Introduction.

Langlands’ principle of functoriality [B] conjectures that there is a parametrization of the
set Repr(G) of admissible [BZ] or automorphic [BJ] representations of a reductive group G
over a local or global field F', by admissible homomorphisms p : Wr — G x Wg. Here W is
a form of the Weil group [T] of F, and G is the connected (complex) Langlands dual group
[B] of G, on which Wg acts via the absolute Galois group of F. If H is another reductive
group over F' and there is an admissible map HxWp = G x Wpg, then composing with
o Wp — H x Wg we get p: Wp — G x W, and by the functoriality conjecture we would
expect a “lifting” map Repr(H) —Repr(G).

The trace formula has been used to establish the lifting in a few cases. For a test func-
tion f = ®f, € C°(G(A)), the convolution operator r(f) maps ¢ in L*(G(F)\G(A)) to
the function whose value at h € G(A) is fG(A) f(g)p(hg)dg. It is an integral operator with
kernel Kf(x,y) which has geometric expansion Z%G(F) f(z71vy), and spectral expansion

Do 2 fo(x)p(y). Here 7 ranges over the set of the irreducible direct summands of L2
as a module under the action of G(A) by multiplication on the right, and ¢ ranges over an
orthonormal basis of smooth vectors. Integrating over z = y € G(F)\G(A) we obtain the trace
formula 3> trw(f) =3 g, ®r(v). Here G/ ~ denotes the set of conjugacy classes in G(F),
and ®¢(vy) = fG(A)/Z(W) f(zyz~Y)dz is an orbital integral of f. In this outline we ignore all
questions of convergence, which make the development of the trace formula such a formidable
task.

To develop a theory of liftings of representations from the group H to G, one develops a
trace formula for a test function fg on H(A), of the form - trog(fu) =X g/ Pry(vH)-
One then tries to compare the geometric sides of the two trace formulae. For this one needs:

(1) A notion of a norm map N : {G/ ~} — {H/ ~}, sending a stable conjugacy class v in
G(F) to yg in H(F'), locally and globally. This has been defined by Kottwitz-Shelstad [KS]
in our context.

(2) A statement of transfer of orbital integrals, asserting that given a test function f €
C*(G(F)), where F is a local field, there exists a test function fg, and given fg there is an
f, with “matching orbital integrals”, namely ®¢(y) = @4, (N7).

The global test function f is a product of local functions which are almost all the unit
element 1x of the Hecke algebra of spherical (bi-invariant by a standard maximal compact
subgroup K of the local group G(F') (K is hyperspecial, [T1i, 3.9.1]) functions on G(F). Hence
one must have also the statement that:

(3) @1, (y) = @1y, (Ny) for all (vegular) y. This statement is called the fundamental
lemma. It is a necessary initial point for the comparison to exist.

Further, the admissible map H x Wp — G x Wg defines a lifting map for unramified
representations from H(F') to G(F'), and via the Satake transform a dual map from the Hecke
algebra of G (locally) to the Hecke algebra of H, and one needs:

(4) An extended fundamental lemma, relating the orbital integrals of the corresponding
spherical functions.
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The statements (4) and (2) follow — or should follow — from (3); perhaps (2) implies (3).

Once all this is accomplished, the spectral sides of the trace formulae are equal for sufficiently
many corresponding test functions, which are used to isolate individual contributions to the
formula, and thus derive the lifting of global and local representations.

The technique of comparison of trace formulae has been applied to lift representations
of the multiplicative group of a central simple algebra of degree n, to GL(n). Note that
inner forms of G all have the same dual group G. This is due to Jacquet-Langlands for
n = 2, Deligne-Kazhdan for all n and local as well as automorphic representations with two
supercuspidal components, and [FK2] with “one” rather than “two” such constraints (see
[F1] for the special case of a division algebra). However, in this case the two groups under
comparison are isomorphic for almost all completions of the global field F', and the fundamental
lemma holds automatically.

The next case of such a comparison concerns endoscopy for G = GL(n, F), where H =
GL(m,E), E/F is a cyclic field extension of degree n/m. Labesse-Langlands dealt with
n = 2, Kazhdan [K] with all n and m = 1, and Waldspurger [W1] with the general case.
The fundamental lemma in this endoscopic case implies the fundamental lemma needed to
establish the metaplectic correspondence of [FK1], between GL(n) and any central topological
covering group of it. This lifting generalizes Shimura’s in the case of n = 2. The extended
fundamental lemma follows (as in [F2]) from the fundamental lemma of [W1] by means of
the (simple) regular functions technique introduced in [FK1], or alternatively by using the
spherical functions technique of Clozel.

For a cyclic extension E/F one has the base change lifting from H(F') to H(E). Viewing
H(FE) as the group of F-points of the F-group G = Resg,r H obtained by restricting scalars

from E to F, the lifting is compatible with the diagonal map of H x Wg to G x Wg. Here
G is a product of [E : F] copies of H, on which W acts via its quotient Gal(E/F). H. Saito
used (in the context of modular forms) the twisted (by a generator o of the Galois group
Gal(E/F)) trace formula ) tr7w(fo) = ) ®f(yo), for the convolution operator r(fo). Here
the twisted orbital integrals are [ f(z~'yo(x))dz. For n = 2 the base change lifting for GL(n)
has been carried out by Saito, Shintani, Langlands, and for general n by Arthur-Clozel [AC].
The stable fundamental lemma, matching stable orbital integrals and stable twisted ones, has
been proven by Kottwitz [Ko| for any G. Regular functions are used in [F3] to give a simple
proof of the (unconditional) base change lifting for GL(2), and in [F4] for cusp forms on GL(n)
with a supercuspidal component.

Naturally one can consider actions other than that of the Galois group. Twisting by the
outer automorphism 6(g) = *¢g~! (¢ for “transpose”) of GL(n) would lead to liftings from
symplectic and orthogonal groups to GL(n). The first example in this line concerns the
symmetric square lifting [F6] from H = SL(2) to G = PGL(3), which is associated with the
dual group homomorphism embedding H = PGL(2,C) = SO(3,C) = G in G = SL(3,C).
Here H = ZG(é) is a twisted endoscopic group. More generally, for n > 3, G = GL(n,C),
0(g) = Jtg~'J~! for some symmetric or anti-symmetric matrix J, since H = Sp(n/2,C) or
SO(n,C), one expects to obtain liftings from orthogonal or symplectic groups to the general
linear group. The purpose of this work is to prove the fundamental lemma in the next case,
of GL(4), by means of a new technique, which also provides a more elementary proof in other
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(known) cases, and a hope for extension.

The orbital integral [, 1x(z~'vx)dz is the number of cosets 2K in G/K (G is a p-adic
group and K denotes a hyperspecial maximal compact subgroup), which are fixed by the action
of 7. Since G/K 1is the Bruhat-Tits building of G, Langlands interpreted the computation of
the orbital integral as a problem of counting points on the building. This led to a satisfactory
proof of the stable fundamental lemma for base change [Ko|, and to a counting proof for
the symmetric square lifting [F5, §4]. Langlands and Shelstad then studied the asymptotic
expansion of orbital integrals of general (C2°) functions for a general G on developing an
“Igusa data” approach, and Hales [H1] in the context of Sp(2). The recent coherence result of
Waldspurger [W3] for the unit element 1x (and standard endoscopy) is used in [H2] to deduce
from [H1] the fundamental lemma for Sp(2).

Our — elementary — approach is entirely different. It involves neither buildings nor germs.
Our expression for the orbital integral is entirely explicit. Our results for 1x in the context of
GSp(2) and Sp(2) imply — using the reduction of Waldspurger [W2] — the transfer of general
functions on GSp(2) and Sp(2) to their endoscopic groups, recovering the results of [H1] and
[H2]. Further, we prove the fundamental lemma in the twisted case.

To start with, we note that a useful reduction of the computation of the orbital integral
of 1x at an element k of K is given by Kazhdan’s decomposition [K] of k as a commuting
product of an absolutely semi-simple element s, and a topologically unipotent element u. The
integral is then reduced to that of u, where G and K are replaced by the centralizers of s in
these groups. A twisted analogue of this result is developed in [F7], where — taking the group
to be the semi direct product of PGL(3, F) and the group generated by the twisting o — the
twisted orbital integrals of 1x are reduced to orbital integrals on forms of GL(2), which can
be directly computed, and compared with the orbital integrals on the “lifted” groups (SL(2)
and PGL(2)). This reduction is carried out in the context of GL(4) rather than GL(3) in the
present work. It permits us to compare the resulting integrals on the group Sp(2) of fixed
points of o(g) = Jtg~1J ™! on GL(4), with the integrals of 1x on GSp(2) at the norm of the
element w.

The basic idea for the computation of the non twisted orbital integrals comes from the
work of Weissauer [We]. Since the orbital integral is an integral over T\G /K, where T is the
centralizer of our regular element in G, it suffices to find a double coset decomposition for
H\G/K, for a subgroup H of G which contains T, and then the computation of the orbital
integral is reduced to one on the subgroup H, which should be simpler than G. Weissauer
[We] proved the fundamental lemma for GSp(2) and its endoscopic group SO(4). We prove
here this lemma from GL(4) to all of its twisted endoscopic groups, including GSp(2), using
this approach. Of course here we consider all tori T' of GSp(2), not only those which transfer
to its endoscopic group, and compute the norm map.

Our work is entirely explicit. We exhibit a set of representatives for the twisted conjugacy
classes in G, in families of types which we call (I), (II), (III), and (IV). We list those in the same
stable twisted conjugacy class. The listing is done on computing the Galois hypercohomology
groups used in [KS], or simply on using low brow Galois cohomology, but it is important for us
to exhibit explicit representatives, not just to describe the abstract structure of the conjugacy
classes within the stable class. Further we describe the norm map explicitly for each type,
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and find representatives for the stable conjugacy classes and the conjugacy classes in it, for
GSp(2). The stable orbital integral is simply the sum over the orbits in the stable orbit.
Thus our computations can be used to compute the unstable orbital integrals. In the case of
GSp(2) we recover the results of Weissauer [We]. In the twisted case, this is done here too
for all unstable twisted endoscopic groups. We compute all unstable orbital integrals of 15 on
the group Sp(2), which has more endoscopic groups than GSp(2), and deduce all endoscopic
transfers of orbital integrals.

In [F8] we obtain a double coset decompositions in the context of (U(2) x U(1))\U(3)/K,
where U denote unitary groups of a quadratic field extension E/F, and use these to prove the
fundamental lemma for U(2, 1) and its endoscopic group U(1,1) x U(1), for a torus T split over
FE, a quadratic unramified extension of F', and for a torus 7" which splits over a biquadratic
extension of F.

The results and techniques of this work were described in the talk [F9] at the conference
“Automorphic Forms on Algebraic Groups”, RIMS 1995. At the end of my talk Takayuki
Oda pointed out that results of Murase and Sugano [MS] on double coset decompositions of
the form H\G/K existed for all classical quasi-split groups, and our direct and elementary
approach might extend to deal with twisted GL(n) for all n, namely with all symplectic and
orthogonal groups.

This work started and was completed at Mannheim, supported by DAAD and the Humboldt
Stiftung. I wish to express my very deep gratitude to Rainer Weissauer for his hospitality,
inspiration and help, to J.-L.. Waldspurger for locating an error at my request, and to J.G.M.
Mars for developing an alternative technique — based on usage of lattices — and verifying that
the result of our computations coincide.

Our work concerns an example, and we worked out all related objects. It will be useful
to list here informally the main objects. These are the twisted elliptic endoscopic groups;
the elliptic twisted stable conjugacy classes, listed according to the elliptic tori 7T'; the group
structure of the conjugacy classes within the stable conjugacy classes; the characters s on
these groups, and the endoscopic groups attached to a regular element of T" and to x. The
“fundamental lemma” takes the form: the s-linear combination of #-orbital integrals of the
unit element 1x at a f-regular element ¢ — multiplied by a suitable transfer factor — is equal
to the stable (trivial k) orbital integral of 1x on the #-endoscopic group determined by ¢ and
k at the norm of ¢.

Thus our group is G = GL(4) x GL(1); our automorphism is 0(g, z) = (Jtg=tJ =1, x det(g)).
In Section I.F (i.e. Section F of Part I) we show that the stable #-endoscopic group is H =
GSp(2). It would have been Sp(2) had we taken G = GL(4). But while GSp(2) has only one
elliptic endoscopic group: (GL(2) x GL(2))/GL(1), Sp(2) has the elliptic endoscopic groups
(GL(2) xGL(2))"/GL(1) (the prime indicates: equal determinants), Resg,r GL(2)'/GL(1) for
each quadratic extension E/F (its group of F-points is GL(2, E)'/F*, the prime indicates:
determinant in F'*), SL(2) x U(1, E/F) for each quadratic extension E/F (its group of F-
points is SL(2, F) x E', E' = ker Normpg,r). The unstable f-endoscopic groups are “of type
LF.2”: C = (GL(2) x GL(2))" and Cg = Resg/p GL(2)" for each quadratic extension E/F,
and “of type LF.3": C, = GL(2,F) x E', again all [E : F] = 2.

The #-elliptic strongly #-regular elements are classified in Section I.D according to tori of
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types (I), (IT), (III), (IV) in GSp(2). We list the tori of GSp(2) reversing the order of (II) and
(ITT), so that the norm map from G to H = GSp(2) preserves the type. Tori of type (I) are
isomorphic to E* x E*, [E : F| = 2, those of type (II) are ~ E) X ES, [E; : F]| = 2, Ey # Es,
E5/F ramified. They lie in the group Cy of F-rational points in Cy ~ (GL(2) x GL(2))’,

a00b
where Cy is the group of [(? 3), (: ?)] = (8 : ? 8) € H. Tori of type (III) are isomorphic

to E*, where E = F1F5 is a biquadratic exctgnosii)n ([E; : F] = 2) of F. The choice of the
quadratic extensions Fq, Fy, E3 of F', is implicit in our presentation of the tori. Tori of type
(IV) are isomorphic to E*, where F is a cyclic or a non Galois extension of F' of degree 4. Put
E3 = F(V/A), A € F—F2, for the quadratic extension of F' in E. These tori embed in the group
Ca ~ GL(2, E3)" of rational points over E3 of the group C4 of (2 3) € H = GSp(2), where
a= (azlA Zf ), b =.... The double coset decompositions (see Section I.J) of Cy\GSp(2, F)/K,
Ca\GSp(2,F)/K, and the analogues with Sp(2) instead of GSp(2), play key roles in our
analysis.

The f-conjugacy classes within a stable #-conjugacy class of a #-elliptic strongly 6-regular
element are the following groups. When the class is of type (I), the group is F'* /Ng,pE* X
The x combinations of #-orbital integrals of 1x are related to stable orbital integrals of 1x on
the #-endoscopic groups determined as follows. If x is trivial, we are in the stable case, and
GSp(2) is obtained. In type (I), kK = k1 Xko. If both k; # 1, the group is C = (GL(2) xGL(2))’.
If precisely one of the k; is non trivial, then the group is C; = GL(2) x U(1,E/F) if E/F is
unramified, but the x-6-integral vanishes when F/F' is ramified: this is a general phenomenon,
that the integral of 1x would vanish when it should relate to a ramified endoscopic group.
In type (II), K = K1 X K. If both &; # 1, the group is Cg, = Resg,,p GL(2)" when E3/F
is unramified; the integral vanishes when F3/F is ramified. If k1 # 1, ko = 1, and E{/F is
unramified, the group is Cy = GL(2) x U(1, E1/F), but the k-integral vanishes when E;/F
is ramified. In type (III), if K # 1, the group is C. In type (IV), if K # 1, the group is Cg,
when E3/F is unramified; the s-integral vanishes when E3/F is ramified.

To repeat, elliptic conjugacy classes in C = (GL(2) x GL(2))" lie in EJ x E5 come from
type (I) when E; = Fs, and from type (III) if E; # Es. Those in Cg, = Resg,/r GL(2)" lie
in a quadratic extension E of the quadratic extension Fs5 of F; they come from type (II) if E
is biquadratic (=F1FE2) over F, and from type (IV) if E is cyclic or non Galois over F. An
elliptic conjugacy classes in C; = GL(2) x U(1, E1/F), unramified F1/F, defines a quadratic
extension Fy/F (in its GL(2) part); it comes from type (I) if By = F», and from type (II) if
E, # E,5, and a k = k1 X ky with only one non trivial factor.

Our analysis applies to establish the fundamental lemma for the group Sp(2), except that
types (IT) and (IIT) need to change names, as they are interchanged under the norm map. The
lists of endoscopic groups, elliptic elements, x and even statement of results are essentially
the same, since the f-integrals on G are integrals on Sp(2, F'). The analysis in the case of
GSp(2, F) is simpler, there is a unique endoscopic group, essentially GL(2) x GL(2), and tori
of type (I), (II), yield the tori E* x E* and EJ x E5 of the endoscopic group.
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PART I. Preparations.
A. Statement of Theorem.

Let R denote the ring of integers in a local non archimedean field F. Let G be the F'-
group G1 x G, where G; = GL(4) and G,, = GL(1). Put g; for the transpose of g; €
G1. Define w = ((1)(1]), J = (_qug), 0(g1) = Jtgy'J71, and 0(g1,e) = (9(91),e||g1||) for
g = (g91,€) € G; ||g1]| denotes the determinant of g;. Put H = GSp(2) = GSp(J) for the
group {g1 € G1;0(g1) = egy for some e =e(g1) € GL(1)} of symplectic similitudes. We write
G = G(F) and H = H(F) for the groups of F-points, and K = G(R) and Ky = H(R) for
the standard maximal compact subgroups. Similarly we have G1, K1, ....

We choose Haar measures dg, dh,... on G, H, ..., and denote by 1x = 1k, the quotient
by the volume |K| of K of the characteristic function of K = K¢ in G, by 1k, the analogous
object for Ky, 1k, for K in Gy, etc. Then 1k lies in the space C2°(G) of locally constant
compactly supported functions on G. We often omit the subscript of K, when it is clear
from the context. Identify C2°(G) with C°(GO) by f(g) = f(gf), put Int(g)(t0) = gthg~' =
gt0(g—1)0, and introduce the orbital integral

G (10) = B (10 de /7., 10)) = / £(t(9)) (40))dg /7 )
G/Zc(t9)

of f € C*(G) at t0,t € G (it is also called the #-orbital integral of f at t). Here
Za(t0) = {g € G; Int(g)(t0) = t0}

is the O-centralizer of t in G, or the centralizer of t0 in G.

The elements ¢,t' of G are called stably 0-conjugate if t'0 = Int(g)(t6) for some g € G(=
G(F), F = algebraic closure of F'). There are finitely many #-conjugacy classes (Int (9)(t0),g €
G) in a stable #-conjugacy class, and we define the stable orbital integral @?’St(tQ) of f at
t6 to be the sum @?(t’ 0) over a set of representatives ¢’ for the f-conjugacy classes within
the stable f-conjugacy class of t (in ). Note that Zg(t0) and Zg(t'0) are isomorphic when
t,t" are stably f-conjugate, this isomorphism is used to relate the measures on these groups.
Similarly we have the stable orbital integral @?’St(h; di/dz,my) of f € C(H) at h € H.

The purpose of this paper is to prove the following.

Theorem. For any strongly 0-regular t € G we have
OT (10 d/dre) = B1,°! (Nt dp [dro o (1+60) 0 N7H).

An element ¢t of G is called 0-semi-simple if t0 is semi-simple in the group G x (f) (0 is an
automorphism of G of order two). Such an element is called §-regular if Zg (t0)Y, the connected
component of the identity in Zg (t0), is a torus. Further it is called strongly 6-reqular if Zg (t0)
is abelian. In this case Zg (Zg(t0)?) is a maximal torus T in G which is stable under Int(t6),
and Zg (t0) = T™ () (see Kottwitz-Shelstad [KS, 3.3]). According to [KS, Lemma 3.2.A(a)],
we may assume that the strongly f-regular ¢ lies in a f-stable F-torus T. Thus t € T = 0(T).
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To define the norm map — which appears in the statement of the Theorem — following
[KS] we fix a f-stable F-pair (T*,B*) consisting of a minimal #-stable F-parabolic subgroup
B* of G, and a maximal f-stable F-torus T* in B*. Namely we take B* to be the upper
triangular subgroup of G, and T* to be the diagonal subgroup (thus T* = T} x G,,). Any
two #-stable F-tori T* and T are #-conjugate in G, thus given T (T* is fixed) there is h € G
with T = h~1T*0(h), and in particular t* € T* such that ¢ = h=1¢*0(h). The norm of ¢ is
defined to be the stable conjugacy class in H which is conjugate to Nt* over F, where Nt* is
defined as follows.

