~r (g), 

e {1, o). 
In this case, Homa-  (r 7rlG~) is isomorphic to the space 7rx of  vectors ( in 7r 

with 7r(9)~ = r  for all 9 in G~. In particular, 7r(g)( = r for all 9 in Gn 
and lr(a)( = ~. Clearly, IGn]' -lrr(r ') is a projection from the space of  7r to 7rl 
(it is independent of  the choice of  the measure dg'). Its trace is then the dimension 
of  the space Hom. We conclude a twisted analogue of  the theorem of  [R]: 

P r o p o s i t i o n  1. The integer dimc Homa, (ind G r  ~) is equal to 

]~nl--1 t r  rc ( r  

for all sufficiently large n. r~ 

Note that G" is the semidirect product of  G,~ and the two-element group (a). 
With the natural measure assigning 1 to each element of  the discrete group (a), we 
have IG~I = 2[Gnl. The result is then, for all sufficiently large n, 

1 1 
~ trTr(r + ~ trTr(r • a) 

(as r = r + r r = r and tr 7r(r = tr 7r(r x a)). By (the nontwisted 
version of) Rodier 's  Theorem 1, 

dime HomG (indv G r  7r) = !im tr 7r(r ), 

we conclude 

Proposition 2. We have dime Homa, (ind~ 0 ,  7r) = limn tr r ( r  x a) for 
all a-invariant irreducible representations rr o f  G. [] 

The terms in the limit on the right can be written in terms of  Harish-Chandra's 
twisted character as s176 e c~ (g). 

Again, put eG~ = IG,~1-1 cha= d9, where cha= is the characteristic function of  G,~ 
in G. 
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Proposition 3. The last displayed integral is equal to 

f •162 
Proof. Consider the map G~ • G~\Gn --r Gn, (u, k) ~ k-lucr(k). It is a closed 

immersion. More generally, given a semisimple element s in a group G, we can 
consider the map Zoo(s) • Zao (s)\G ~ --+ G o by (u, k) ~ k - l u s k s  -1. Our example 
is (~, G) = (o, e .  • (e)). 

Our map is, in fact, an analytic isomorphism, since G,~ is a small neighborhood 
of  the origin where the exponential e : G,~ --+ Gn is an isomorphism. Indeed, 
we can transport the situation to the Lie algebra 9n. Thus we write k = e v, 
u = e x ,  a(k) = e (d~r)(Y), k - t u a ( k )  = e X-Y+(da)(Y), up to smaller terms. Here 
(de)(Y)  = _ j - t t ~ j .  So we just need to show that (X, Y)  ~, X - Y + (da)(Y),  
Za. (a) + Gn(mod ZG. (a)) ~ Gn is bijective. But this is obvious, since the kernel 
of (1  - de) on G,~ is precisely Z~. (a) = {Y E G~ : (de)(Y)  = Y} .  

Changing variables on the terms on the right of Proposition 2, we get 

a e s  XTr(9)~bn(g) G"(9) = IGn[-I fog, s  X~(k-lue(k))~bn(k-lue(k))dkdu" 

But cr~b,~ = ~,~, ~bn is a homomorphism (on G,0, Gn is compact, and X~ is a e- 
conjugacy class function, so we end up with the expression of  the proposition. 
Note that X~ is locally integrable on G,~ and locally constant on its regular set by 
the character relation stated in the proof of  Prop. 3.5 of  [F] above. The proposition, 
and Theorem 2, follow. [] 

6 A p p e n d i x .  G e r m s  o f  t w i s t e d  c h a r a c t e r s  

Harish-Chandra [HC] showed that X,, is locally integrable (Thm. 1, p. 1) and 
has a germ expansion near each semisimple element 3' (Thm. 5, p. 3), of  the form 

Zrr ('Y exp X) : Z e~ (O, 7r)~o (X). 
O 

Here O ranges over the nilpotent orbits in the Lie algebra M of  the centralizer 
M of  7 in G, #o  is an invariant distribution supported on the orbit O, ~o is its 
Fourier transform with respect to a symmetric nondegenerate G-invariant bilinear 
form B on 34 and a selfdual measure, e-r (O, 7r) are complex numbers, and X ranges 
over a small neighborhood of  the origin in .34. Both /ao  and c~(O, 7r) depend on 
the choice of  a Haar measure do on the centralizer Za(Xo) of X0 E O, but their 
product does not. We are interested only in the case of  7 = 1 and therefore omit 
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7 from the notation. The size of the domain where the germ expansion holds is 
stud.ied in Waldspurger [W]. 