Put V= (1-0)T* and U = T} = T*/V. Here T* consists of (a,b, c,d;e)

(= (diag(a,b,c,d),e)), and O(a,b,c,d;e) = (d~t,c71,b71, a"t;eabed). Then V consists of
(o, B, B,;1/a3). Choose the isomorphism N : UST7; given by

(2,9, 2 t; w) mod{(a, B, B, 03 1/aB)} > (wyw, 22w, tyw, tzw; wyztw?) = (a,b,e/b,e/ase).

It is surjective since (b,a/b,1,e/a;1) — (a,b,e/b,e/a;e). Of course T3 is the diagonal sub-
group in H, and any torus Tx in H is conjugate to T% over F. The stable conjugacy class
of a regular element in H is the intersection with H of its conjugacy class over F. The choice
of the isomorphism U=T7; is dictated by dual groups considerations, namely that H is an
endoscopic group in G; this we explain in Section F below.

The orbital integrals on G = GL(4,F) and H = GSp(2, F) depend on a choice of Haar
measures. These are chosen compatibly, as follows. A Haar measure is unique up to a scalar,
determined by the volume of the maximal compact subgroup. The function 1k, is the unit
element in the Hecke algebra C.(Kg\G/Kg), thus it is the quotient of the characteristic
function of K¢ in G by the volume of Kg. The product 1x,dg is the constant measure with
support K¢ and total volume 1; it is independent of the choice of the Haar measure dg. Thus
we may and do assume that |Kg| = 1 and 1k, is the characteristic function of K. This
simplifies our computations below. The same comment applies to 1x, dg.

It remains to relate the measures on Zg(t0) and on Zg (Nt), for a strongly 6-regular element,
t in G. We shall use the observation that if N : Ty — T5 is an epimorphism of F-tori with
kernel Ty, and if dp, denotes the Haar measure on T; = T;(F') which assigns the maximal
compact subgroup T;(R) the volume |T;(R)| = dr, (T;(R)) one, then dr, = uN*(dr,) for some
p > 0, where N*(dr,) = dp, o N is the measure on T} obtained from dp, via N. Computing
the volume of T’ (R) we see that p = [To(R) : N(T1(R))]. We shall relate an orbital integral
®(dg,,dr,) with ®(dg,,dr, o N) = u®(de,,dr,) (T; C G;(i = 1,2)).

Applying this principle to the norm map N : T* — T, where T}, = {(z,y, 2, t); xt = y2)},
defined by N(z,y,2,t) = (vy,zz,yt, 2t), whose kernel is V, we see that dr- = [T (R) :
N(T* (R))]dT;I o N. Applying the principle to the map 1 + 6 : T* — T*?, whose kernel is
V, where 0(z,y, z,t) = (t7% 27y~ 271, thus (1 + 0)(z,vy, 2, t) = (x/t,y/z,2/y,t/x), and
T* = {(z,y,y 27"}, we see that dp. = [T**(R) : (1 4 0)(T*(R))]ldg+ o (1 +6). In

conclusion

Ta®):N(T(R) -
[T*(R) : A+ 0)T=(R)] "™
and the (stable) #-orbital integral ®(1xdg, dp+e) on G is related to the (stable) orbital integral

(1T (R) : (L+0)T* (R))/[T3(B) : N(T*(R))]) @ (L, d, ) = @ (Liedir, dpeno(14+6)oN ).

dT*G @) (1 +9) —
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This is the relation of measures which appears in the Theorem. We shall see below that Z¢(t0)
takes the form T (up to isomorphism; T* = f-fixed points in T*), and the measure used
in the integration over H is pulled back from the measure dr.e on T*? via the isomorphism

N 146
T3 T*/V-—T*. The factor [T*%(R) : (1+0)(T*(R))]/[T#(R) : N(T*(R))] which relates
dr, with dpe o (1+60)o N~ will be computed for each torus considered in the course of the
proof below.

B. Stable conjugacy.

Let us recall the structure of the set of (F-rational) conjugacy classes within the stable
(F-) conjugacy class of a regular element ¢ in H. By definition, the centralizer Z(t) of t in
H is a maximal F-torus Tg. The elements ¢, of H are conjugate if there is g in H with
t' = Int(g~1)t(= g~ 'tg). They are stably conjugate if there is such g in H( = H(?)) Then
9o = go(g~!) lies in Ty for every o in the Galois group , = Gal(F/F), and g — {0 — g, }
defines an isomorphism from the set of conjugacy classes within the stable conjugacy class of
t to the pointed set D(Ty/F) = ker[H'(F, Ty) — H'(F,H)]. In our case H!(F,H) is trivial,
hence D(Ty/F) is a group.

1. Lemma. The set of stable conjugacy classes of F-tori in H injects naturally in the image
in H'(F,W) of ker[H'(F,N) — H'(F,H)], where N = Norm(T%,H), and W is the Weyl
group of T3 in H. This map is an isomorphism when H is quasi-split. Note that the image is
HY(F,W) when H(F,H) is trivial, and H'(F, W) is the group of continuous homomorphisms
p:, = W, when , acts trivially on W.

Proof. Indeed, the tori T and T% are conjugate in H, thus T = g~!T%g for some ¢ in H.
For any ¢ in T there is t* in T% with t = g~ 't*g. For t in T, og~'ot*og = ot =t = g~ 't*g,
thus ot* = g, 't*g, € T%, and g, € Norm(T%,H). Since ¢ (and so t*) is regular, g,
is uniquely determined modulo T7%;, namely in W. For a general t* in T% we then have
o(g7't*g) = g7 (go(g™"))a(t*)(c(g9)g™ ") g, so that the induced action on T% is given by
o*(t*) = Int(g,)(o(t*)). The cocycle p = p(T) : , — W is given by p(o) = g, mod T%.
It determines T up to stable conjugacy. Conversely, a {g,} in ker[H!(F,N) — H'(F, H)]
determines an action o*(t*) = Int(g,)(c(t*)) on T}. By a well-known theorem of Steinberg,
when H is quasi split over F', an F'-conjugacy class in H of a regular t* contains a rational
element h~'t*h (in H), whose centralizer is an F-torus which defines g,,. O

In our case of H = GSp(2), the Weyl group W is the dihedral group Dy, generated by
the reflections s; = (12)(34) and s = (23). Its other elements are 1,(12)(34)(23) = (3421)
(which takes 1 to 2, 2 to 4, 4 to 3, 3 to 1), (23)(12)(34) = (2431), (23)(3421) = (42)(31),
(3421)2 = (23)(41), (23)(23)(41) = (41). Let us list the F-tori T according to the subgroups
of W, the split torus corresponding to {1}, and conclude the following.

2. Lemma. We have that H'(F,T) is trivial except when p(, ) is the subgroup of W of the
form ((14)(23)) or ((14)(23), (12)(34), (13)(24)), where H'(F,T) = Z/2.

Proof. Recall that if Ty splits over the Galois extension E of F' then H'(F, Ty) =
H'(Gal(E/F), T3 (E)), where T3 (FE) = {diag(a,b,A/b,X\/a);a,b,\ € EX}, and Gal(E/F)
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acts via p. Thus H! is the quotient of the group C! of cocycles: a, € T%(F) with a; = 1 and
Uor = ay0*(a,) for all 0,7 € Gal(E/F), by the group of coboundaries: co*(c™ 1), c € T%(E).
Here o* = p(0) o o, thus 0*(a) = g, - 0a - g; 1 if p(o) = Int(g,). When p(, ) = {1}, the group
H! is trivial since E = F. The other cases are:

(1) p(,) = ((23)),[E : F] = 2,a, = (a,b,A\/b,\/a) with a,0*(a,) = I satisfies aca = 1,
AoX = 1, bod = ob. Choosing o, p € EX with a = a/oa,p = ob™!, we have \ = u/op,

and ¢ = (a, 1, u, p/) satisfies co*(c)~! = a,. Hence H! is trivial. The same result holds for

p(, ) = ((14)).
(2) p(, ) = ((12)(34)),[E : F] = 2, a, satisfies acb = 1, and AcA = 1. Choosing p € E* with
A\ = p/op, we have that ¢ = (a, 1, u, p/a) satisfies co*(¢™!) = a,. Hence H! is trivial.
(3) p(, ) = ((13)(24)),[FE : F] = 2,a, satisfies \oA = 1 and b = Aoa. Take u € E* with
A= pu/op, and ¢ = (a, pu, 1, pu/a). Then co*(c™!) = a, and H! is trivial.

These tori are not elliptic — their quotient by the center of H is not compact. The elliptic
tori are:
(D) p(, ) = ((14)(23)),[E : F] = 2, a, satisfies A = b/ob = a/oa = cA~!. Thusa/b € FX. Ifc =
(1,83,1/Boa,1/ca), then co*(c™1) = (a,aBoB,\/aBoB3, A a). Then H* = {a,}/{co*(c)~1} =
F*/Ng/pE*.
(IT) p(, ) = ((14)(23),(12)(34), (13)(24)), E is the composition of the different quadratic ex-
tensions Fq, Fo, E3 of F, and so Gal(E/F) =7/2 x 7Z/2 is generated by ¢ and 7 whose fixed
fields are F3 = E{9) E, = BT E; = E{). Say p(0) = (14)(23) and p(1) = (12)(34).
Then a, = c7*(c™1), as seen in (2) above. We shall replace the cocycle {a,} by the equivalent
{agc™ta*(c)}. Then we may assume that a, = I. The relation a, = a,0*(a;) = ayr =
Uro = a,7*(a,) = 7*(a,) implies that a, = (a,7a,A/Ta,\/a)(a € EX,\ € E{*). The relation
a,0"(a,) = I implies that A = a/oa. Hence a/oa = X\ = 7\ = 1a/oTa, and aocTa = oata lies
in F*. Since Ng, )pE{" # Ng,/pEy and F*/Ng, /pE; is of order two, aoTa can take any
value in F*. For ¢ = (o, T, p/Ta, p/a), p = T € E, we have co*(c)™! = (d, 7d, \/7d, \/d)
with d = aoca/op and A = p/op = d/od. However, dotd € Ng, ;pEf, since acar(aoa) €
Ng/pE* and pop € Ng, jpE. Hence H' = F* /Ng, ,pEf.
(III) p(, ) = ((14),(23)), again E = F1F5 and Gal(E/F) = Z/2 x Z/2 is generated by o and
7 whose fixed fields are E3 = E{7), Ey = E°™) and E; = E(™, and p(7) = (23), p(10) =
(14). Using (1) above we may replace {an} by an equivalent cocycle with a, = I, where
7 = or. Then a, = 7{(a,) (since a,7*(ar,) = a, = a,,77(ar)), hence b = 1b € ES and
A = ana € Ng/g,E*. Further I = a,7"(a,) implies that ata = 1 and A = b/7b. Take
a € EX with a = a/7a and ¢ = («a, 1, ana, ). Since ¢ = 77(c) we can replace {a,} by
{a,c to*(c)}, to assume that a, has a = 1. Thus a, = (1,b,1/b,1) and b = 71b = 7b. Now
taking ¢ = (a, 3,ama/B, 71a) with a = 7 and 3 = 713, we have ¢ = T{¢c, and cr*c™! =
(1, BrB/ario, amya/ B3, 1). Since B7 ranges over Ng, /pE5 and aryo over Ng, jpET, By #
E5, and F*/Ng, /pE} have order two, we conclude that a, = co*c™" for some o € EY*, 3 €
E5, hence H! is trivial.

Remark. In the situation of (II) and (III), where E is the composition of the quadratic exten-
sions of F', we have Ng/pE* = F X2 hence N g,/ followed by inclusion yields the isomor-

phlsm E;/NE/ESEX%NES/FE;/FXZ — FX/NEl/FElx Indeed, NE’/FEX D NE’/Fsz =
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(NEZ/Fsz)z 1mphes NE’/FEX > sz, and NE’/FEX = NE’Z/FNE'/EZEX C NEZ/FEzX 1mphes
NE/FEX C FXZ, since NEl/FElx N NE3/FE§< = Fx2,

(IV) p(, ) contains an element of order 4. There are two cases here. If p(, ) = W, then the
splitting field E is a Galois extension of F' with Galois group W = D4. Suppose p(o1) =
(23) and p(o2) = (14). As in (III), we can multiply the cocycle by a coboundary so that
g, = I = a4y, and 80 g0, = [ = Ggyo,. If p(a) = (3421),p(0?) = p(o1)p(02), and
I = a,2 = a,0*(as) = (a,b,\/b,\/a)(cA/ob,oa,0\/oa,ob). Then boa = 1 = Ao, and
ob = ao), thus A = a/ob = ac?(a), and ao(a)o?(a)o3(a) = 1, so that a = a/c3a for some
a € EX. Now a, = (a,1/0a,1/03a,0%a), and ¢ is equal to 0*?(c) (thus a,2 = ay2co*?(c™1))
if ¢ = (o, 3,028,0%a) and ac?a = Bo?B. As co*(c)™! = (a/d3B,8/oa,0?8/c3a, 0%a/a3),
we have a, = co*(c)~! for = . Then H' is trivial.

The other case is when p(, ) is Z/4, say p(c) = (3421). The splitting field E is a cyclic
extension of F of degree 4. Put E; = E(”). By case (I), we may assume that a,2 =
(L, f,f~11),f € ES/Ng/g,E* (as p(c?) = (14)(23)). If ay = (a,b,A/b,\/a) then a,2 =
a,0*(a,) = (acA/ob,boa, \oA/boa, A\ob/a). Hence a = ob/o A, AoA =1, and boa = f. Hence
oA =obla,\=b/c%a = f/o(a)o*(a), and a, = (a, f/oa,1/c%a, f/ac(a)c®(a)). The relation
ay2 = a;0*(a,) amounts to fo(f) = ao(a)o?(a)o>(a), hence f € Ng/p, E*, we may assume
f =1, and we are done as in the case where p(, ) contains an element of order four. 0]

There is an easier way of computing the Galois cohomology groups above, using the Tate-
Nakayama duality, which identifies H'(F, Tf) with the Tate cohomology group
ET_I(F, X*(TH)). The group X.(Tg) of cocharacters is {(z,y,z —y,z — x); x,y,z € Z}, and
H~' is the quotient of {X € X,(Tx); NX = 0}, where N is the norm from a splitting field of
F to F, by the span of X —0X,X € X,(Tpg),0 €, . Thus for example in case (IV), NX =0
means z =0, and X — (342)X = (z+y— 2,y —x,x —y,z—x — y), hence H-1 = {0}, while
in case (I) again NX = 0 means z = 0, but X — (14)(23)X = (22 — 2,2y — 2,z — 2y, z — 2x),
hence H™! = Z/2. But for our integral evaluations we need to choose representatives for
Z/2 = F*/NE*, not only to know their cardinality.

A standard integration formula from the group to a Levi subgroup containing the torus in
question, reduces the study of orbital integrals of regular elements to that of the study in the
case of elliptic elements, and their centralizers, the elliptic tori. These are the cases (I — IV).

C. Explicit representatives.

We proceed to describe a set of representatives for ¢ € Ty and for their stably conjugate
but not conjugate elements.

Example. Case of SL(2). As a preliminary example, let us consider the case of an elliptic
torus T in G = SL(2)/F which splits over the quadratic extension E = F(v/D) of F. If T*

is the diagonal torus, then a representative of such T is T = hl_)lT*hD, hp = (i _‘/\/55). Note

that b, = diag(||hp||~*, 1)hp, where ||hp|| = det hp, lies in SL(2, E). If o is the generator

of Gal(E/F), then o(hp) = hpe = whp,e = ((1)_01),10 = ((1](1)) The elements of T are

t = hptahp(a € T*), and we have ot = h;'wo(a)whp, hence the action of o on T induces
the action o*(a) = Int(w) (o (a)) on T*.
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1 1

If t,t; € G are stably conjugate then t; = g~'tg = og~! -t 0g, hence g, = go(g)~! =
hytashp lies in T (= Zg(t);0t = t and oty = t; since t,t; € G). Now 1 = g,0(g,) =
Int(hp') (a,wo(as)w) = ayo(as)"}, thus a, = diag(R, R™!) with R = oR € F*. Of course
the cocycle g, or a, € T*, can be modiﬁed by co *(e)~t = (v,7 1) (0,097 1), hence R ranges
over F* /Ng/pE*. The relatlon go(9)™' = hp'ashp = hp'a,wo(hp) implies

(2 DED) = (07, f) = (= 8

hpg = agwo(hpg) = () SR g1 i

where we wrote T for ox. To have g of determinant 1 we note that 1 = ||g|| = —R(zt—2t)/2v/D
has the solution z =1 and ¢t = —\/E/R. Then

1 1 R+1 (R-1)VD
9=gn= 5 =T e = 5 TRV ) € SLe.B).

2"V
Moreover,

= (0P), =g = ()P ) = (R

make a complete set of representatives for the conjugacy classes within the stable conjugacy
classoft e T C G.

We shall next similarly describe representatives for the elliptic elements in H = GSp(2, F),
and for elements stably conjugate but not conjugate to these representatives.

cd é 0v4d0
c0096

The tori Ty of H = G'Sp(2) of type (I) split over a quadratic extension £ = F(v/D) of F,
whose Galois group is generated by o.

a00b
Notation. Write [(ab),(:ﬁ)] for <Oaﬁ0)_

1. Lemma. A torus Ty of type (I) is given by
Ty = k), ' T4, = {t =[a,b] = by~ (a,b, ob, ca)hp;
ar a2 D 1 b2 —
a= (g %7),b=(5"%")lal =]}

where a = a1 + asVD,b = by + bov/D, and ?L’D = [Wp, ). Moreover t; = Int(g= 1)t =
Int ([[, (;;)])t,R € F — Ng/rE, is stably conjugate but not conjugate to t in H, where
g=1I,g], and g = ggr is as described in the example of SL(2) above.

Proof. In the proof of Lemma B.2, case (I), we saw that if t; = g~'tg and ¢ are stably
conjugate then g, = ga(g) = h aUhD, with hD = |[hp, hp] and g = (1,R,R~11),R €
F* /NE/FE>< Since o (hp)hpt = (3} o )» we need to solve the equation hpg = ag(w %’)a(ﬁpﬁ)
in g € H(F). Using the g € SL(2, F) found in the discussion of SL(2) above, clearly g =

diag(1, g, 1) is a solution. O

The H-tori Tg of type (IT) and (III) split over a biquadratic extension F = E1FEs, E3 =
F(\/A) is the fixed field of ¢ in E, By = F(v/D) is the fixed field of 7 in E; Ey = F(v/AD) is
assumed to be ramified over F', and A, D are normalized to be integral of minimal order such
that E1, Fs, 3 are the three quadratic extensions of F'.
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2. Lemma. A torus Ty of type (II1) is given by

Ty =h™'T3h = {t =[a,b] = h™(a,b, 7b, 0a)h;

a1 as D
a=( );b = (3L 2P, [|la]| = |Ib]]},

az a1 2 1

a=a;+ ayVD,b=0b, +byVAD, h = (WD, Wap)-

Proof. By Lemma B.2, case I1I, the stable conjugacy class of such ¢ consists of a single conju-

gacy class. O

3. L A LT 0 y(I vD
emma. A torus Ty of type (I11) is given by Ty = h™ T3 h, where h = ( N EhAE)(I —\/B)'

It comsists of t = (| bf),a = (Z; ale),b = (Z; bgl ), and t = h=Y(t,rt,o1t,ot)h, where as a

scalar t = a + bv/D, 7t = Ta + 7bV/D, 0t = a — b/D, and tot € F*. Take R € EY such that

(Ng,/pR ¢ Ng, pEy namely) R ¢ Np/p, EX. If R = Ry + Rov/A, put R = (2 "24). Put
R+I (R-T a

g =gRr = %((R—I;F/JB( RJF)}/_)(O Ro,l). Then g lies in Sp(2, E), and g~ 'tg = (Rb bDE )

15 stably conjugate but not conjugate to t.

p Sj hh_l_ ha O 01 h;l 0 1 0 we h = o* = (14)(23
roof. Since o(h)h™" = (°¢" . ) (7 )75 (1) = (g, ' ) we have p(o) = o = (14)(23),

indeed o(h~tth) = h=tho(h) "o (t)o(h)h~th. Similarly, since T(h)h~! =
haghy 0 = (" %), 7 acts on T% as (12)(34). Then Ty = h=1T%h, T% = diagonal
( H gy

0 ehAeh,;;ls 0 —

subgroup, is indeed of type (IT), and it consists of

_ _1,h3 Nt TR 0 bD
h l(thtvaTt70-t)h: th( ! (0 )A hzl(at,art)hA)hD - (z a )

where 1 Vi
h;xl(t 0 Vi = _(t—l-rt (t—ot) ) = (a1+b1\/5 (a2+b2\/5)A)_

07t 2 t\/%t t+7t as+b2vVD  a1+b1vVD

If t; = g~'tg is stably conjugate to t then g, = go(g~') = h™la,h defines a cocycle which
was analyzed in Lemma B.2, proof of case (II). Thus we can take a, = I, and so g, = [
and 7(9) = ¢, 7(90) = go, while a; = 7*(a,) = (R,7R,1/TR,1/R), with R ranging over
R = oR € EJ/Ng/g,E* (thus Ng,,pR does not lie in NEI/FE>< unless R € Ng/g, ).

Since h = (u?e “%)ah, we then need to solve the equation go(g9)™" = h™"a,( ?ﬂ“{f)a(h), or

hg = a,( (L “%)a(hg). The g in the statement of the lemma is a solution:

1 R+I (R-I)VD
5( 0 ehAe)hD((R_I)/\/ﬁ R+T )
B 0 (R,rR)we  ha 0 10,1 R+I  —(R+I)VD
- (e(erl,Rfl)w 0 )% EhAE)hD(O —1) (—(R /¥YD  R+I )
since

_ I
ha' (5 5)wha =Re, and (FRVD) = ([0)( 0, Bey([0)(RRVD)(L )
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(and eR™! = 7R - €). Finally note that ¢ lies in GSp(2, F') when

_ a 0 w tqg 1t —w a’?—b? a—a
(1) = (2P2)( 0 W)( 2 (B2 ) = (F-b'D (baab)D)

is a scalar in F'* (note that w'aw = a), thus to(t) € F*. O

A torus Tg of type (IV) is associated with a quadratic extension F'(v/D) = E3(v/D) of
Es = F(VA), where D = a+ VA € Ez and A € F — F2. The extension E3(v/D)/F is cyclic
or non Galois, and the group of field homomorphisms E3(v/D) — F over F is generated by o,
which maps ovA = —VA, and ovD = VoD,o2VD = —/D,o*V/D = —voD. Then Es is
the fixed field of 62 in F3(v/D).

4. Lemma. A torus Ty of type (IV) is given by Ty = h='T%h, h = (=4VAD,4V/ Ao D, w)~!

hp(" 0 ), hp = (23) ((hg o )) It consists of (2°P) = h=1(t,0t,0%,0%0)h, t € F(VD)

with to®t = oto3t. Here, ift = a+bvVD,a = ay +axV'A, then a = (Z; a2A)( andb = (* b2A)

a1 by by

if b=">01 + bg\/Z), and ot = oca + obVoD, 0%t = a — b\/D, o3 = oca — ob\/oD.

Proof. Note that o(ha) = wha, hence o(ha)h,;' = w. Then o(h)h~! is equal to

0 10 0
0 001/4VAD
—4V/ADOO 0 :

0 01 0

If t = h=*h, then o(t) = h=t - ha(h)~t - o(t*) - o(h)h™1 - h, and so the induced action on
the diagonal subgroup T%; is 0*(a,b,c,d) = (oc,0a,0d,0b), thus 0 = (3421), and T (F) =
{(t,ot,03t,0°t)}. Stable conjugacy reduces to conjugacy in case (IV). O

D. Stable #-conjugacy.

Similarly, we describe the (F-rational) f-conjugacy classes within the stable (F-) 6-conjugacy
class of a strongly f-regular element ¢ in G. Fix a f#-invariant F-torus T*; in fact we take T* to
be the diagonal subgroup. The stable f-conjugacy class of ¢ in G intersects T* ([KS, Lemma
3.2.A]). Hence there is h € G and t* € T*, such that ¢t = h='¢*0(h). The centralizers are
related by Zg(t0) = h='Zg(t*0)h. Further Zg(t*0) = T*, the centralizer of Zg(t0) in G is
an F-torus T which is §; = Int(t) o # invariant, and Zg(t0) = T%. The f-conjugacy classes
within the stable #-conjugacy class of ¢ can be classified as follows.

(1) Suppose that t; = g~1t0(g) and t are stably f-conjugate in G. Then g, = go(g)~! €
Zg(th) = T%. The set D(F,0,t) = ker[H*(F, T%) — H!(F,G)] parametrizes, via (t1,t) —
{0 — go}, the O-conjugacy classes within the stable 6-conjugacy class of t. The Galois action
onT,o(t) =o(h™'t*0(h)) = b=t - ho(h)~L-o(t*) - 0(o(h)h~1)0(h) induces a Galois action o*
on T*, given by ¢*(t*) = ho(h) ‘o (t*)0(o(h)h™"), and H'(F,T) = H'(F, T*%).

(2) The norm map N : T* — T7,; factorizes via the projection T* — T*/V,V = (1 — 0)T*,
and the isomorphism U = T} = T*/V5T7;. Suppose that the norm Nt* of t* € T* is defined
over F. Then for each o € , there is £ € T* such that o*(¢*) = £¢*0(¢)~!. Then

W't 0(h) =t = o(t) = ch™"' - ot* - 0(ch) = o (k)" 4t*0 (L o (h)),
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hence
t* = hol - t* - 0(hot)™t, he = ho(h)™?,

and h,! € Zg(t*0) = T*%, so that h, € T*. Moreover, (1 — 0)(h,) = t*o(t*)~1. Hence
(ho, t*) lies in HY(F, T* 2=% T*), in a subset isomorphic to H(F, T* =% V); this invariant
parametrizes the (strongly #-regular) #-conjugacy classes which have the same norm. See [KS,
Appendix A], or Section G below, for a definition and properties of these hypercohomology
groups; the lines preceding [KS, Lemma 6.3.A], for the definition of obs(d); [KS, 6.2], for the
definition of inv’(d,d"); and [KS, page prior to Theorem 5.1D], for the definition of inv(d,§’):
if t; = g7 't0(g) as in (1) above, then T; = Zg(Zg(t0)°) is a maximal torus in G. Denote
its inverse image under the natural homomorphism 7 : Gs. — G by Ti¢ (Gg. is the simply
connected covering F-group of the derived group of G), and write g = 7(g1)z, g1 in Gg, 2
in Z(G). Then o(gy)gy" lies in T¢, (1 — 0)m(o(g91)g7") = o(b)b~!, where b = 0(z)2~! =
(1—0:)(27Y) € Vi = (1 — 6,)(T;). Hence (o — o(g1)gy ", b) defines the element inv(t,¢;) of

—6¢)om
H'(F, Tg (=0 V). It parametrizes the f-conjugacy classes under G5, within the stable 6-

conjugacy class of t. The image in H(F, T -t V), under the map [T{¢ — V| — [Ty — V]

(induced by 7 : T$¢ — T;), is denoted inv'(t,¢1). It parametrizes the f-conjugacy classes
within the stable §-conjugacy class of ¢, as noted in (1) above.

Note that there is an exact sequence
H(FET) =TT =17 2 g%(F, V)=V - B (F,T* =2 V) > HY(F, T*) =8 HY(F, V).
Moreover, the exact sequence 1 — T*? — T* 178 Vv = 1 induces the exact sequence
H(F,T*) =2 HO(F, V) - HY(F, T*%) — HY(F, T*) =2 HY(F, V).

Hence, H(F, T*) = H(F,T* =4 V) and D(F,0,t) is kerf[H'(F,T*") — HY(F,G)] ~
ker[HY(F, T* 28 V) - HY(F,G)).

In our case the group H'(F,G) is trivial (G = GL(4) x GL(1)), and so is H'(F, T*).

Hence D(F,0,t) = H'(F,T*%) = H'(F, T* 14 V) =V/(1—60)T*. The #-invariant F-tori T
determine homomorphisms p:, — W(T*? G%) = W(T*,G)?. We proceed to describe a set
of representatives for the F-tori T in G, and the groups H!(F, T* — V) = H(F, T*%) which
parametrize the #-conjugacy classes within the stable f-conjugacy classes of strongly #-regular
elements in G, which are represented by elements of T. Since W(T*, G)? = W (T%, H), our
list of #-invariant tori T is obtained from the list of tori Tz, where T is the centralizer of Tg.

A useful fact would be that we can choose h € G such that §(h) = h. Then the sta-
ble f-conjugacy classes of strongly f-regular elements are represented by ¢t = h=1t*0(h) =
h='t*h,t* € T*, and we also exhibit a complete list of representatives for the §-conjugacy
classes within the stable f#-conjugacy class of such a strongly #-regular element ¢.

The following is a list of the #-invariant F'-tori in G up to F-isomorphism; they are
parametrized by the homomorphisms p : , — W = W(T** GY) = W(T*,G)?. Note that
GY = Sp(2). Further we compute H*(F, T*?) = H(F, T* =4 V), we give an explicit realiza-
tion of T = h™!T*h (and h = 0(h)), and for ¢t € T, strongly f-regular, a set of representatives
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in G for the #-conjugacy classes in the stable #-conjugacy class of £. Note that the only sig-
nificant difference from the non twisted case is that we work with G? = Sp(2) instead of with
H = GSp(2).

Let us clarify that t € G is strongly f-regular means that t = h=1t*0(h),h € G, where
t* is such that Zg(t*6) is T*?. Then Zg(t0) = h~'Zg(t*0)h is the torus T™*)¢  where
T is Za(Za(t)), an Int(t) o f-invariant maximal torus in G. If w = h™'u*h € T, where
u* € TxE, then hyo(u*)h;' = u* = 0(u*) = 0(hy)o(u*)0(hy) " implies that h, = ho(h™") is
a f-invariant element in the Weyl group W (T*, G) of T*, hence it can be represented by an
element of W = W (T*? G*?), and the tori T in G so obtained define p:, — W. Hence we
consider the centralizers of the tori in G*?.

As in the case of H = GSp(2), we denote by E a minimal splitting field for the torus T in
G. The torus T is associated with a homomorphism p : , = Gal(E/F) — W. Usually F is
E. Recall: V ={(«,8,8,a;1/af)}.

(1) When p(, ) = ((12)(34)), [E : F] = 2,T* = T*(F) consists of {(a,ca,b,0b;e);a,b€ E* e €
F*}, where o generates Gal(F/F). Then V = V(F) consists of {(a,cq,0a,q; 1/aca);a €
EX}, and (1 — 0)T* = {(aob,boa,boa,ach;1/acabob);a,b € EX}. Hence HY(T* — V) =
V/(1—0)T* is {1}. Further, T*% = {(a,0a,1/ca,1/a;e);a € E* e € F*}. Hence HY(T*%) =
H=Y(T*%) is

{X =(z,y,—y,—x;2); X+0X =0,ie.:x+y=0=2}/(X—0X = (z—y,y—=x,...;0)) = {0}.

Similarly, if p(, ) = ((13)(24)), then T* = {(a,b,0a,0b;e);a,b € E* e € F*},V =
{(a,b,0a = b,ob = a;1/aca)}, and (1 — 0)T* = {(acb,boa,boa,acb;1/aboacb)}, so that
HY(T* — V) = {1}. Further, T** = {(a,1/0a,0a,1/a;e)} and H'(T*®) = H~1(T*?) consists
of

(X = (2,9, —y, —m;2);0 —y = 0= 2}/((2, 9, —y, =25 2) = (=y, =2, 7, y; 2)) = {0},

(2) p(,) = ((23)),[E : F| = 2,T* = {(a,b,0b,d;e);b € E*,a,d,e € F*},V = {(a,b,b,a;
1/ab)}, (1 —0)T* = {(ad, bob, bob, ad;1/adbob)}, so that H (T* — V) = F* /Ng/pE*. Fur-
ther, T* is {(a,b,0b = 1/b,1/aje);b € E*,a,e € F*}, and H'(T*?) is the quotient of
{z = (a,b,1/b,1/a;e);zonr = 1, i.e., aca = 1,ece = 1,0b = b;a,b,e € EX} by {zo(x)71},
thus it is F'* /N E*, by Hilbert Theorem 90.

(3) The analogous result holds when p(, ) = ((14)) : HY(T*%) = {z = (a,1,1,1/a;1);a €
FX/NE*).

The tori T of (1), (2), (3) are not #-anisotropic, namely T? contains the split torus
{(z,2,1/2,1/2;1)} ( and {(z,1/z,2,1/z; 1)}), {(2,1,1,1/2z;1)} and {(1,2,1/2,1;1)}, and
Z(G?) = {(£1,t);t € F*}, as the center of Sp(2, F) is {&I}.

In case (2) the torus T can be presented as T = h™'T*h,h = [I,h)5], if E = F(v/D),D €
F—F2, and bl = (I*207 O)hpy b = (1 VD). Then b = 0(h), and Int (ho(h)~1) = (23),T

1 -vD
consists of ¢t = ([(g 3),b] ,e) b = (Z; bZID) if b = by + baV/D, and a stably f-conjugate but

not A-conjugate element to ¢ is given by

1
-1 _ _ R+1  (R-1)VD),1 0
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thus b of ¢ is replaced by (ble bQZ/ )

In case (3), g = [gr, ], where R € F' — Ng/pFE, and T = {([b,(gg)] ,e) ;ad - bob = 1}.

The 6-elliptic tori are the following.
(D) p(, ) = ((14)(23)),[E : F] = 2,T* = {(a,b,0b,0a;¢e);a,b € EX;e € F*},(1 —0)T* =
{(aca,bob,bob, aca;1/acabob)}, and V = {(a,b,0b = b,ca = a;1/ab)}. Hence H(T* —
V)= FX/NF* x F* /NF*. Further, T** = {(a,b,0b = 1/b,0a = 1/a;e);a,b € EX e € F*},
and H'(T*?) is the quotient of {x = (a,b,1/b,1/a;e); xox = 1, thus ece = 1, and a = oa,b =
ob, in F*} by {zo(z)~! = (aca,bob,...;e/oe)}, thus it is (FX/NE*)2

In case (I), T = h='T*h, where h = [hy, h'y], consists of ([a,b],e),a = (“* ) ifq =

a2 a1
a1 + a2V D in EX, and aoa - bob = 1, and representatives for the f-conjugacy classes within
the stable f-conjugacy class of t are given by t; = g~tg,g9 = [gr, gs], where R, S range over

F*[Ng,pE*. Then t; is obtained from ¢ on replacing a by (a;l/lR a2£R) and b by (b:}s bgbll)S ).

(IT) p(, ) = (p(or) = (14),p(1) = (23)), the splitting field of T is E = F1FE,, where
E, = F(VD),Ey = F(VAD), E3 = F(v/A) are the different quadratic extensions of F. The
extension Es/F is assumed to be ramified, and Gal(E/F) is generated by o, 7,07 whose
fixed fields are By = E", Ey = E{°7) E; = E{°. Then T* = {(a,b,7h,caje);a €
Ef,b € ESje € F*},V = {(a,b,7b = b,oa = a;1/ab);a,b € F*}, and (1 — 0)T* =
{(aca,brb,brb, aca;1/acabrd)}. Hence H (T* — V) = F* /Ng ,pE{ x F*/Ng, pE5. Fur-
ther, T*% = {(a,b,7b = 1/b,0a = 1/a;e);a € E{,b € EY, e € F*}, and additively, H(T*?) is
the quotient of {(z,y, —y,—x;0)} by (X —0 X = (22,0,0,—22;0), X —7X = (0, 2y, —2y, 0;0)),
namely it is Z/2 x Z/2.

Let us compute H'(T*?) explicitly. Consider a cocycle {a,}. If a, = (a,b,1/b,1/a;e)
and a, = (¢,d,1/d,1/¢; f), then a,0*(a,) = 1 implies borb = 1,ec7e = 1,c7c = 1, hence
b= p/orB,e=¢c/oTe,c=/Tv, and g = (v, 3, 371,77 1;¢) has the property that the cocycle
{a,97to(g)}, renamed {a,}, has a,r = (a,1,1,a7 ;1) and a, = (1,b,b7%,1;¢), where a =
ota,b = tb,ere = 1. The relation a,,07*(a;) = a,7*(ays,) implies a = 7a,b = o7b,e =
ore. Hence e = ¢/1e,e = ore € ES, and a,b € F*. If g = (o, 8,671, a7 ;¢), with
a € Ef, B € ES, then gorg~! = (aoa,1,1,1/aca;1) and grg=! = (1,878,1/B8705,1;¢).
Hence the class of the cocycle {a,} is determined by a € F*/Ng, ,pE{, b € F*/Ng, ,pEy,
and HY(T*®) = F* /Ng, ;pEY x F*/Ng, pEJ.

The torus T is T = h™'T*h, h = [h),, W'y p] if E1 = F(V/D), By = F(v/AD), and T consists
of t = h='t*h = ([a,bl,e),a= (" =P), b= (' 2AP) if a = a1 + azv/D,b = by + bpVAD.,

as ai by b
Here t* = (a,b,7b,0a;¢),a € E{,b € ES,e € F*. A complete set of representatives for
the O-conjugacy classes within the stable #-conjugacy class of ¢ is given by ¢~ 'tg, where
9 = [9r,9s],R € F*/Ng,/pE{,S € F*/Ng,,rE5. Note that g = 0(g), and that g~'tg is

obtained from ¢ on replacing a by (a:/1 R G2£R) and b by (b:} s b2‘21DS)

(III) p(, ) = (p(7) = (12)(34), p(c) = (14)(23)), the splitting field of T' is £ = E;E,, where
E1, E5, E5 are the three quadratic extensions of F', Gal(E/F) is generated by o and 7, of order
two, with B3 = E{°) = F(/A), B, = E(" = F(V/D). Then T* = {(a,7a,70a,0a;¢);a €
EX,ee€ F*},V ={(a,Ta,70a = Ta,0a = a;1/ara);a € E3} and (1-0)T* = {(aca, Taroa,...;
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1/aracacta);a € E*}. Then HY(T* — V) = EJ /Ng g, E* = F* /Ng, ;rE7 (see Remark in
Section B). Further, T*% is {(a, 7a, T0a = 1/7a,7a = 1/a;e);a € E*}, and additively, H' (T*?)
is the quotient of {(z,y,—y,—x;0)} by ((z — y,y — z,...),(22,2y,...)) = ((z,y,...);z =
ymod 2), namely it is Z/2.

To compute H'(T*?) directly, let {a,} be a cocycle. Then a, = (a1,a,a5",a7";e), ar =
(b1, ba, by ', 07" f). The relation 1 = a,7*(a,) implies that by7by = 1, and frf = 1, thus
f =¢/7e, and a, = b='7*(b), where b = (b7',1,c,b1;6= ). We replace a, by aybo*(b~1),
to get a, = I. Then ay, = 7*(as), 50 ay = (a1,7a1,7a7’,a7';e), e = re. The relation
I = a,0*(ay), implies that a; = oa; € ES and ece = 1. Replacing a, by asco*(c™!) with
c=1%c) = (o,ta,Ta " a"le),e € E with e = ¢/0e, we see that the class of {a,} is
determined by ay € E5 /Ng g, E*.

The torus T = A~ T*h is defined by h = (7 7)1, where v = 1/4V/AD and

W= anne) (b %)
is the h used in the Lemma C.3 which deals with the torus Ty of type (II). Again o* =
Int (o(h)h™t) = (14)(23) and 7* = Int (7(h)h~') = (12)(34). The advantage of our h over h/
is that 6(h) = h. Then T' = h~'T*h consists of t = h=1(t,7t,07t,ot;e)h = ((2P7),e), in the
notations of that Lemma. To find an element t; = g~1t0(g) which is stably §-conjugate but
not f-conjugate to t, we need to solve g, = go(g~1) = h'"ta,h' = h’_laa(e(?]ﬂ “%)ah’, namely

hg= ag(egﬂ %E)a(h’g), where a, = (R, 7R, 7TR™',R™"). Here R € EJ /Ng g, E*. A solution

is given by the gr of Lemma C.3, as verified there. Note that 8(gr) = gr, and that ¢; is given

by (2 PPR) (and that bR = Rb).

(IV) p(, ) contains p(c) = (3421), and T is isomorphic to the multiplicative group E* of
an extension £ = F(v/D) = E3(v/D) of F of degree 4, where E3 = F(y/A) is a quadratic
extension of F(A € F — F2,D = a + VA € E3). The Galois closure E/F of F(vD)/F
is E = F(v/D) when F(VD)/F is cyclic, and E = F(v/D,() when F(v/D)/F is not Galois;
here (2 = —1, and Gal(E/F) is the dihedral group Ds. We have ov/D = oD,o?VD =
—VD,*VD = —VoD,0VA= —VA.