Suppose that G is quasisplit over F and U is the unipotent radical of a Borel 
subgroup B. Let ~b : U ~ C ~ be the nondegenerate character of U (its restriction 
to each simple root subgroup is nontrivial) specified in [R], p. 153. The number 
dimc Hom(ind~ ~b, 70 of 0-Whittaker functionals on 7r is known to be zero or one. 
Let Go be a selfdual lattice in the Lie algebra G of G. Denote by ch0 the characteris- 
tic function of Go in G. Rodier ([R], p. 163) showed that there is a regular nilpotent 
orbit O = O,/, such that c(O, re) is not zero iff dimc Hom(ind~ q,, 70 is one; in fact, 
~o(cho)c(O, 70 is one in this case. Alternatively put, normalizing #o by ~o(ch0) = 
1, we have c(O, 70 = dimc Hom(ind~ q,, 70. This is shown in JR] for all p if G = 
GL(r, F), and for general quasisplit G for all p > 1+ 2 ~ s  n~, if the longest root is 
~ c s  n~a in a basis S of the root system. A generalization of Rodier's theorem to 
degenerate Whittaker models and nonregular nilpotent orbits is given by Moeglin- 
Waldspurger [MW]. See [MW], 1.8, for the normalization of measures. In particu- 
lar, they show that e(O, rr) > 0 for the nilpotent orbits O of maximal dimension with 
c(O, re) ~ O. For applications to minimal representations, see Savin [S]. 

Harish-Chandra's results extend to the twisted case. The twisted character is 
locally integrab!e (Clozel [C], Thm. 1, p. 153), and there exist unique complex 
numbers cO(O, rr) ([C], Thm. 3, p. 154) with x~ X) = }--~- o cO( O, rc)~o(X). Here 
(9 ranges over the nilpotent orbits in the Lie algebra C o of the group G o of 9 C G 
with 9 = 0(9). Further,/to is an invariant distribution supported on the orbit (9 (it 
is unique up to a constant, not unique as stated in [HC], Thm. 5, and [C], Thm. 3); 
~o is its Fourier transform, and X ranges over a small neighborhood of the origin 
in G ~ 

In this section, we compute the expression displayed in Proposition 3 using the 
germ expansion x~(exp X) = ~ o  cr (O, rr)~o (X). This expansion means that for 
any test measure fd9 supported on a small enough neighborhood of the identity in 
G, we have 

,(expX)x;(expX)dX=~c'((9. Tr) fo[ ~ ,(expX)@(tr(XZ))dX]d#o(Z). 

Here (9 ranges over the nilpotent orbits in G", #o is an invariant distribution 
supported on the orbit (9, ~o is its Fourier transform, and X ranges over a small 
neighborhood of the origin in G ~. Since we are interested only in the case of 
the unitary group, and to simplify the exposition, we take G = GL(r, E) and the 
involution a whose group of fixed points is the unitary group H = U(r, E/F). In 
this case, there is a unique regular nilpotent orbit (90. 



14 Y.z. FLICKER 

We normalize the measure #o0 on the orbit (90 of/3 in 9 a by requiting that 
~Oo(ch~) is 1, so that f~+~,qg d#oo(X) = qndim(Oo) for large n. Equivalently, 
a measure on an orbit O -~ G/Za(Y)  (Y E O) is defined by a measure on its 
tangent space m = G/Zg(Y) ([MW], p. 430) at Y, taken to be the selfdual measure 
with respect to the symmetric bilinear nondegenerate F-valued form By (X, Z) = 
tr(Y[X, Z]) on m. 

Proposition 4. l f  Tr is a a-invariant admissible irreducible representation of 
G and Oo is the regular nilpotent orbit in G a, then the coefficient c a (0o, 7r) in the 
germ expansion of  the a-twisted character X~ of Tr is equal to 

dime Homa, (ind~r r  :r) = dime Homo (indg r 7r). 

This number is one if :r is generic and zero otherwise. 

P r o o f .  We compute the expression displayed in Proposition 3 as in [MW], 
I. 12. It is a sum over the nilpotent orbits O in G ~' of  c a (O, 7r) times 

O" - - 1  A Ia,~l ~o(r o e) = IaTd-l~o(r = IG~V 1 r 

The Fourier transform (with respect to the character ~ )  of  r o e, 

r  = fg Cn(expZ)r  Z Y ) d Z =  fg CE(tr Z(~r-2n/3-Y))dZ, 

is the characteristic function of  7r-2n/3 + a'-'~gg = ~r-2n(/3 + lr'~g~) multiplied by 
the volume Ig~[ = [G~[ of g~. Hence we get 

= f o  d~o(X)=q'~a"m(~ d#o(X). 
n ( , r  2. (Z+ ,r- g~ )) n(Z+,r', gg ) 

The last equality follows from the homogeneity result of  [HC], Lemma 3.2, p. 18. 
For sufficiently large n, we have that/3 + ~rn~ is contained only in the orbit O0 of  
/3. Then only the term indexed by O0 remains in the sum over O, and 

fOon(~+~-g~) d#~176 = ~+,r-g~ d#~176 

equals q-ndim(O0) (cf. [MW], end of  proof of Lemme 1.12). The proposition 
follows. [] 
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