In the Dy-case, the group Gal(E/F) contains also the element 7 of order two with ¢ =
—(, 7V A = VA. In this case we take D = /A, and so 070 = 7. Further, if o070 = 7, then

x = o1,70 and ¢27 solve the equation oz = x too, and they are all of order 2. Renaming
7 we may assume that p(7) = (23) (the other possibilities are (43)(21),(42)(13),(14)). In

all cases Es is the fixed field of 02 in E = FE3(v/D), and T* = {(a,0a,0%a,0%a;¢);a €
EX e € F*}. Further V = {(a,0a,0%0 = oa,0%a = a;1/aca);a € EJ}, and (1 — 0)T* =
{(ac%a,ca0’a,0a0%a,a0?a;1/acac?ac?a)}. Hence H(T* — V) = EY /Ng/p, E*.

Further T** = {(a,0a,0% = 1/0a,0%a = 1/a;e);a € EX,e € F*}, and additively H*(T*?)
is the quotient of {(z,y,—y,—z;0)} by {(x — y,y — =,...),(0,2y, —2y,0;0)), namely Z/2.
Explicitly, a cocycle in HY(T*?) is a, = (e, f, f~1e™!) with 1 = ag1 = a,0*(a;)0*?(a,)
0*3(a,), namely e/c?e = o f /o3 f, thus ed®f € E. If by, = (¢,d,d™!,c™1) then byo*(b;!) =
(cod,d/oc,oc/d,1/cod). We can first assume that f = 1, then the choice of d = oc shows that
the class of a, depends on e, which we now denote by R, in EJ /Ng/p,E*.
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The torus T takes the form h~'T*h, where — as in the Lemma C.4 which dealt with
tori Ty of type (IV) — h is diag(—1/4vAD,1/4VAocD,w)hp diag(ha,ha), where hp =
0 10 "0

~1/4VAD 00 0
0 01 0
t1 = g~ 't0(g) which is stable f-conjugate but not f-conjugate to ¢, as usual we need to solve:

hg = agzho(h)~to(hg). A solution is given by

Int ((1,w,1))(hp,ohp). Then o(h)-h™! = ( 0 00 1/4v AD>, and #(h) = h. To find

1 R+I  (R—DVD.\, I 0
g_gR_ 5((R—I)(\/ﬁ_l) RA+1 )(0 R—1)7

where R = hA(O R)hA—(glRé ) if R= Ry + RyVAin EX, and VD = h}; (‘/(]_\/_)h

has inverse (VD ) Further, t; = g~ 't0(g) = (éﬁ)(zbf)(éRo_l) = (pp bD? ), and

0(gr) = gr- When solving our equation it is convenient to rewrite it as:
~_ (ha O ha 0 \"1L
g_( OAhA)g( OAhA)
0010

_ 1 (—4\/AD 0> <—R/4\/ADI 0 > 1000
=Nnp 0 4/ Ao D w 0 4 ’_AD/R 0001

0100
1/4vV Ao D 0 ~ w
< 1/4vAD > o(hp)o(g) (0 3,)
0 w

_ [;,,51 ( )h] (22) o (22),

1

and further as ((23) stands for (1,w,1)):

L(R+R™Y L(R-R"YHYWDoO
(23)3(23) = (%(R—Rol)/@ HRER ) g) (77) (@333 (§7)

(20 = (B () = (5 %)

— 1 R-R™ -1 —1/R o 11 10
Then X = Eg?X. As E=t='3( T+l g+g,1)t_t L g g oo = (2 )it = (g 5)s

we need to solve

ptX = (f§ g2)pto?X = (§ 20)(~w)o®(ptX) = (%)

d
0 -R 2
= (Lpl1o (G0 520)

( —Ro2c —Ra2d)
—o%a/R —o%b/R/"

Choosing a = e and b = VD, we get X = %((R_ﬁ;r/l\/ﬁ (1_1:%_;_)1\/5). Note that gf(g~!) =

diag(|| X ||, [[c X ||). We choose X to have determinant 1, so that 0(g) = g lies in Sp(2, E). Also

we take Y = 0. Then g = (hOA hOA )_ (23)(¥ 0 UX)(23)(hA %) is as asserted.
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E. Useful facts.
We collect here the following observations, used below.

Remark. For A € F — F2, we introduce the subgroup C,4 of (33) € H = GSp(2), where
a= (;ZIA Zj ), b = .... We shall use below the observation that the tori Ty of type (II) and
(IV) embed in C4. Moreover, Cs is naturally isomorphic to GL(2,F(\/Z))/, the group of

(¢ Z) € GL(2, F(VA)) with ad — bc € F*. The isomorphism is given by a — a = a1 + asV/A.

a00Db
Also let Co be the group of [(7 g), (* *B)] = (0 o B 0) € H. The group () is isomorphic to

v 4 0v60
c00d
GL2,Fo F) ={(g,9) = ((Z Z), (: 5))idet g = det g’}. The tori Ty of type (I) and (III)

(and (2), (3)) naturally embed in Cj.

Remark. The norm map N : T* — Ty is defined by X = (z,y,z2,t;w) — (zyw,zzw, tyw,
tzw; wyztw?) = NX. If 0 = (23), then 0X has the norm (zzw,zyw, ztw, tyw; zyztw?) =
TNX, where 7 = (12)(34). If 0 = (14) then 7 = (13)(24), if 0 = (12)(34) then 7 = (23), if
o = (13)(24) then 7 = (14), if o = (14)(23) then 7 = (14)(23), if o = (3421) then 7 = (2431).
Our numbering of the tori Ty and T is such that the norm preserves the type, thus the
norm of T* of type (II) is T%; of type (II), and not of type (III), although the centralizer in
G = GL(4) x GL(1) of a torus of type (III) in H = GSp(2) is a torus of type (II).

For tori of type (IV) it will be useful to note the following. Assume the residual characteristic
is odd.

Lemma. If F is an extension of F' of degree 4 which is not a compositum of two quadratic
extensions, then E = F(V/D),D = a+0VA,a,B€ F,Ac F—F? D c Es—FE2 Es = F(\/A),
and we have the following possibilities. If A = w then D = \/m. If =1 € R*? and A € R*,
then D = A ornv/A. IfA=—1¢€ R*—R*2, then a, f € R* ora, f € tR*. The extension
F(VD)/F is Galois, cyclic with Galois group 7./4, unless it is completely ramified (A = )
and —1 ¢ R*2.

Proof. Denote by ( a fourth root of 1. An extension FE3 of degree two of F' is given by
Es = F(VA) for some A € F — F2. An extension of degree two of Fj3 is given by E3(v/D)
with D € E3— E2. Denote by 7 a generator of the maximal ideal in the (local) ring of integers
R of F, and by € a non square unit (¢ € R* — R*?2). There are three quadratic extensions
of F: two are ramified, namely F(y/m)/F, F(y\/em)/F, and one is unramified: F(y/¢)/F. The
extensions of degree four of F' are as follows.

(i) Suppose that A = 7 and E3 = F(y/7) = F(Ve2m) is ramified over F. A quadratic ramified
extension of Ej3 is defined by D = \/m or e\/7; indeed R*/(1 4+ wR) ~ R /(1 + w3R3), where
R3 is the ring of integers in F3, and w3 is a uniformizer. In particular —1 is a square in R*
if and only if it is a square in F(v/D). The field homomorphisms of F (/D) into a Galois
closure, which fix F', are generated by ¢ which maps VA to —\/Z, and VD to ¢ V/D. Then
F(vV/D)/F is Galois, cyclic with Galois group Z/4, when ¢ € R, and it is non Galois when
¢ ¢ R*. In this case F(¢,v/D)/F is Galois with group Dy, generated by a(a(\/l_)) = C\/E)

and an endomorphism 7 which fixes v/D and maps ¢ to —C.



20 YUVAL Z. FLICKER

(i) If A = =, thus B3 = F(\/7) is ramified, but E3(v/D)/Es is unramified, we can take D
to be a non square unit in E3, namely a non square unit € in R*. Hence F(\/m,/€) is the
compositum of two quadratic extensions of F', and its Galois group is Z/2 x Z/2.

(iii) Suppose that A = ¢, so that F3 = F(v/A) is unramified over F. The ramified quadratic
extensions of F3 are E3(y/7) (in which case Gal (Es(y/m)/F) = Z/2 x Z/2) and Es(\/7e3),
where e3 € RS — R;Z. Indeed, 7 generates the maximal ideal in the ring R3 of integers of the
unramified extension E3 of F'. The extension E3(y/e3m) of F' is cyclic with Galois group 7Z/4,
generated by o, described as follows.

If ( € R* thenez = /¢, and o(y/e3m) = (\/esm. Then o(mwe;) = —me3, o2(\/me3) = —/Te3.
Note that y/ is not a square in F5. Indeed, if /¢ = (a + b\/€)? = a® + b%c + 2ab\/z with
a,b € F, then b = 1/2a, and —a® = b’c = ¢/4a?, so that v/z = 2Ca? would lie in F*.

If ¢ ¢ R* take e = —1, then ¢ € RY and o¢ = —(, but ¢ € RX%. Indeed, since —1 ¢ R*?
either 2 or —2 lies in R*?, and ¢ = ((1 £ ()/\/_)2 Take €3 = a + b € Rz — R2, and put
€5 = a — b(. Then o/me3 = /E3,0\/Me3 = —\/Me3,0%\/ME3 = —\/ME3,0°\/TMEZ = —\/TE3.
Note that e3/23 lies in R;Z.

(iv) If A = € and E3 = F(v/A) is unramified over F', and D = g3 € R3— R2 so that E3(v/D)/Es
is unramified, then F3(v/D)/F is Galois with cyclic group Z/4. Tt is the unique unramified
extension of F' of degree 4. If —1 € R*? ¢ € R* — R*? and e3 = /¢ is then in R3 — R5,
and o,/e3 = (/€3 generates the Galois group. If —1 ¢ R*? take ¢ = —1, and 3 € R} — R;z.
Then the Galois group is generated by o/e3 = \/€3 and 01/23 = — /€3, where €3 = a — b( if
es=a+0C; a,b € R. O

Remark. Twisted endoscopic groups are defined in [KS, 2.1]. Let us recall this definition.

Let us begin with a review of L-groups. Let GG be a connected reductive group over a
local field F' of characteristic 0. Write , for Gal(F/F) and W for the absolute Weil group
of F'. Denote by G the Langlands dual group of G. By definition there is an identification
ng @ UV(G) 5 U(G), where UV(G) (resp. ¥(QF)) is the dual based root datum of G (resp.
based root datum of G).

An action p :, — Aut(é) of , on G is called an L-action if it preserves some splitting
splg = (B, T, {Xav}a) of G. If this is the case then we call splg a , -splitting for p and form
the L-group by G X, Wr, where W acts through , via p. If the composition , £, Aut(é) —»
Out(G) coincides (under the identification ng) with the , -action on UV (@), then this L-group
is that of G. This p is usually denoted by pg. A triple (spla, pa,na) of this type is called an

L-group data for G (sometimes (é, pa,na) is refered to as L-group data, but the inclusion of
a , -splitting in the data is convenient,).

A tuple (H,H,s,¢) is said in [KS, 2.1] to be an endoscopic data for G and 0(€ Aut G) if
[KS, 2.1.4] (1 < i < 4) hold. Here [KS, 2.1.1] is: H is a quasisplit F-group. Fix L-group data
(sply, pr,nu) for H. The second ingredient # is a split extension 1 = H — H — Wg — 1.

Hence we can choose a section ¢ : Wg < H of this extension. Consider H as a closed subgroup
of H. Then we have a Wg-action p. on H: define p.(w) to be Int(c(w))|g. Of course this

is not necessarily an L-action (i.e. it might not preserve any splitting of H ). But we have a
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unique family {h,, € Huq;w € Wg} such that pe(w)(sply) = Int(hy)(sply) for all w € We.
This gives the L-action py : Wr 3 w — Int(h3') o p.(w) € Aut(H), which does not depend
on the choice of ¢ : Wr < H. Then [KS, 2.1.2] is: py coincides with pg.

Let us clarify (I wish to thank Takuya Kon-no for this explanation) that H need not be
isomorphic to “H under this requirement. Note that for w,w’ € Wr we have

Int(hyw) © prr (we’ ) pe(ww') = pe(w) o pe(w’)
= Int(hy) © prr(w) o It (ho) © prr(w™ ) prr(w)pr (w') = It (hoy prr (w) (har)) © prr(ww'”).

That is, {hy;w € Wg} is a H,4-valued 1-cocycle. It defines a class in HY(F, ﬂad). This class
is trivial if and only if there exists some h € fIad such that h, = h=tw(h) for all w € Wp.
Equivalently, p.(w) = Int(h~tw(h)) o pgr(w) = Int(h~1) o pg(w) o Int(h) for all w € Wg. But
this amounts to the fact that p. is an L-action (it preserves the splitting Int(h™1)(spl;)). In
this case we have (from py = pg) H ~ LH. Of course one can find examples for the situation
H # LH when HY(F, ﬁad) is non-trivial.

Finally, [KS, 2.1.3] requires that the element s € G is such that sf be semi-simple in G x 6,
and [KS, 2.1.4] that ¢ : # — LG be an L-homomorphism, whose image &(#) is contained in
the group of fixed points Zwg(s%0) in “G of Int(s) o “, where “0(g x w) = 6(g) x w, and that
¢ map H isomorphically onto the identity component ZG(SO) of the group ZG(sé) of fixed
points of Int(s) 0§ in G.

F. Endoscopic groups.

Our Theorem is the “fundamental lemma” for the lifting of representations from GSp(2) to
GL(4). It is compatible with a dual group situation, which we proceed to describe.
Let G be the F-group G x G,,, where G; = GL(4) and G,, = GL(1). Let G = G1 x G, =

GL(4,C) x GL(1,C) be its connected dual group. Put w = ((1) é) and J = (_Ow o), and

9(g1) = 9(g1) = thl LJ=1 for g1 € Gy, where g, is the transpose of g;. For g = (g1,t) in
G, write 0(g) = 0(g1,t) = (t0(g1),t). This is an automorphism of G of order 2. We often
attach a subscript 1 to indicate the GL(4)-component of an object in G = GL(4) x GL(1),
and sometimes abuse notations and ignore the G'L(1)-component.

Denote by 7' the diagonal subgroup in G (thus T = T; x C*), and by T* the diagonal
subgroup of G. Let B and B be the upper triangular subgroups in G and G. Then the
group X, (T) = Hom(Gm,T) = {(a,b,c,d;e)} is isomorphic to X*(T*) = Hom(T*, Gy,), and
X*(T) = {(z,y, 2z t;u)} = X,(T*). The automorphism 0 induces an automorphism 6 on G
(fixing B), given on T* as follows.

(Q(x,y,z,t; u))(a, b,c,d;e) = (x,y,z,t;u) (é(a,b,c, d; e))
= (z,y, 2z, t;u)(e/d,e/c,e/b,e/ase) = a b~ *cVd ety FETIAY

= (—t,—z,—y,—z,x+y+z+t+u)a,b,c,d;e).

Then for (g,t) € G,0(g,t) = (A(g).t/lg]|), where ||g|| denotes the determinant of g.
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We are concerned with lifting of representations and transfer of orbital integrals between
G and its endoscopic groups, in fact its twisted (by #) such groups. The twisted endoscopic

groups of (G,0) are determined by H = Zé(éé)o (superscript zero for “connected component
of the identity”), where this centralizer is

Z5(30) = {(w,t) € Gy280(x) ™t =15} C Zgre (30(3)) x GL(1,0),

and by a Galois action p : , = Gal(F/F) — ZG(§§) Here § is a semi-simple element in G
(which can and will be taken to be § = (81,1)), which can and will be taken to be diagonal,
chosen up to f-conjugacy, namely 7' > § = ¢gs6(g~1). Using a diagonal g we conclude that
§ = diag(1,1,c¢,d). Taking g to be a representative in G of the reflections (23), (14), (12)(34)
in the Weyl group of G (these elements are fixed by é), we conclude that the é—conjugacy class
of § does not change if ¢ is replaced by ¢=!, d by d=!, and (c,d) by (d,c). Let us list the
possibilities. Recall ([KS, 2.1]) that an endoscopic group H is called elliptic if (Z(fI)F)O is
contained in the center Z(G) of G.

A list of the twisted endoscopic groups of (G, é) is as follows.

1. =1, ZG(é) = GSp(2,C) is connected, hence equal to H, the Galois action is trivial, and
the endoscopic group is H = G:Sp(2) over F. Since Z(H) = C* = Z(G), H is elliptic.

An endoscopic group C of H is determined by a semi-simple (diagonal, up to conju-
gacy) element s in H. The only proper elliptic endoscopic group of H is determined by

Oee0
e00e

det a = det b}. Note that _the connected component of Z(Co) = (Z(H),s) is Z(H), so that
Cy is elliptic. Also, X.(Tp) = {(a,b,c,d);a+d = b+ ¢} = X*(T) has dual X, (Tj}) =
X*(Ty) = {(2,y, 2, t)/(u, —u, —u,u)}, hence Cy = GL(2) x GL(2)/GL(1), where GL(1) em-
beds via u — (u,u™1).

e00e
= diag(1,—1,—1,1), whose centralizer in H is Cy = <0°'0) = {(a,b) € GL(2,C)?;

The dual group of Hy = Sp(2) is Hy = PGSp(2,C). Tts proper elliptic endoscopic groups
are obtained as follows. (i) The centralizer of s = diag(1,—1,—1,1) in H, is generated by
the reflection diag(w,w) and its connected component Cy/Z = (GL(2,C) x GL(2,C))’ /C*,
the prime indicates equal determinants. The corresponding endoscopic group is (GL(2) X
GL(2))'/GL(1), unless there is a quadratic extension E/F whose Galois group permutes
the two factors, in which case Resp/p GL(2)'/GL(1) is obtained (its group of F-points is
GL(2,E) /F*, where the prime indicates here determinant in F'*). (ii) The centralizer of
s; = diag(1,1,—-1,-1) in Hy is generated by (_06 ;) (where € = ((1) _01)) and its connected
component C? = {diag(z, Aexe); 2 € PGL(2,C), A € C*}. The endoscopic group is elliptic
only when there is a quadratic extension E/F such that Gal(E/F) acts via Int( 5) on this
connected component, thus by o(x,\) = (z,A™!) on (z,\) € PGL(2,C) x C*, and then the
endoscopic group is SL(2) x U(1, E/F), where U(1, E/F) is the unitary group with F-points
E'={z € EX;2T = 1}.

A ~

2. § = (é _OI), Zs(50) = GO((E} 0);C) is {(z,1) € G;az(g 1(’]’)%(3] o) = t}. It is isomorphic
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to

<(A7 B = (Z Z)) = ((;i db:ife)v HABH)v (diag(1,w,1),1)) = <((§ tege)7t||A||)7 (diag(1,w,1),1)),

which has connected component C' = GL(2,C)2/C*, with C* embedding via z — (z,271).

N A

Note that Z(C') = C* is Z(G), hence C is elliptic. Now
X*(T¢) = X:(Te) = {(a, by e, d)/ (w,usu™t u™h)}

has dual X,(Tg) = X*(To) = {(z,y;2,t);x +y = z + t}, thus C = (GL(2) x GL(2)),
where the prime means the subgroup of (A, B) with ||A|| = ||B||, when , acts trivially. If
there is a quadratic field extension E/F and p(c) € diag(1,w,1)C for o in Gal(E/F), then
o acts on C = Cg = Resg/p GL(2)" by permuting the two factors. In particular, Cp =
Cg(F) = GL(2,FE)', the prime indicating determinant in F'*. Note that the centralizer of
(€,€) in C = GL(2,C)?/C* is generated by the diagonals and (w,w), hence C' has no elliptic
endoscopic groups.
001

3. § = diag(1,1,1,-1), ZG(§§) = ((diag(a, B,b), ||B]|), (t,1); ¢+ = (010) , B € GL(2,0),

100
a,b € C<,ab = ||B||) has connected component C, = (GL(2,C) x GL(1,C)2?) (the prime
indicates (a, B,b) with ab = ||B||), with center Z(C,) = C*2, which will not be ellip-
tic unless the Galois action is non trivial, namely there is a quadratic extension E/F with
p(o) =, (o) = Gal(E/F). In this case (Z(C’+)F)O = C* is Z(G). We have X, (1)) =
{(a,b,c,b+c—a;b+c)} = X*(T7), with dual X*(Ty) = {(z,y, 2 t;w)}/{(u, 0,0, u; —u —
v)}= {(z,y,2,6)}/{(u,—u, —u,u)} = X.(T}). We conclude that C; = C¥ = (GL(2) x
Resg/r GL(1))/GL(1), GL(1) embeds as (z,z7'), and C} = C4(F) = GL(2,F) x EX /F* ~
GL(2,F) x E'.,

4.8=( ), c# £1,25(50) = (((4 " )-tIlAll)) is connected but not elliptic.

5. § = diag(1,1,1,d),d # il,Zé(éé) = ((diag(a, 4, ||A|/a;||A]])) is connected but not
elliptic.

6. § = diag(1,1,-1,d),d # il,Zé(ﬁé) = ((diag(a, b,t/b,t/a),t), (diag(l,w,l),l)) is not
elliptic.

7. § = diag(1,1,¢,d),c? # 1 # d* ¢ # d,d™ ", Z5(30) = ((diag(a,b,t/b,t/a),t)) is connected
but not elliptic.

The norm map is defined as follows. Put V = (1 — 0)T* and U = T} = T*/V. Since T*
consists of (a, b, c,d;e) and 0(a,b,c,d;e) = (d71, ¢, b7, a™L; eabed), we have that V consists
of (o, 3,8,;1/af). The isomorphism U =T% ~ Ty, where T4, is the diagonal torus in
H = GSp(2), defines a morphism

X, (T*) = X (T*)/X. (V) = X*(T)/X*(V) = X*(U =T%) = X*(Tg) > X,.(T%),
the last arrow being defined by

(x,y,z,t;w) > (r+y+w,x+z4+w,t+y+wt+z4+w,z+y+z+1t+2w),
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and a norm map N : T* — T7%, given by
(2,9, %t w) mod(ar, B, B, a3 1 /aB) > (yw, w2, tyw, tzw; ayztw?) = (a,b,e/b,e/ae),

which is surjective since (b,a/b,1,e/a;1) — (a,b,e/b,e/a;e).

To describe the norm for the twisted endoscopic group C (of (2) above), note that Te = Ty
by ((a,d), (b,c)) = (ab,ac,bd,cd). Hence X*(Ty) = X*(T¢) via (z,y, z,t) mod{ (e, 3, 8, )}
— ((x+y,2+1t),(x+ 2,y +1t)), and the composition X, (T*) — X*(Ty) ~ X*(T¢) defines
the norm map

Ne : T - TE, (z,y, 2, t;w) — ((xyw, ztw); (xzw,ytw)) ( = ((myw 0 ) (wf]w yfw))>

0 =ztw

Let us also describe the norm map for the twisted endoscopic group C of (3) above. Since
the map X*(T?%) > X, (T} ) is the identity, the norm is defined by

N: X (T*) = X.(T")/X. (V) = X*(T)/X*(V) = X*(U =T =T}) = X.(T%),

N(z,y,z,t) = (z,y, 2z, t) mod(u,u™t, u™t, u).

G. Instability.

Recall that the set of #-conjugacy classes within the stable f-conjugacy class of a strongly
O-regular element ¢t in G is parametrized by the set D(F,0,t) = ker[H'(F,T* =4 V) —
HY(F,G)] = ker[H'(F,T*%) — H!(F,G)], which is a group in our case, as H'(F,G) is
trivial. There is an exact sequence

HYF, T =T =2 HY(F, V)=V = D(F,0,t) » H'(F,T*) =8 H'(F, V).
In our case of G = GL(4) x GL(1), we have H'(F, T*) = {1} for all tori (or Galois actions,
namely subgroups of the symmetric group Sy on four letters), hence D(F,0,t) = V/(1 —0)T*.

There is a dual five term exact sequence, useful when stabilizing the twisted trace formula.
Let ¢ : V — T be the homomorphism dual to T* =% V. Thus ¢ : X, (V) = X*(V) =
X*(T*) = X.(T) takes x = (z,y, 2 t;w) to (¢(x))(a,b,c,d;e) = x(ad, be, be, ad; 1/abed) =
(ad)®tt=%(be)v =, Namely, ¢ takes (z,y, z,t;w) in V =T /U = T/Té to (zt/w,yz/w,yz/w,
zt/w;1) in T'. Recall that 70 = {(a,b,e/b,e/a;e)}.

To obtain the dual sequence recall the Langlands isomorphism H!(Wpg, T) =
Homs(T,C*) (T = T(F); [KS, about a page after Lemma A.3.A]), and its hypercohomology
analogue ([KS, Lemma A.3.B]): HY(Wg,V N T) is isomorphic to the group R(F,6,T*) of
characters Hom, ., (H1 (F, T* -4 V), (CX). Since the Weil group Wy of F acts on T and V
via the Galois group , = Gal(F/F'), one has

HO(Wp, V) =V -2 HO (W, T) = 77 — &(F,0,T*) — HY(Wp, V) -2 HX(Wp, T).

Here R(F,0,T*) = H'(Wg,V N T'). This is the exact sequence [KS, A.1.1], for ¢ : V — T,
which is dual to the previous five terms exact sequence for 1 — 6§ : T* — V.
For each F-torus T in G, and a strongly #-regular element ¢ in T', we can make the:
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Definition. The stable 0-orbital integral ®%t is the sum of the #-orbital integrals on the 6-
conjugacy classes within the stable #-conjugacy class of ¢.

The set of such f-conjugacy classes (for some t) is parametrized by the group H!(F, T* -4
V) = HY(F, T*%) computed above. For each character x of this group (into the group of roots
of unity in C*), we can also make the:

Definition. The k-orbital integral is the linear combination of the #-orbital integrals weighted
by the values of x at the element of H!(F, T* — V) parametrizing the f-conjugacy class.

These weighted (by k) combinations of the f-orbital integrals are to be compared with
stable orbital integrals on the #-endoscopic groups H of (G,0). The f-endoscopic group

H is determined from x, by [KS, Lemma 7.2.A], via the surjection H(Wg,V N T) —
Hom,, (H'(F, T* =4 V),C*) (see [KS, Lemma A.3.B]). Recall ([KS, A.1]) that:

Definition. The first hypercohomology group H*(G, A N B) of the short complex A ;)
of abelian G-modules in degrees 0 and 1, is the quotient of the group of 1-hypercocycles, by
the subgroup of 1-hypercoboundaries. A 1-hypercocycle is a pair (a,b) with a being a 1-cocycle
of G in A, and b € B such that f(a) = 9b (9b is the 1-cocycle o — b~1a(b) of G in B). A
1-hypercoboundary is a pair (aa, f(a)), a € A.

Thus H'(Wg, g T) consists of elements represented by pairs (a,b),a € H! Wk, V),
where K /F is a Galois extension over which T splits and V = T'/U, U = (Té)o. Here ¢p: V — T
is the map dual to 1 — 0 : T* — V, thus ¢(z,y, 2z, t;w) = (xt/w,yz/w,yz/w,zt/w; 1), and
b € T satisfies ¢(a) = 0b. The #-endoscopic group H has a dual group whose connected
component H is Zé(bé)o, the connected centralizer of bf in G ([KS, Lemma 7.2.A]).

We proceed to describe the 1-hypercocycles representing the non trivial characters
% on H(F, T* =8 V). The listing is as above, except that H'(T* — V) is trivial in the case
(1). Since V embeds in T, we have that H'(F, T* it V) embeds in H!(F, T* =8 T), and
we extend k to a character of the bigger group.

(2) Here p(, ) = (p(c) = (23)), T splits over the quadratic extension E/F, V = {x =
(a,8,B,51/aB);a,p € F*}, (1 -0)T* = {z € Via € F*, € Ng/pE*}, then k # 1 on
H'(T* — V) is given by £(z) = xg/r(3), where xg/p is the non trivial character on F* which
is trivial on NE*. Extend xg/r to a character x on E*. Then & extends to HY(T* — T*) by
(a,B,008,0;e) = x(f). Recall that we have an exact sequence 1 = EX — Wg/,p — (o) — 1,
in fact Wg/p = (2 € EX 0502 € F— NE,0z = Zo). Now a € HI(WE/F,T) is given by a
function a : Wg,/p — T satisfying in particular a,0(a,) = ay, = a4z, = aza,, thus o(a,) = az.
Take a, = (1,x(2),x(%),1). Then a,> = (1,-1,—1,1). Take a, = (1,1,~1,1) € T (then
a2 = a,0(a,), as 0 = (23)). By definition of ¢, we have ¢(a,) = (1,—1,—1,1) (the 5th entry
is 1 if it is not explicitly written out). For b = (1,1,—-1,1) € T, ob= (1,—1,1,1), and 9b(o) =
b=lob is equal to ¢(ay). Then (a,b) € HY(T 2, T) represents k. Now Zs(b) C Zg (b0(D)),
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a00p
and b0b = (1,—1,—1,1), hence H = Zé(bé)o is {((gggg) ,t) ;ab=1t = a6—B’y}. Note

vy004
that T is not elliptic, so H is contained in a Levi subgroup of a (maximal) parabolic subgroup

of G.

(3) The case of p(, ) = (¢ = p(14)) is similarly handled.

(I) Here p(, ) = (p(o) = (14)(23)),V = {z = (o, f,08 = B,00 = a;1/af)} and since V/(1 —
0)T* = (F*/NE*)2, there are 4 s, 3 non trivial. Two of these can be dealt with as in case
(2) above (i.e. when s is z — XE/F(B) the case when s is  — xpg/r(a) is analogous to
the case where o = (14) as in (3)). But now o acts (non trivially) by permuting the two one
parameter multiplicative entries in H thus we obtain the elliptic #-endoscopic group H = CE
of type (3) in Section F.

The remaining x on V/(1 — 0)T* is given by = — xg/p(af). Choosing extensions x1, x2
of xg/r to EX, we extend & to T by x = (o, B,06,00;e) € T* = x1()x2(B). As in case
(2), we define a 1-cocycle a of Wg/p in T by a, = (x1(2), x2(2), x2(02), x1(02)) (2 € EX),
then a,> = —I, since x1(0?) = —1. An a, which satisfies a,0(a,) = a,2 = —I is given
by a, = (1,1,—1,-1) € T, and so ¢(a,) = —I. Choosing b = (1,1,—1,—1) € T, we have
ob=(—1,-1,1,1), and db(cs) = b~1ob = —I. Note that the norm N maps (z,y, z,t) in T to
((zy, 2t), (a:z yt)) in Te, and o = (14)(23) then acts on Te by o((a,b), (¢, d)) = ((b,a), (d,c)).
Then o does not permute the two factors in C = (GL(2) x GL(2))’, and we obtain the
endoscopic group C of type (2) (see Section F). The other two x correspond to the elliptic
f-endoscopic groups of type (3), as noted above.

(IT) Here p(, ) = (p(o1) = (14), p(7) = (23)), and there are three non trivial characters &
of V/(1 —0)T*, given at x = (o, 3,78 = f,0a = a;1/af) in V by xg/g, (@), XE/E, (B),
XE/E, (@)XE/E, (), where T splits over E/F, and F; = E{") E, = E(°7). The first two
characters are dealt with as in case (I) ((2), and (3)). To deal with the last case, extend
XE/E, to a character x; on E*, and xg/p, to a character xo on E*. We get a character

(o, B,7B,005¢e) — x1(a)x2(B) of T. A 1-cocycle of Wi, in T is given by

a, = (x1(2), x2(2), x2(72), x1(02)), ar=(1,1,1,-1) € T, ar=(1,1,-1,1)€eT,

and b = (1,1, -1, -1) € T satisfies ¢(a,) = (—1,1,1,—1) = 9b(o), d(a;) = (1,—-1,-1,1) =
0b(T); the #-endoscopic group of type (2) is obtained.

Note that 7 acts on T by mapping ((u,v); (z,y)) = (g 2), (o 2)) = diag(uz, vz, uy, vy)
to ((z,y); (u,v)), hence (A, B) € Za (§§) (B, A); o maps it to ((v,u); (y,z)), and o7 to
((y, z); (v, )) Thus the endoscopic group is Cg,, as E3 = E?. Its group of rational points is
GL(2,E3 )

(ITT) Here p(, ) = (p(1) = (12)(34), p(c) = (14)(23)), and the non trivial character x of
V/(1—0)T* is given by z = (o, T, 7o = Ta,00 = ;1 /ata) = Xg/g, (0), a0 € B3 = E).
It extends to a character = (o, T, To, ov; €) — x(), if x extends xg/g, from ES to E*.
A corresponding (a,b) € H(T' — T) is given by a, = (x(2), x(12), x(102),x(02)), 2 € EX.
Since 0* € E3 — Ng/g,E, we have a,2 = (—1,—-1,—1,-1), and a, = (1,1,-1,-1) € T
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solves 1,0 (ay) = ay2. Then ¢(ay) = —I = db(o) for b = (1,1,—1,—1) € T. Further, 72 €
By(~ Ny, B),7(r2) = 72, 720(r) € Ng/, EX, hence a2 = (x<72>,x(T<T2>), 1/x(r(r),

1/X(T2)), and a, = (x(72),1,1,1/x(7?)) satisfies a,7(a:) = a2 <X(T(T2)) = X(TZ)) and
a,;7(0y) = 7y = Ayr = ag0(a;). Moreover, ¢p(a;) = I = 0b(r). The f-endoscopic group
defined by b= (1,1,—1,—1) is of type (2).

Now 7 acts on Te by mapping ((u,v); (2,y)) to (v, u); (€, y)); o maps it to ((u,v); (y, z)),
and o to ((v,u); (y,z)), thus the endoscopic group is C = (GL(2) x GL(2))".
(IV) Suppose that p(, ) = (p(c) = (3421)), T* = {z = (o, 00, 03, 02a;e);a € EX e € F¥},
V ={z = (o,00,0% = ca,0%a = a;1/aca);a € ES)}, and k # 1 is given by z(€ V/(1 —
0)T*) — Xg/B, (@), XE/E, being the non trivial character of E3* which is trivial on Ng g, E*.
Choosing an extension x of xg/g, to EX, we can extend x to T* (and H'(T* — T*)) by

2 +— x(a). A corresponding element of H(T N T) is a pair (a,b), where a is a 1-cocycle of
Wg/r in T. Note that 1 —> E — Wg/p, — (0?) — 1, where (02)2 € E3—Ng/g, E. Put a, =
(x(2), x(02), x(c32) );1). As 6* € E3 — Ng/g,E, and o(c*) - 0* € Ng,p, EX, we have
x(c*) = —1 and X( ( ))X( ) = 1. Then ay+ = (—1,—1,—1,—1). From a,1 = a,20%(a,>),
if ag2 = (a,b,c,d), then ad = —1 = bc. Then a,2 = (1,1,—-1,-1) = a,0(a,) = (ac, ba, cd, db)
has the solution a, = (1,1,1,—1) € T. Also ¢(a,) = (=1,1,1,-1). If b = (a/,¥,¢,d'),ob =
(c'ya',d' b)), and 3b( )= ( /a',a [V, d' /¢ Y /d) has to be qu(a(,) then a solution is given by
b=(1,1,-1,-1) e T.

The centralizer Z s (bé) is the group GO( 0 o) of orthogonal similitudes of the symmetric
matrix ( o )- This group is isomorphic to (GL(2 C) x GL(2,0)) /C* via

__/ab ag bge (10 /01
(g’gl_(cd))H(cegdege)’e_(O—1>’w_(10)’

where the similitude factor is det g - det g. This is the #-endoscopic group (2).

Note that o acts on T by mapping ((u,v); (z,y)) to ((y, 7); (u,v)), and o2 then maps it to
((v,u); (y,x)). The endoscopic group is then Cg,, F3 = E°".

Suppose that p(, ) = W = (p(o) = (12)(34), p(7) = (23)). Then oro = (14), a splitting
field of T is E/F, and E; denotes the fixed field of 7o in E. The non trivial character x of
V/(1 —0)T* is given by z = (a, 00,70 = oa, 0700 = a; 1 /aca) — Xg/g, (o). It extends to
T* by z = (a,00, Toa, 070 ) = x(), where x extends xg/g, from EY to EX. A 1-cocycle
of Wg/r in T is given as follows. At z € EX, put a, = (X(Z),X(O’(Z)),X(O’T(Z)),X(O’TO’(Z))).
Then a(y;rey> = (—1,1,1,—-1). Hence agre = (1,1,1,-1) = a,0(ars) = ago(ar)o7(a,) =
(a,b,c,d)(B,a,0,7)(c,a,d,b) has a solution a, = I,a, = (1,1,—1,1) € T, and dlar) =
(1,—1,—1,1). Thenb = (1,1, -1, —1) € T satisfies db(c) = I,db(t) = (1, -1, —1,1),db(cT0) =
#(ayro) = (—1,1,1,—1), and the corresponding #-endoscopic group is of type (2).

In the comparison of the unstable (k-)#-orbital integral at a strongly f-regular element ¢,

and the stable orbital integral on the endoscopic group H, determined by k, a transfer factor
appears. It is a product of a sign and of a Jacobian factor Ag g, = Ag/Am,, denoted Ay
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in [KS, 4.5], which we proceed to describe in the main cases. Thus
Aq(t0) = | det (1 — Ad(t*))| Lie G/ Lie T*| />

is = Ag(Nt*) = |det (1 — Ad(Nt*))|Lie H/ Lie Zu (Nt*)|# V2 OIf g = diag(z,y, z,t), Nt* =
Ngt* = (vy,zz,yt, 2t). Here H = GSp(2), Zu(Nt*) is the d1agonal, and Lie(H)/ Lie Zu (Nt*)
is the direct sum Lie(N) @ Lie(N), the upper and lower nilpotent subgroups. On Lie(N) =

(8 wgl ?1011 _‘Zil ) , det (1 — Ad(a, b, c, d)) is (1 —a/b)(1—a/c)(1 —a/d)(1—b/c). On Lie(N) the

000 0
same factor, but with (a, b, ¢, d) replaced by (a=1,b71, ¢~ d=1), is obtained. Hence
Ag(t*0) = |(z — t)(y — 2)(wy — 2t) (w2 — yt)|p/|wy 2t 3.
For k = 1, we have Ag(t*0) = Ag(Nt*). For k # 1 which defines the endoscopic group C,

the norm Ngt* is (( ”Coy zot ), (moz ;t )), and

Ac(Net') = [(1 = =)(1 - %)(1 - E)(l - a> 42 = @y — 2t)(@z — yb)|p/|zyt| .
Then
Ago(t') = Aa(t*0)/Ac(Not*) = (= — )(y — 2)|p/Joyzt] .

For k # 1 which defines the endoscopic group C, the norm N¢, t* is

(x,y,z,t) mod(u, 1/u,1/u,u), and Ac, (Ng, t*) = |(y—,z)2/yz|}?/2
so that
Aa,c, (") = (@ = ) (wy — 2t) (w2 — yb) |/ |2t ]} ly2| .
H. Kazhdan’s decomposition.

A main ingredient in our proof of the matching is the (twisted analogue [F7] of) Kazhdan’s
decomposition [K, p. 226], which we now recall. Let H be a connected reductive R-group,
where R is the ring of integers of F', and put H = H(F'), Ky = H(R).

Definition ([K]). An element & € H is called absolutely semi simple if k* = 1 for some
positive integer a which is prime to the residual characteristic p of R. A k € H is called

topologically unipotent if kY > 1as N — 00, ¢ = #(R/mTR), ™ generates the maximal ideal
in R.

1. Proposition ([K]). Any element k € Ky has a unique decomposition k = su = us, where
s 15 absolutely semi simple, u s topologically unipotent, and s,u lie in Kg. For any k € Ky
and x € H, if Int(x)k(= xkx') lies in Kg, then x is in Ky Zg(s), where Zg(s) denotes the
centralizer of s in H. O

In fact [K] proves this only for H = GL(n), but since s is defined as a limit of a sequence
of the form k9", both s and u lie in Kp.

The twisted analogue which we need is reproduced next (from [F7]). Let G be a reductive
connected R-group and 6 an automorphism of G = G(F') of order /£ ((f,p) = 1), whose
restriction to K = G(R) is an automorphism of K of order £. Denote by (K,60) the group
generated by K and 6.
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Definition. The element k0 of GO C (G,0) is called absolutely semi-simple if (k0)* = 1 for
some positive integer a indivisible by p.

2. Proposition ([F7, Proposition 2]). Any k0 € K60 has a unique decomposition kf =
s0 - u = u - sO with absolutely semi simple sO (called the absolutely semi simple part of k6) and
topologically unipotent u (named the topologically unipotent part of k@). Both s and u lie in
K. In particular, Zg(s0 - u) lies in Zg(s). O

3. Proposition ([F7, Proposition 3]). Given k € K, put 0(h) = s0(h)s~", where kO =
s -u. This 0 is an automorphism of order ¢ on ZK((SQ)E). Suppose that the first cohomology

set H! ((9~>,ZK((39)£)>, of the group (A) generated by 0, with coefficients in the centralizer

Zk ((s0)%) in K, injects in H* ((9~>,Zg((59)6)>. Then any x € G such that Int(x)(k@) is in
K0, must lie in KZg(s0). O

The supposition of this proposition can be verified for our group G = GL(4,F) x GL(1, F)
and our automorphism € in the same way it is verified in [F7] for GL(3, F'). Note also (see
[F7]) that if the elements k0 = sf - u and k'6 = s’ - v/ of K6 are conjugate by G(F) (F is
a separable closure of F') then so are sf and s'6, and if s = s’ then u,u’ are conjugate in

ZG(F)(SQ)-
Our argument uses the function

Lag(u) = |K/K N Zer(s0) 15 (5 - ) = / L (Tnt () (0 - u)) de.
K/KNZq(s6)

Then the orbital integral ®,, (k) = fG/ZG(ke) 1x (Int(z)(k0))dx is equal — by Proposition 3 —
to fZg(s@)/Zg(s@~u) 1sp(Int(z)u)dz = ®1_, (u), the orbital integral of the characteristic function
159 of the compact subgroup Zk(s0) = K N Zg(s0) of Zg(s0) (multiplied by |K/Zk(s0)]) at
the topologically unipotent element u in Zg (s6).

Since (k#)? = sf(s) - u?, where in our case 0(g,t) = (6(g),tdetg),g € GL(4,F),t € F*,
0(g) = Jtg~tJ 1, we shall deal with various cases according to the values of s6(s) (s denotes
also the GL(4, F')-component of s).

4. Lemma. If x = s0(s) has the eigenvalue X, then it has the eigenvalue A=t too.

Proof. If ¢ # 0 is a vector with 'z = A, then 0(z)J¢ = Jix=1J~ 1. J¢ = A~LJE, and
sf(r)s™! = x. O

Then s6(s) has eigenvalues (A, \™1, 1, p~1). The main case to be considered is when s0(s) =
I. Then sJts~'J=1 = I implies sJ = J's = —t(sJ) is anti symmetric, and

Za(s0) = {(g,1); (9:)(s,1)(0(9) "™ det g™ ") = (s, 1),
thus detg = 1 and gsJ'g = sJ} = Sp(sJ) x GL(1).

Any anti symmetric matrix s.J is similar to .J, namely there exists some h in GL(4, F') with
sJ = hJth, thus s = h0(h)~1, and Sp(sJ) = hSp(J)h™!, thus we may assume s = I.
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I. Decompositions for GL(2).

Before we start computing the orbital integrals of 1x on GSp(2, F') and the 0-orbital inte-
grals of 1x on GL(4, F), let us compute the analogous integral for GL(2, F). Let D € F — F*
with |D| = 1 or |x|. Denote by T the torus T = {(¢"P) € GL(2,F)}; put K = GL(2, R),

w=("1),e=(3),D=("?), llgll denotes det g.

1. Lemma. We have a disjoint decomposition G = GL(2,F) = LioT(é "‘L VK.

Proof. Consider the embedding T\G — X (D) = {z € G;||z|| = —D, (wex)?> = D (equiv-
alently: 'z = z)}, by ¢ — ewg 'Dg = ||g||7! gewDg. Any x € X(D) has the form
x = k(gg)k’ with |a| < |8, k, k" € K. If |a] = |B| then |a| = 1,2 € K,wez is semi simple
((wex)2 = D) with eigenvalues oy, ag, arae = —D and a? = a3 = D, thus oy = —ap = V/D.
Then there exists k; in K with wex = k] *Dky, and Tky — = = ewk] 'Dk;. If |a| < |3 then
a0 a0 — a0 _1,a0 _ k k

z=k(, gk = E'(, )tk implies *(*kk ~1) = (o ﬁ)tkk‘ (o 5)” 1 thus *kk' ! = (k2a1/,3 kz)
where k1, k4 are units, hence — putting o' = kia|k'|| and ' = (k4ﬂ — kia(ka/k1)?)|| K] -

have

I

a 0 1 ko [e4
k(og)k/:tk/(z2kk4/ﬁ)(0ﬁ) —||k”|| ltk//( ,)k”

where k" = (1 */¥)1/ and |o/| = |al, |#] = |B]. Since
— a aD/b
(=ab) = () ) (T = ("R ),

any («, ) with |a| < |8],a8 = —D, is obtained from (a,b) with |a| < |b]. As T(ZS)K =
T(bO)K T(1 0.)K for some m > 1, we are done. O

Denote by 1k the (quotient by the volume |K| of K of the) characteristic function of K in
G, by e the ramification index of E = F(v/D) over F, by ¢ the cardinality of R/TR, and by
qr = ¢*/¢ the cardinality of Rp/mgRp,® = m%. Put ord(en™) = n, || = 1,|en™| = ¢~". Fix
fy—a+ﬁ\/5W1thﬁ7é01nE a,3 € F. Write y = (aﬁD)ET

—142 _ 2
Z q_1/e|ﬂ| 1— ﬁ

2. Lemma. The integral fT\G 1x (g~ yg)dg is equal to il

Proof. If f € C°(T\G), then

I dg_z/ PRI GRATLE

But K} %)T(] %) ={(, %, """ ) e K} = 1nt<0,,9m>{<aw> bl < [x™} is Ri(m)*,

where Rg(m) = {a +bV/D;la] < 1,]b] < |7#™|} = R+ a™Rg = R+ Ra™\/D. Put also
R} = {a+bV/D;a? —b>D € R*}. Then

/ 1o vg)dg = YIRS = Re(m)*J1xe( 5,2, P07,
T\G m>0
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This sum ranges over 0 < m < ord(f3) = B. The index is computed as follows:

[RE : RE(m)X] = [RE : 1—|—7l’mRE]/[RE(m)X : 1+1rmRE]

pemet [ ife=1m=0,
- (%5:1335 — =9 (@+1g™, ife=1m>1,
q'm'7 ife:27

since Rg(m)*/(1+7™Rg) ~ R*/R* N (1+7™RE),qr = ¢*/¢,® = w%. Then the integral is
equal (when e = 2) to:

m_ (2T =1 qp7t-1 ¢ o1
> "= = = 13| —
qg—1 q—

0<meB qg—1 q—1 1

and to m 1 41 5
q — q
) T181” -

-1 -1

=1+(g+1) > ¢"'=1+(¢+1

when e = 1. ]

We shall also need an analogous decomposition for SL(2,F). For D € F — F? put E =
F(v/D). The torus T = {5 bf) € GL(2, F)} is isomorphic to E*. For p € F* put TP =

a bD . a bD
(Op) IT(, )::{(b/p o)} Write ¢ (a+0VD) = (7 7. "). Put T§ = T?NSL(2, F), Ko =
KnNSL(2, ) As usual, 7 is a generator of the maximal ideal in the ring R of integers in F',
and € is a unit, in R*. Write p = ord(p) thus |p| = |x|°. Fix p € {1,x} if E/F is unramified,

and p € {1,e} = R*/R*? if E/F is ramified.

3. Lemma. If E/F is unramified then SL(2,F) is the disjoint union over the set of j > 0

such that 2 divides j—p, and overe € R*/R*?if j > 0 ande = 1 if j = 0, of the sets T§r; Ko,

where rj o =t diag(w_(j_ﬁ)/z,67r(j_5)/2), and where t. is an element of T? with determinant

ltl| = e=t. If E/F is ramified then the union SL(2,F) = Uj>oT riKo is disjoint, where
= ¢£(7r;3j) diag(l,m?),7g = \/—w,D = —m.

Proof. We have a disjoint union G L(2, %:UHIMK_UT%OJQ

in F¥(u € R*). When E/F is unramified, #/~" lies in R NE/FE>< (= det(TPK)) precisely
when 2 divides j — p. In this case, r; = diag(m~=7)/2 g(=P)/2) lies in T* diag(1,n7~7)
NSL(2,F). If trjk lies in SL(2, F'), then |¢|| lies in R*, in fact multiplying ¢ by ¢ € R* we
may assume that [|t[| ranges over RX/R*?. Note that [|t| = Ng/r((¢))~'(t)). Since E/F is
unramified, we have Ng/, rR% = R*, where Rp is the ring of integers in E. Hence for any e
in R* there is t. in T with [|t.]| = ™!, and we may assume that ¢ = ¢ot. € Tt.. Then irjk
lies in T§ter; diag(1, €) Ko.

If j = 0, then T}t. (1 0)Ko Ty Ko. Otherwise the cosets Tgter;( ! O)KO and T{r; Ko are
disjoint, since 7 Yter; € KO( 6) implies that e = [|tt.|| € R*? when j > 0. In particular,
when p = 1, and e e R* — RXZ te is not in K.

K, for any p = un?
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If E/F is ramified we can choose the uniformizer g in Rg C E to be \/—m, and D
to be —m, so that Ng/pmpg is w. Then GL(2,F) = jL>JOTp¢E(7rE’)(;£j VK. If trjk lies in

SL(2,F) then ||| € R N Ng/rE* = R*2. Hence t = toe with [|to| = 1 and € € RX, and
SL(2,F) = U Tr;Ko. O
1=z

4. Corollary. For f € C (SL(2,F)), since SL(2,F) = URTOTKO, we have
re

/ f(h)dh =" |Ty N rKor—1|;01/ dt | f(trk)dk
SL(2,F) reR Ty K,

=Y IRFITIRY : TonrKor™'] [ dt [ f(trk)dk,
reR To Ko

where Ry = To(R) = Ty N K. O

Yet another analogue is when F; = F(v/D) and Es = F(v/A) are two quadratic extensions
of F', one of which is ramified while the other is not. A prime indicates determinant in
F*, for GL(2, Fs)',K'(K = GL(2, R3)), T} ( T, is the torus (, “.°) in GL(2, ) which
is isomorphic to E*, F = F1F3). We normalize A, D, p to be integral of minimal order, p
represents B35 /Ng/ g, E*, and we write p = umf, p = ordz p, u € R3. Of course, R3 is the
ring Rg, of integers in E3, and w3 denotes mg,.

5. Lemma. We have a disjoint decomposition GL(2,F3) = UT,r;K', where j > 0 and
rj € Tp(é%) if E/Es5 is ramified (E1/F is ramified), while when E/E3 is unramified, the

summoation ranges over j > 0 such that j —p is even, and r;j = 'Irg_(j_ﬁ)/2 (é“§q5>.

Proof. We use GL(2, F3) = Uj50T,( g yso7 ) K. When E/Fj is ramified, = 0,5 = —D € F
and g = VD, so that Ngp,(mg) = 3. Hence if h = trk € GL(2, E3)’ we may assume
that ||h|| € R*, and rewrite h as h = ttork for some ty € T, with ||tor|| = 1. Then ||t|| €
R;NNg/p, E* = R}, so there is ¢ € R} with ||t|| = €%, and we can write h = et - tor - ek,
with ||e7|| = 1 and ||ek|| € R*.

When E/FEj3 is unramified, and h = trk € GL(2, E3)',r = ((1]“;5), since ||t]| € Ng, g, B~
= w3’RY, and mp = w3 (since F3/F is ramified), we must have that j — 7 is even. We may
assume that ||h]| lies in R*, take r; as in the lemma, and modify k by a scalar in R . Then
|k|| is represented by RY/RxX?, namely by RX, since Ry = RY?R* when E3/F is ramified
(a+bym = a(l+ 2y/m) € RXR3?). O

J. Decomposition for Sp(2).

In computing the orbital integrals of 1x on H = GSp(2, F'), we shall use the following
decomposition.
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1. Lemma. We have a disjoint decomposition H = GSp(2, F) = L>J0KunCA = LSIOCAU"K’
n> n>

1007 ™/A

ab ai @
where A € F — F? u, = 8(1)(1) g ,CA:{(cd)EH;a:(A;ai),b:...},K:
000 1

GSp(2,R), and |A| =1 or = |m|.

Proof. 1t suffices to show one of these decompositions, since u, ! = (_OI ?)un( ~T0y " Write
g1 =g if g1 € KgCy4. Using GL(2, F) = %0{(a ”A)} (L 9 )GL(2, R)

b a on™

= L;OGL(Q,R)(;;” ) {(b‘j4 Z)}, we conclude that any ¢ € H = K P, where P is the Siegel

parabolic, of type (2,2), has

Lo 1 00 7w %/A
A 0 I X\ _ [ onn 0 0 1 0 0
:<0 th—1w><0 I>:< 0 r;”g) 001 0
0 0 0 1

1 00 7#7/A

01 0 0
€Elg 01 o |%

0 0 0 1

The last relation (€) is clear when n = 0, where j = i. If i = 0 < n then j = n, since

1 1/A 1 0 0 (1+7™)/A 1 —r~"/A
" 0 0 1 14+#" 0 1 0
0O =" 0o = 0 0 0 1
0 1 Am™ 0 0 0 0 1
14+7™ 0 0 0
o 0 ™ a+1 0
- 0 1 0 0
A 0 0 -1
1 At 1 0 1 A1
Note that Lo = ( 3_11 ) (l)i e KCy. If i <2nwereducetoz=0<n
0 1 0 1 0 1

T /A (1 0 1

1 0 1 0 0

™ 0 010 0 . " 1 —z i
0 =x ™" 0 0 1 0 - T 0 1
0 1 0 0 0 1 1 0 1

1 0 1 0 1 0

B 1 —g2n ™ 0 _ ™ 0

- 0 1 0 =« " - 0 w ™
0 1 0 1 0 1
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When ¢ > 2n we obtain j =4 — n, since

1 0 0 =wi/A " 0 0 1 iy
1 n—i/A
™ 0 0 0 " A0 o Y
0 =« " 0 0 (l—-7") - 0 0 01
0 1 (1 -7 ")A 0 0 -—=x"
1 0 0 1-w""*¢/A i
1 n—i/A
_ 0 1 " A 0 Lo L
0 T (l—-7") -1 0 0 01
(1l -7 ")A 0 0 —n"
1 0 0 1
0 1 ™A 0
0 rn(i—nm) -1 o | %
Ant(1 — ™) 0 0 -1

In order to verify that the union is disjoint, we need to show that u,hu,! € K for h € Cy
implies that m = n. Thus

by be

1 T " /A a1 as 1 p——
K5 10 / asA a1 byA by 10 /
0 01 1 c1 Co dl d2 0 01 1

CzA C1 dzA dl
a1+ com™" as+ " [A by +dem™” by +dimT" /A -7 (a1 + com™ ") /A

o Aas a1 Ab, by — aom™™
o c1 Co dq dy — Cl7l'_m/A
Acy Cc1 Ads di — com™™

If m =0 and n > 1, using the top row we see that |co| < 1, |c1] < 1, |d2] < 1, |d1] < 1, but
then considering the bottom two rows we see that the last matrix is not in K, hence n = m if
m = 0.

If n #£ m, without loss of generality 1 < n < m. Using the right column: ¢y € #™R, ¢; €
TR, ay € T "A7IR (since by € " A7!R by top row, third entry, and third entry of
bottom row). Then a; is a unit (the last three entries in the first column are in 7R), hence the
fourth entry of top row, z, has absolute value |a;7~™A~!| > 1, contradiction. Then n = m
as asserted. OJ

There is an analogous decomposition for Sp(2, F).
2. Lemma. We have a disjoint decomposition Sp(2,F) = mLiOC}L,umKI, where the super-
script 1 stands for the subgroup of elements with determinant one.
Proof. We can write K = U(é S)Kl, union over 7 € R, and C4 = UC}4(£ 2),)\ € F*. Then
C Aty K is a union of C(1° )um(é S)Kl, and such a coset lies in Sp(2, F) (thus (1 ©)un, (1 0)

0 0 0r
lies in Sp(2, F')) only when Ar = 1. Writing (é T‘L) = 7"(’;1 2), and noting that (’"; 2) lies in



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 35

K' and CY, we have Sp(2, F) = UCY (! ° )um(é S)Kl, where 7 ranges over RX/R*2. Note

or!
that instead of u,, we can work with u/, = (! %) X = (wgm g), since the quotient of the two

elements lies in Ch. It remains to note that

0 1 T My 0
1 0 1 0
1 —1I'_m A 0 0 —7l'_m7" 1 7"1l'_m
0 1 —r™e 0 0 —r 0 1
0 1 0 —Me —rA 0 0 1
0 1 0 0
| A+c 0 0 0
| —em™ 0 0 —r
0 —ct™ —cr—r1A 0

lies in K when ¢ = —r~1 — A (we choose 7 € R* with ¢ # 0). Hence C}L‘(é 1"91 )um(é S)K1 =

Clu, K, and the lemma follows. O

Put K = GSp(2,R), KA = C4 Nuy,Ku,!l, and Cy = GL(Z,F(\/Z))/ for the group of
g € GL(2, F(VA)) with determinant in FX. We write a = a1 + a2/V/A for an element of
F(VA),a1,as € F, and define

a1 CLQ/A b2 b1

a b . a9 a1 blA bz
¢<C d> o Cz/A Cl/A dl dz/A

C1 62/A dz dl

3. Lemma. The map ¢, : Cy = GL(Z,F(\/Z))/ — Cy,

b (5 = (02D S0 v (Do 1yaem):

is an isomorphism which maps K,, = GL(Z,RF(\/Z)(m))/ onto KA. Here Rpyzy(m) =
R+ n™V/AR =R + WmRF(\/Z)’ and as usual, prime indicates “determinant in F* 7.

Proof. Note that

() (2 D)5 b))

—m A—1 a1 CLQ/A bz/Aﬂ'm bl/Aﬂ'm 1. —m
1 T A as a by/m™  bo/Am™ 1 10 AT
01 1 027l'm Cl’ll'm d1 dQ/A 0 01 1
ClAﬂ'm Cz’ll'm dz dl
a;+c (a2+62)/A (b2+d2)/A7rm (bl+d1 — a1 —Cl)/A’ll'm
_ a9 a1 b1/1l'm (bg — CLQ)/A’Il'm
CQ’Il'm Cl7l'm d1 (dg — 02)/A

ClAﬂ'm 627l'm dz d1 — C1
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lies in K precisely when ai, az, dl, dz, c1 € Ryas + co,c0 — doy € AR, by + dg, as — bz, Abl, by +
di —ay — c1 € A®™R, in particular ay, as, by, bo, c1, c2,d1,dy € R. Replacing (Z Z) by

1 0 a b 1 0)\ _ a+b b

-1 1 c d 1 1) \c—a+d—-b d—0b)’
namely replacing a by a+b, d by d—b, ¢ by c—a+d—b (so a+c becomes c+d, c—d becomes c—a),
this condition becomes: aq,as, by, by, c1,co,d1,ds € R;co + do, a9 — co € AR;ds, as, Aby,cq €

Am™ R, and in fact the conditions ¢y +ds, as —co € AR can then be replaced by co € AR. Next

we further replace (? b) by (0 \/—)(“ b)(o 1/\/—) ( \(;Z b/(‘i/z), where b/v/A = by /A+by/VA,
VA = ¢y + clA/\/_. Thus we replace by by ba/A, by by b1, ¢1 by ca, co by ¢1A. Then the
condition changes to: a1, as,bq,ca,d1,ds € R;c1 € R;ds, as,ba,co € AT™R. This is the claim

of the lemma. O

Denote by T, = {(,, ° pr)} an elliptic torus in GL(2, E3). Thus a,b € E3,D € E3 — E3
will be assumed to lie i 1n R3 and to have minimal order in R3 = Rp,, and p is taken in a set
of (two) representatives (including 1) for Eg /Ng g, E*, again p # 1 will be taken in R3 to
have minimal order. Here E = E3(v/D), and Es = F(/A). Write C4 for GL (2, F(VA)), and
recall that Cy = {g € Ca;|lg|| € F*}. Also 5= ord p.

4. Lemma. When E/FE3 is ramified we have Cy = U T/T'JK/ where r; € T, (0“;) has
\lrjll = 1. When E/Es5 is unramified, Ca = UT/TJK/ (j > 0,7 — p is even), where r; =

- 2,1 0
(J n/ (0‘”3 5).
Proof. We have Cy = GL(2, E3) = U T, (O“J 7)K, K = GL(2,R3), 73 = Tg,. When E/FEj;

is ramified we choose w3 = —D = NE/ES(WE),’IFE =D. If h=trk € Ca, 7 = (é";;),

changing ¢ in T, we may assume ||h|| € R*, and that there is ty € T}, with ||tor| = 1. Then
h = ttork, so that ||t| € RS N Ng/g,EX = RS>, and [|t| = e72 for some ¢ € R}. Then
h=cet-tor-e 'k, ||et] =1, [[e~ k|| € R, as required.

When E/Fs5 is unramified, if h = trk € C'4 where r = (; jO 7 ), since N, g, B> is w2’ RY,
we have that j — p must be even (note that mp = w3). We can then assume that IIh|| € R*.

U= p)/2(01r]0 7) and ||h|| € R*, we may change

Further, changing ¢ in h = trk, where r = w4
|kl € RY by an element of Ry? (= scalar in T,). But R} = RY?RX, since a + by/A =
a(l+ 2/A) € R*R}? when A = wp (E3 = F(V/A) is ramified over F if F/Fj3 is unramified,
E = E5(V/D), since A, D are non squares in R, and AD has order 1). Hence we may assume
that ||k|| € R* so that k € K', as required. O

We need an analogous result for A € F*2. Note that for A € F'— F2, the subgroup C4 of H
is isomorphic to GL(2, E)', E = F(v/A), where the prime indicates elements with determinant
in F*. The isomorphism is given by a+— a = a; + asVA. Let

a00b
_ ab aBy| _ [ 0apo .
CO_{[(Cd)7(’75):|_ (0760> GH}’
c00d
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it is isomorphic to the group GL(2, F & F)' = {(g,9') = ((¢ ), (3 ?));detg = det g'}. Put

cd
10x~™ 0
_ o1 0o &« ™
2(m) = 00 1 0
00 0 1

5. Lemma. We have a disjoint decomposition H = GSp(2, F) = Up,>0K 2(m)Cy.
Proof. Using the decomposition H = KNM where NM is the Heisenberg parabolic, of type

1 % % %

(1,2,1), we have H = K ( Lo *) Co, and representatives for K\ H/Cy are given by

01 =%
0o 1
1 " g™ qg—n—m
0 1 0 ™"
0 0 1 g |2TET
0 O 0 1
But this is equal to
1 0 10 —=a ™ 0 1 T
1 0 0 1 0 - 1 0
- " —1 0 0 1 0 - —1
0 -1 0 0 0 1 0 -1

To verify that the union is disjoint, it suffices to show that if

1 0 =™ 0 a 0 0 b 1 0 —m " 0
o1 0 =« ™ 0 a B 0 0 1 0 - "
0 0 1 0 0 v 0 0 0 0 1 0
00 O 1 c 0 0 d 0 0 0 1
a yr~™ ™ —am™" b—ym™ ™"
| em™™ o B—cr™™™ " dopT™ —am™"
a 0 Y d e
c 0 —cn " d

lies in K, then m =n. If n = 0 < m, then 7,4, c,d € #™R, but this is impossible (bottom row
in TR). Without loss of generality 0 < n < m. Then ¢ € #™R implies d € R* (bottom row).
Since v € R, the last entry on the second row, dor="" — amw~", is not in R, contradiction. We
conclude that m = n, and the union is indeed disjoint. ([l

Put H' = Sp(2, F), Cl = Con H' ~ Cy = SL(2, F) x SL(2,F), K' = K 0 H".
6. Lemma. H! = LiOC’&z(m)Kl, where the union is disjoint.

Proof. We have H = L;OCoz(m)K. Then hz(m)k € H'! implies that h = [a,b] with ||a]| =
||| € R*, and ||k|| = ﬂa“_z € R*2. Multiplying a,b by ¢ € RX and k by 7!, we have
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that ||a|| € R*/R*2. Then H! = Y, Clr=lz(m)zK'. where x = diag(l,¢,1,¢). But
EERX_/RXZ
r72(m)x = 2(m). The lemma follows. O

Denote by ¢,, : (GL(2, F) x GL(2, F))/ — Cy, where the prime indicates the subgroup of
pairs (A, B) with [|A|| = ||B|, the isomorphism ¢, ((4, B)) = ({ % )[A,ewBuwe](; 2.). Tt
maps C; = SL(2,F) x SL(2, F) onto C¢.

7. Lemma. ¢, maps K}, = {(A, B) € SL(2, R)xSL(2, R); A—eBe € n™M>(R)} isomorphi-
1

cally to K5° = Cinz(m)K*z2(m)™1, and K,, = {(A,B) € (GL(2,R) x GL(2,R)); A—€Be €

7™ Msy(R)} onto KS° = Co N z(m)Kz(m)~!. Note that K}, = K,, N C}.

Proof. Multiply:

a 0 0 b
(I 0 0 6 —v O I 0
2(m) <0 7rm> 0 —g o 0 (0 rm>z(m)
c 0 0 d
1 0 —=a™ 0 a 0 0 br—™ 1 0 =™ 0
10 1 0 -7 0 ) —ym~ " 0 0 1 o =™
10 0 1 0 0o —pa™ o 0 0 0 1 0
0 0 0 1 em™ 0 0 d 0 0 0 1
a Ié; (a —a)m=™ (b4 pB)m™™
| —c J (y+oym™™ (§—d)ym™™
- 0 —pBrm o -
em™ 0 c d

This lies in K! precisely when a,b,c,d, o, 3,7,6 lie in R, a — o, b+ B, ¢+ v,d — 8, lie in 7™R,

and (% 2), (: 5 )» have determinant 1. O
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PART II. Main comparison.
A. Strategy.

Let us review our strategy in computing the f-orbital integrals of 1x. It is based on
the twisted Kazhdan decomposition. Given a semi-simple t0 € K x (§), G = GL(4,F) x
GL(1,F), K = GL(4,R) x GL(1, R), it has the decomposition t§ = u - s = s6 - u, where sf

is absolutely semi simple, and u is topologically unipotent. Then QJ?K (t0) = a0 (u). The

17y (s0)

associated stable f-orbital integral we wish to relate to the stable orbital integral (I)lquif (Nt),
where H is the endoscopic group GSp(2, F'), and Nt is the stable orbit of the norm of ¢. To
compute the norm we write ¢ = h='t*(h), where h € G ( = G(F)), and t* € T*, where T* is
the diagonal subgroup and T* = T*!I'. On T* the norm is defined by T* — T*/(1—-0)T* ~ T},
thus N (a, b, c,d; e) = (abe, ace, bde, cde; e2abed). A O-semi-simple ¢ (¢ is semi simple in G x (6))
is called strongly O-regular if Zg(t0) is abelian, in which case the centralizer Zg(Zg(t0)°) of
Za(t0)° in G is an F-torus T in G which is invariant under Int(t) o 0, and Zg(t0) = T™H#)°0
The 0-orbit of ¢ intersects T*, thus there is h € G and t* € T* with t = h™'t*(h), and
Zg(t0) = h™ 1 Zg(t*0)h = h='T*°h. Then T = Zg(h~'T*h) = h='T*h, and Zg(t0) =
T8 consists of the z € T with t0(z)t~" = z, thus £~ 't0(z) = t.

An F-torus T in G is determined by h € G and the Galois action on T*. Namely, for
t=h"Y%*heT=h"1T*h we have h™1t*h =t = ot = och™lot*oh, and so ot* = h;t*h,,
where Int(h;!) € Norm(T*, @) has the image w, in W = W (T*,G)
= Norm(T*,G)/ Cent(T*,G). If T* is a f-invariant F-torus, taking t* € T*% we conclude
that Int(h;') = Int (0(h,)~"), thus w, € WY, and the torus determines a cocycle (w,) in
HY(F,W?%). We denoted the homomorphism , — W? o+ w,, by p, and classified the tori
according to the image of p : Gal(F/F) — W, as types (1) — (3) and (I) — (IV). We explicitly
realized T in the form T = h='T*h, with h = 6(h). Thus in each stable f-conjugacy class
of strongly f-regular elements we have a representative ¢ = h~'t*h, and further we found
representatives for the f-conjugacy classes within its stable #-conjugacy class, of the form
9~ 'tg,9 = gr with g = 6(g).

A O-semi-simple t € G is called 0-elliptic if Zg(t0)°/Z(G)° is anisotropic. The associated
tori T = Zg (ZG (t9)0) are called f-elliptic. A complete set of representatives for the f-elliptic
tori is given by the tori of type (I)-(IV). The computations of f-orbital integrals of non 6-
elliptic strongly #-regular elements can be reduced — using a standard integration formula —
to the case of the #-elliptic elements, so we deal only with ¢ in tori T' of types (I) - (IV).

B. Twisted orbital integrals of type (I).

Let u = 6(u) be a topologically unipotent element in GL(4, R) x GL(1, R). Then ¢ _(uf) =
pZo®) (u), where Zg(0) = H! = Sp(2, F) and Zx(0) = K* = KN H!. We compute the value

1z, (6
of tﬁi(s >integral at u in a torus of type (I). To consider also the integrals at stably #-conjugate
but not #-conjugate elements, we look at a complete set of representatives, parametrized by
p1, p2. Here p; € {1,x} if E/F is unramified, and p; € {1,e} = RX/R*? if E/F is ramified.
Thus take t, in the torus T) = {t, = [¢7 (a1 + b1VD), D (a2 + bovVD)] € C3}, where

¢£(a+b\/5) = (b7p blzp). If E' = {z € EX; Ng/px = 1}, then T} is isomorphic to E* x E*.
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By Lemma I.J.6 we have
1 —
o, (t) = / L1 (9 ' pg)dg
TI\H!

=y |K1|H1/ 11 (z(m) " 'h ™M ,hz(m)) dh.
m>0 TF}\Cé/Céﬂz(m)Klz(m)*l

The integrand in the last integral is non zero precisely when h='t,h lies in z(m)K'z(m)~!

ﬂC’& = Kgo. Hence we get

= K 1 o1 (hatt ho)dho.
S [y e 0 o

Using Lemma [.J.7 we have an isomorphism ¢,, : C1 — C} (¢ (h) = ho), ¢ (K}L) = KS.

Define , by ¢y, (2,) = t,, and note that T, = Zcy(tp). Hence our expression is

=3 1K [ L3 (B (D) 6 ) ()
=50 Ze, (x,)\C1 /K3,
=) [K): K} gt (R z,h)dh.
S0 Zey (p)\Cr

Next we change variables on Cy = SL(2,F) x SL(2,F). If m is even,

b (Luwe) (77700, (%2 0))h

0 w m/2 0 w m/2
sends h~'z,h to h_l((;wen),(;wen ))([,ew)xp([,we)(((l)wgm),(1 O Nh = h='t\h, where

tlp = (tp17tp2) € (Cy, lp, = ¢£ (ai + bz\/l_))
If m is odd, and E/F is unramified, h +— (I, we) (("(m;ﬂ)/2 0 i) ("(mﬂ)/2 0 ))h

o (mti)/2 0 g (mti/
sends h™'z,h to h_l(((l);]i ), (;;]j ))t’p((;wgi )s ((1)“9,- ))h, where i, j € {£1}, i is taken to be
lifpy=mand —1if p; =1 (j =1if pp =m and j = —1 if po = 1). Then h™'z,h is mapped
to h='t5h, where if p = (p1, p2) then p = (p1, p2), and p; is defined by {p;, i} = {1,7}.

If m is odd, and E/F is ramified, we take

(m+1)/2 (m4+1)/2
he (I, 1”"3-)((1r mo ,,—(m0+1)/2 )7 (1r mo ,,—(m0+1)/2 ))(UJE’ we)h,

which maps h='w,h to h='tsh, where p; = —1/p; (pi = p; is a permutation, trivial if —1 €
R*2, of R*/R*?).
Put p,, = p if m is even, and p,, = p if m is odd. We get

=Y [K}:K!] / 11 (W™, h)dh.
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Using the double coset decomposition for SL(2, F') of Lemma I.1.3 we get,

= Z Z [RY Tplm NrKyr K : K%@]/ lK}'L(k'_lr_ltpmrk)dk.

1
m>0reR,, Ky

Here R, =T, NKg =T, (R). Let j signify (j1,72). To simplify the notations we write p
for p,, until the index m is explicitly needed.

By Lemma I.1.3, the representatives r» € R, have the form (when E/F is unramified)
r = ’]"j = tel diag(ﬂ'_(jl_ﬁl)/27 glﬂ-(jl_ﬁl)/z) X t62 diag(ﬂ-_(j2_ﬁ2)/27 827r(j2_ﬁ2)/2)7

J1,J2 > 0,71 —py and jo2 — py are even, t., € qﬁg (E*) has determinant 81-_1, and €; ranges over
RX/R*%if j; > 0, it is ¢; = 1 if j; = 0. When E/F is ramified the representatives take the
form . .

=15 = g2 ) (L ) x B g (L %) (2 2 0).

1. Lemma. The index [Rp : T, N ij(%rj_l] is the product of ¢/'%92 and : 1 if E/F is
ramified or j1 = jo = 0, %ql if E/F is unramified and either j; =0 or jo =0, (%ql)2 if EJF
1s unramified and j1j2 > 1.

Proof. The intersection Tp1 NrKgr=! consists of ¢, € Tp1 such that r='¢,r lies in K. But
—1 _ 1 0 _ a1 biDpiy1l 0 _
Ty teli = (o ey tw— 17D )(bl/lpl o )(o el —P1 ) X

a1 lep1€11l"]17p1
1y o lp— (1 -P1) )
€, bip, m™ 1=P1 a1

X oo

Then r~'t,r € Kj means that b; € 7' R. Hence T, N rKjr~! is isomorphic to Rp(ji)' x

Rg(j2)'. Here Rg(j) = R+7/Rg = R+7/v/DR C Rg = R + VDR, and the superscript 1
indicates the subgroup of elements with norm Ng,r equal to 1.

To compute the index we use the exact sequence
1 = Rp/Re(j)' = R5/Re(j)* — Ry/RERe(5)* — 1.

Via the norm N = Ng,p, we have the isomorphism R} /RpRr(j)*>NR}/NRg(j)*. The
last group is R*/R*? if E/F is unramified and j > 1; it is trivial if E/F is ramified or j = 0.
Further, we have

[Re(j)* : 1+7'Rg]=[R* : R*N(1+7'Rp)]=[R* : 1+7'R] = (¢ — 1)¢ "
Hence [R} : Rg(j)*] =[RS : 1+ ® Rg|/[Re(j)* : 1 + 1 REg] is
= (@ =DV /(g1 = (g+1)g
when E/F is unramified and j > 1, since 7g = 7 and qg = ¢°>. When E/F is ramified it is

= (-1 (qg-1)d "t =¢
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(j > 0), since 7%, = m and qg = ¢. Then [R} : T) N ijérj_l] is the product of [R} :
Re(j1)*],[Rf : Rg(j2)*], and 1 (if E/F is ramified or j; = jp = 0),  (if E/F is unramified
and either j; =0 or j» = 0), or § (if E/F is unramified and jij» > 1). O

Put R, = R/'rrmR,fTIn = K. /K (™), where again K} = {(A, B) € SL(2, R)xSL(2, R); A
= eBe(modn™)}, and K(n™) = {(A,B) € SL(2,R)*;A = I,B = I(modw®™)}. Then
K, = {(Aede); A € SL(2,Ry)}. Here m > 1. Also put Kg = KL/K(x™) = SL(2, Rny) %
SL(2,Ry,).

2. Lemma. We have that [K§ : KL [ L (k71r= 1, rk)dk is equal to the cardinality of
0 m

m m

—1 —1 1 _ —1
Ly,=Ly, ={yeKy/K,;y 'r't,ryc K,,}.
Proof. The integral can be expressed as
/ L (K=t~ rk)dk = #{kK), € K§ /K k™'r™ %, rk € K} = #L;,.
K3/ K3,

O

To compute the cardinality #L. of Ll | introduce N; = ord(b;) and a unit B; with b; =
BirNi(i = 1,2), v; = N; — ji, b = (B;/e;u;)w”i (where p; = u;wPi), and D; = De2uln?i.
Further, put X = ord(a; — a3), and write @ for the image of a in R,,,. Then t,, = r~t,r =

(3 bllall)l) x (4 b;alf ). Also put d(A) for (A,eAe). When v; = vy, we write v for this value.
1 2

3. Lemma. The set LY is non empty precisely when (1) 0 < m < X, (2) v; > 0, (3)
v1 < m if and only if v < m, in which case v1 = vy and we write v for the common value,
(4) if v < m, and v1 < Ny or vy < Ny or E/F is ramified, then uy/us € %R“, (5) if
m > 2N; —v; +ord D (> v;, thus v1 = va) for some i(= 1,2), then Ny = Ny (the common
value is denoted by N ), and m +v < X.

If the set LY is non empty then its cardinality is: 1, if m = 0; (¢> — 1)¢® 2, if 1 <m <
min(vy, v2) (thus 5; = 0); 2¢™*?, if v < m, and E/F is ramified or vy < Ny or va < Na;
(g + 1)g™*?"=1 if v < m and E/F is unramified and vy = Ny and vy = Ns.

Proof. The set L} is isomorphic to the set of y in SL(2, R,,) X SL(2, R,,)/d(SL(2, Ry,)), such
that y~1r='t,ry lies in d(SL(2, Ry,)). This is isomorphic to the set of () ;) in SL(2, Ry,)
with

(*) (61 5/151> <.771 .Tz) o <.771 .Tz) (62 5;52>

5/1 ay r3 T4 T3 T4 5/2 a9 ‘
If L is non empty, comparing the traces of the two components of r_ltpr, we obtain a; = @o,
thus 0 < m < X = ord(a; — az). Consequently (x) holds with @; and @, replaced by 0. Then

5/1 = 0 if and only if 5/2 = 0, namely v; > m if and only if vo > m.
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Multiplying out the matrices in (x), we see that L. is then the set of (z1, 72,73, 74) € RE
with 2124 — 2223 = 1, which satisfy

5/151.713 = 5/2.712, 5/151.774 = .’1715/252
51715/1 = .T45/2, 51725/1 = CE35I2E2.
If v1 < m, thus 5/1 # 0, and |b}| < |b}], then the last relation implies that |z3] < 1, while the

third relation implies that |z;| < 1. Here we write |z| < 1 if a representative in R of z in R,,
has this property. This contradicts x1z4 — x2x3 = 1. Hence, when v1 < m or vy < m,v; = vs.

The quantitative part of the lemma is clear when m = 0. When 5; = 0 we simply have that
Ll = SL(2, R,,). The cardinality of this group is (¢*> — 1)q when m = 1 and so R/ is a field.
For m > 1, apply induction on m using the natural surjection SL(2, R,,) — SL(2, Rp—1).
Suppose then that v = 1 = vo < m. Now for each solution x of (x) there are as,ab, a4 in R,,
such that on putting n = (B1/e1u1)/(Ba/e2uz), we have

<£U1 .TQ) _ <.771 (31x3+7rm_”a2)77>
r3 T4 T3 (.I'l + ﬂm_”a4)n
[ x 517351 1 TV A, 1 0
o T3 1 0 1+7™m YAy 0 n
on using the first and third relations in (x), and
<£U1 .TQ) _ <.771 (52.773 +7rm_”a’2)77_1>
T3 T4 T3 (x1 + 7™ Vag)n
A 3227377_2 1 ,".m—yA/2 1 0
 \ 73 1 0 1+amvA) 0 n

on using the fourth and third relations in (x), where Ao, A4, A, Ay € R, are defined by

1 .Tgﬁl Ay _ a2 1 .Tgﬁzn_z Alz _ CL/277_2
I3 I A4 a4 ’ I3 I Aﬁl (07} ’

Since x174 — Torg = 1 and 1 + 7™ YAy € RX?, 1 lies in each of the groups
= {y € R}y;y =21 —a3Defuinm®'}, Np, = {y € R)y;y = x] — a3Dejm™>n~"}.

The intersection Np = Np, N Np, is RX? if j3 > 0 or jo» > 0 or D ¢ R, it is RY if
j1=0,72 =0, and D € R*. Since n = (By/e1u1)/(B2/eauz), the 4th qualitative claim of the
lemma follows.

When v < m, the cardinality of Ll is the product of the cardinalities of the sets {As €
R,./7"R,, ~ R/m"R} and {$1,£U3 € Ry;22 — Dix2 and 22 — Don 222 € 1+ 7™ YR, }.
The first set has cardinality ¢¥. The second has cardinality

#{x1, 23 € Ryp; 22 — Dyl and 22 — Doif 2232 € Np}/[Np : 1 + 7™ R,,].
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The denominator here is
[R*: 1+ 7™ YR]/[R) : Np] = (¢ — 1)¢™ " '/[R} : Np].

Hence the cardinality of L}, is
[RX N ]q2u—m+1 { qu - qZ(m—l), if D1 € R* and D2 e RX)
me P (q—1)g™ ' -q™, if Dy € 7R or Dy € TR.

Hence, when v < m, if E/F is ramified (D € wR) or j; > 0(vy < Ni) or jo > 0, this is
2¢™*T2V while if E/F is unramified (D € R*) and j; = 0, jo = 0, we have Np = R, and the
cardinality of L! is (¢ + 1)¢g™T?*~1. This completes the quantitative part of the lemma.

If 1 or x4 are not units, then x1x4 — xox3 = 1 implies that zo, 23 € R*. When vy = vy =
v < m, the relations () imply that Dy, Do are units, hence j; = j, = 0, namely N; = vy =
vy = Na, and that moda™ ", we have n = b, /by = (byD5)/(b,D1), or (D1/Ds)y? = 1, or
(B1/B3)? =1 (modax™™").

If 1 and x4 are units then we have n = z4/21 = 5/1/5/2 (mod7™~") and 775/131 = 5/232.
This last relation implies that: m > 2Ny — vy + ord D(> vy, so vy = vs) if and only if
2Ny — vy +ord D < m, and if this happens then N; = N5; the common value is denoted by N.
Further, if 2N — v + ord D < m, then m > 0 and X (> m) > 0. The relation 775/131 = 5;32
can now be rewritten as asserting that

Baeaus _ _
— (l’nOdﬂ'm 2N+v ordD)‘

- Bieiug

Together with n = (By/e1u1)/(Ba/eaus), we obtain that (By/B1)? = 1(mod g™~ 2N+v—ord D),

Thus we have this last relation when x1, x4 are units, and when they are not. Since B; are
units, we rewrite the relation as m — 2N + v — ord D < ord(B? — B3), namely as m + v <
ord (D(b? — b3)) = ord(a} — a}) = X. Indeed, since ¢, is topologically unipotent, we cannot
have |a; + as| < 1. Finally note that |a; — as| = |a? — a3| = |Db? — Db2| < max(|Db3|, | Db3|),
hence X > ord D 4 2 min(Ny, Na). O

C. Orbital integrals of type (I).

We computed above the orbital integrals on the twisted conjugacy classes within the stable
f-conjugacy class of a strongly -regular element (which is topologically unipotent and #-fixed)
u = tp = h_lt*h, where t* = (tl,tz,O'tz,O'tl;@),tl = a1 + bl\/ﬁ, tz = a9 + bz\/l_) The norm
Nu of u is the stable conjugacy class of (titze,ti0tqe, tootie, oti0tae; e2t1t20t10t2), or Nt*,
in H. This stable conjugacy class is of type (I). Put z* = N¢*. Consider z, = h™'z*h of type
(I), with * = (z1,x2,022,0x1;¢e), in H. Its stable class consists of two conjugacy classes,
parametrized by p(€ {1,7} if E/F is unramified, € {1,e} = R*/R*? if E/F is ramified), in
the torus

Tp = {'Tp = [¢D(a’1 + Bl\/ﬁ)v QSE(QQ + ﬂZ\/l_))] € CO}
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in H = GSp(2,F). We write £ = oy + 81V D, 23 = as + BoV/D (e, f; € F). Then we have
to compute ®F (z,)

— /T . 1k (g~ 'w,9)dg = Z |K|H/ 1 (2(m)~"h~'a,hz(m))dh.

m>0 T,\Co/CoNz(m)Kz(m)~1

The last equality follows from the disjoint decomposition H = L;OC’Oz(m)K of Lemma 1.J.5.

The integrand in the last integral is non zero precisely when h='z,h lies in z(m)Kz(m)~' N
Co = KS°. Since [K : KS°] = [Kp : K] (by Lemma 1.J.7), we get

— Z Ko : / 1k, (h" 'z, h)dh.
T,\Co

In contrast to the case considered in the last section, where we worked in SL(2) x SL(2), the
change of variables (which led to the introduction of p and t,, there) does not change our z,.

Using a partition Cy = (GL(2, F) x GL(2, F))/ = URTero, this can be written as
re

— Z Z [Rr : T, NrKor~'[Ko : K] 1k, (K~ r o, rk)dk,
m>0reR, Ko

where Rr = T,N Ky = T,(R). Recall that p = un?, thus p = ord(p) is 0 when E/F is ramified,
and it is 0 or 1 when E/F is unramified.

1. Lemma. A set of representatives R, for T,\Co/Kyq is given by [rj,,rj,],ji > 0,1 =

P (v—m ’ )(é W(J)I )., = o5 (/=7 ’ )(é 0), when E/F is ramified. When E/F is unram-

ified, it is given by I x 7~ 2~ p)/2(0 D) (2 > 0,42 — P even), w9 /2(L O Y% I(j1 > 0, even

0 w1

e DA 0 PR RA(L D) (jrja > 0, even jy o + 7 & ranges over
R*/R*?,¢' € R}, with norm Ng pe' =€ 1) Here [x] denotes the maximal integer bounded

by *.
Proof. Using the double coset decomposition (Lemma I.I.1) for T,\GL(2, F)/ K, we can write

Co = (GL(2,F) x GL(2,F)) = Uj, ju>o(Ta(} S)K x T,(} _05)K)".
If E/F is ramified then p = 0, E = F(y/—m), and [|¢)(v/—7)|| = Ng/p(v/—7) = m, so

that r;,,7;, have determinant one, and Cy = ; JU>0(T17"j1K x T,r;, K)'. We naturally denote
1,J22

T, C Coalsoas (TyxT,)" C (GL(2, F)xGL(2, F))/ We still have to show that Cy = UT),-rj, X
rj,-Ko. For that, note that if |[t17;, k1|| = ||t2rj, k2||, then ||k1k5 || lies in RXNNg/pEX = R*2.
Then t; can be multiplied by a scalar in R*, so that ||k1]| = ||k2||, namely [k1, k2] lies in Ky,
and so also [t1,t2] lies in T, C Cy C H, as asserted.

If £ / F' is unramified, We need to consider the conditions implied by the equation
||t1(0 )kl = ||t2(0 WJQ 5)ka||. These are: |7/+=72%P| € R*Ng,pE*, thus j; —j2+p is even.
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We would like k& = k1kg ! to have determinant 1, and we can modify k by multiplication by ¢ €
1 0 1 0

R* (thus ||k|| ranges over R*/R*?), or by (3“93.1 )t(é“‘}l ) € Kor ( ,~1,-Go-5 )t ppin—7) €

K, t € Ty, whose determinants are in R*? if j; > 0 (resp. jo > 0), or in Ng/pR} = R*

otherwise. We then obtain the representatives of the lemma, which lie in Cy. To repeat, if

jijo = 0 then € = 1, if jij» # 0 then ¢ ranges over R*/R*? and j; — j» + p is even. O

2. Lemma. The index [Rr : T,NrKor™] is the product of ¢'792 and: 1 if E/F is ramified
orj1=0=j2;(q+1)/q if E/F is unramified, and either j1 =0 or ja = 0; %(%1)2 if E/F is
unramified and j1j2 # 0.

Proof. The intersection T, N rKor~! consists of z, such that r_lxpr lies in K. Since

—1 o a1 ,81ij1 [ ,82Dp-61l"j2 P
T T = (ﬂl/ﬂ.h a ) (,82/(p1rj2 756) s )7

it follows that T, NrKor~ is isomorphic to (Rg(j1)* x RE(jz)X)/, where Rg(j) = R+7/Rg,

and the prime indicates (z,y) with Ng,paz = Ng,py. Since Rr is (Rj x Ry)" under the same

isomorphism, we are to compute the cardinality of the kernel in the exact sequence

1 — (R} x RE)' /(Re(j1)™ X RE(j2)X)/ — Ry x Ri/Re(j1)™ x Re(j2)”
— RS x RE /(R x RE) (Re(j1)* x Rg(j2)*) — 1.

For the middle term, note that [Rj : Rg(j)*] is 1 if j = 0 and it is the quotient of [R}, :
1+m'Rg) by [R* : 1+ 7/ R] = (¢—1)¢?"! when j > 1. When E/F is ramified then 7%, =«
and qg = ¢ so that the quotient is (¢ — 1)¢?>~1/(¢ — 1)¢~! = ¢’. When E/F is unramified,
g = and ¢ = ¢2, so that the quotient is (¢ — 1)¢?0~Y /(g — 1)¢7 ' = (¢ + 1)¢? L.

It remains to compute the cardinality of the image in the short exact sequence. This set
is isomorphic to its image under the norm map N = Ng,p. The cardinality of N RE x
NR5/{(z,2)} - NRg(j1)* x NRg(j2)* is 1 if E/F is ramified or jijo = 0, and it is [NR} :
R%?| = 2 if E/F is unramified and j;j» > 1.

O

As usual write R,,, = R/7™R, ; = Bix™ (B} in R*, integral n;), v; = n;—j;(i = 1,2), ] =
Bimvt, By = (By/eu)n¥? (where p = unP), Dy = Dx%t Dy = Du?e?n?2, x = ord(a; — ), @
for the image of @ € R in R,,, d(A) for (A,eAe). If v1 = vy, put v for the common value.

3. Lemma. The integral [Ko : K] fKo 1k, (k= Yr~tz,rk)dk is equal to the cardinality of

Ly = {y € (GL(2, R) x GL(2, R,n)) /d(GL(2, Ryy)); v~ trta,ry € d(GL(2, Ry)) ).

If this set is non empty then 0 < m < x, and vy > m if and only if vo > m. If vy < m or
vy < m then vy = vy.

Proof. Since

Lo = {(2272) € SL(2, Ry)s (3 PPV (7122 = (70223 Dy

! — ! —
x3 T4 By o T3 T4 T3 T4/ \BL @,

the proof is exactly the same as in Section B, where the group was Sp(2, F) rather than
GSp(2, F). O
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4. Lemma. If L,, is non empty, then its cardinality is: 1 if m = 0; (¢2—1)¢® 2 if 1 <m <
min(vq,ve) (thus B; =0); 2¢™T%, if v < m, and E/F is ramified or vy < ny or vs < no;
(g + 1)g™ 2"~ if v < m,vy = ny,vs = na, and E/F is unramified.

Proof. Since L., ~ L} | the proof is the same as in the case of Sp(2, F'). O

5. Lemma. Suppose that v < m. If 2n; — v +ord D < m for some i(= 1,2), then n; = no
(the common value is then denoted by n), and (0 < v < m < x and) m + v < x. Further,
By /B € euR*? unless vi = ny,vy = na, and E/F is unramified. Note that when E/F is
ramified, e =1 and p = u.

Proof. The proof proceeds exactly the same as in the case of Sp(2, F'), to show that m + v <
ord (D(8; — #3)) = ord(e — o3). It remains to show that x = ord(a; — as) is equal to

ord (D(ﬁ% — ,3%)) For thiS, recall that r1 = tito = a1 + ,31\/5, To = t10ty = g + ﬂg\/l_), t1
and t9 are units, and so if tr = 1 4 o, then

|O£1 — O!2|2 = |tI‘.T1 — tI‘.T2|2 = |tr(t1t2) — tr(t10t2)|2 = |(t1 - O'tl)(tz — Ut2)|2|t1t2|2

(21— oxa) (21 — 32)|> = |((C¥1 —az) + (B + ﬁz)\/ﬁ) ((al —az) + (L — 52)\/5)|2
((a1 — a2)® = (B1 + £2)?D) ((a1 — a2)® — (B1 — f2)°D)|.

Note that 0 < v < m < x, so that |a; — as] < 1. If |B; — B2| < |ay — ag| < 1 then
|(p — @2)? — (B + B32)2D| =1, and so |D| = 1 and |B; + 2| = 1, hence |3;| = 1 and n = 0, so
v =0 and y > m is our claim. The last sentence is valid with (35 replaced by —(3>. It remains

to deal with the case where |81 £ 2] > |1 — aa|. Then |1 — as| = |D(52 — (3)], as was to
be shown. O

D. Comparison in stable case (I), £/F unramified.

Let us summarize the result of the computation of the stable twisted orbital integral in
Section B. It is

G,s _ xZag(0),st o . —
o) =TT W = > X R s Ty, 0K # L,
p m>0reR,,

where u = t, = h™'t*h is topologically unipotent. Recall that Ly, , ~depends on m and pp,,
but for each m, the set {p,,} is the same as the set of p. Hence we replace p,, by p in the
triple sum above.

Put N = min(Ny, N3), where N; = ord(b;). In the case where E/F is unramified, p =
(p1,p2), pi € {1,7},u; = 1, and the sum over r is a sum over ji, jo > 0 such that j; —py, jo — Py
are even, and over ¢; in RX/R*? if j; > 0. When j; > 0 or jo > 0, and v = v; = vy < m, we
have e169 € B1BaR*2. In other words, we have a sum over v; = N; —7j; (i = 1,2), 0 < v; < NN,
and over g; € R*/R*? if v; < N; for i = 1,2. (If v; = N; for some 4, then ; € R*/R*).

Then we need to sum over m. We have the range 0 < m < min(vy,v5), then the range
v(=r1vy =1ry) < m < 2N — v (since ord D = 0 when F/F is unramified (v; < m implies
v1 = v9)), and the range 2N —v < m < X —v (2N — v < m implies v < m, Ny = N», and



48 YUVAL Z. FLICKER

m < X —v). Let (m = 0) = d(m,0) be 0if m # 0 and 1 if m # 0, and d(m > 1) be 0 if
m < 1 and 1 if m > 1. Thus we get the sum of three expressions:

)N 2

0<v1<N; 0<v2<N2 0<m<min(v1,v2)

= Y @m=0+sm=1)01-¢?)PM[ Y Y

OSTTLSN m<u1<N1 mSIJ2<N2
1 1 1
4((];_ )ZqN1—V1+N2—V2 + Z 2 ;_ Ny—vy + Z 2q;_ qN2_V2 _+_1]’
q m<v; <N m<vz<Na

q+1 —2y v
Z Z 2( )ZqN1+N2 2 .2qm+2 ;

2q
0<v<Nv<m<2N-—-v

6(N1, Na) Z Z = §(N1, No)[ Z ﬂqzzwm

0<v<N2N—-—v<m<X—v N<m<X-N q

q+1 _
+ Z Z 2( )2q2N 2v .2qm+2u]‘

2
0<v<N 2N—-—v<m<X—-v q

To compute the first expression, note that

R S AR T BRSSP R R LY
q m<v; <N v1=0 q_
:q+1qN1_m_ 2
q—1 qg—1
Hence [...] is

So the first expression is

g+1 2 .\ q+1 2
(™ - —=) (™ - )
q—1 g—1"'qg—1 q—1
2 2
1
+ ) q NTESVER A it ((q +1)%q™ " —2(g + 1) (¢™ + ¢™*)g™™ + 4¢°™)

1<m<N

= (= )70+ D0 —2)(+ g% —2))+ D ILED o vy

(@® —1)].

4q2

_ (et D) A
¢ —1

21 (@™ + ™) (N —1)+
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The second expression is
0<v<Nv<m<2N—v 0<v<N 0<m<2N —2v
_(g+1)? Lq+1
A  RCARICAALE!

g—1 0<v<N g—1

The third expression is the product of §(Ny, N2) and the sum of

(g +1)2¢N-1 Z Z gl = (¢ + 1)2q2N—1 Z (X = ¢?N)g v

-1
0<v<N 2N —v<m<X—v q 0<v<N

_ (qJ_F ) 2N (X — 2NY(1 = ¢,

and of

q+1 _
(q_l)q2N(qX N_qN)

)
namely it is

§(N1, No)(g — 1) 2[(¢* N —¢M)g™ ™2 (g + 1) (g — 1+ (¢ + 1)(¢" — 1))].

A pleasant surprise is that the stable orbital integral ®; takes precisely the
same form. Indeed, we have in this case a sum over p € {1, 7r} a sum over ji, jo > 0 such that
j1 — (jo — P) is even, and a sum over € € RX/R*? when jij» > 1. When v = v = vy < m,
and jij» > 1, there is a condition ¢ € (B}/Bj)R*?. In other words we have a sum over
vi = n; — ji(i = 1,2),0 < v; < ny, and over ¢ € R*/R*% if m < v; < ny(i = 1,2). The
sum over m is cut into three ranges, as in the twisted case. Exactly the same expressions are
obtained, but for slightly different reasons. In the first range, the coefficient 4 - (q+1) of the
twisted case becomes 2 - (%1) ;and 2 - %11 is the index %1. Similarly in the second and
third ranges, 2 - (qzl) is 5(%1)2. Writing in the non twisted case n1,n2,n and x for the
integers denoted by Ny, No, N, X in the twisted case, we obtain

(a—1){((g+1)g™ —2)((g+1)g"™ — 2) + (¢ + 1)*¢™ ™ (¢" — 1)

—2(g+ 1)(¢™ +¢")(¢” —1)+ﬁ(q3 — 1)+ (g+ 1) " - (" - 1)

+(n1,n2)(g+ g™t (" = ¢") (g — 14+ (g +1)(¢" — 1)) }.

GSp(2 F),St(Nt )

Notations. For the actual comparison, we use the following notations: t* = (t1,ts,0ts, 0t1)
(the last — fifth — component e, has to be a unit in R*, and will not affect otherwise the value
of the integral), and Nt* = (x1 = tyte, xo = t10te, 029, 021). Further, t; = ay + biVD,ty =
as + byvV/'D, N; = ord(b;), and n; = ord(f3;), where

71 = a1 + 1V D = tity = ajas + Dbiby + VD(azby + aiby)
T9 = Qg + ﬁz\/l_) = t10't2 = a102 — Db1b2 + \/l_)(a2b1 - albz).
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Also, x = ord(ay — as) = ord(2Dbibs) = ord D + Ny + N5. Note that t* is topologically
unipotent, hence a1,as are units. Since the value of the f-orbital integral is not changed if
in ¢t* the entry ¢y is multiplied by —1, (so is ot2), we may assume that |a; — as| < |a; + a3,
namely that |a; + az| = 1. Then

X = ord(a; — a) = ord[(af — a3)(a; — b3D)] = ord{D[(b] — b3)a3 — b3 (a3 — a})]}
= ord D(b?a3 — a3b3) = ord DBy B2 = ord D + ny + ny.
Further, if Ny < Ns, since a1, ao are units, we have ny = ny = n = Ny. If ny < ng then
N1 = Ny = N = ny. Otherwise ny =ng =n =N = N; = Ny and X = y, in which case the

two expressions to be compared are obviously equal. By symmetry, it suffices to perform the
comparison when n; < ng, thus no >n; =n = N; = Ny, x = 2N and X = nq + no.

The first, “twisted”, expression, multiplied by (¢ — 1)2, is equal to

A= ((g+1Dg" =2)((g+1)g" = 2) + (L +¢~ (g + 1)*¢*"(¢" = 1) — 44" (¢*" — 1)
D o ] (0% - ) )
+ g+ 1) (¢ — ¢")((¢ + 1)g" — 2).

_+_

The last summand appears since Ny = Na(= n).
This we compare with the second, untwisted integral, which, multiplied by (q — 1)2, is

a=((g+1)¢" =2)((¢+1)g"™ —2) + 1+ ¢ Hl(g+1)*¢" " (¢" - 1)

4°(¢ = 1), 3,
qgi_l( —1)]

+ (g4 1)%¢" ™" = 1)(¢" T = 1).

—2¢(¢" +¢™) (" - 1) +

The contribution from the third range is zero since ng # ni(= n).
A simple subtraction yields

A—a=("—¢)@+D((g+1Dg" —2) + 1+ ¢ g+ D" — 1)g" — 29(¢>" — 1)]
+(g+1)%" " = D@ = 1) = (g + D™ ((g+ D" - 2)]
= (¢" = ") (g + DI((¢+ Dg" = 2)(1 = ¢*) + (¢ +1)%¢" 7 (¢" — 1) — 2¢™"
+2+ (¢ +1)¢" " (¢" — V(" - 1)),
and this is 0 (on opening parenthesis in [...]). This completes the comparison in case (I), when

E/F is unramified, once we show that the measure factor which appears in the statement of
the theorem is 1 in our case, of type (I), E/F unramified.

Lemma. [In the case of tori of type (I), the measure factor

[T*°(R)  (1+0)(T*(R)))/[T(R) : N(T*(R))]
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is equal to the ramification index e(E/F) of E over F.

Proof. The norm map N takes (a, b, cb,0a) € T*(R) (thus a,b € Ry) to (ab,ach, boa,cacbh) in
T} (R). To measure the index of the image in T} (R) = {(z,y,0y,0x); 2,y € Rj, xox = yoy},
we need to solve z = ab,y = acb in a,b € R}, given z,y € Ry, vox = yoy. It suffices to solve
in b € Ry, the equation b/ob = x/y, where (z/y)o(x/y) = 1. By Hilbert theorem 90, there is
a solution b in E*. If F/F is unramified, 7g = w, and if b = Bx™ is a solution (B € R}),
then so is B € Rj. However, if E/F is ramified, oy = —7g, hence z = un’t(u € Rj)
has z/oz = (—1)"u/ou. Writing u = a + frg in R}, we have @« € R* and 3 € R, hence
u/ou = 1(modmg), and the index of Ry = {u/ouju € Ri} in E' = {2/0z;2 € EX} is
2 =e(E/F). Hence [T} (R) : N(T*(R))] is e(E/F).

Similarly we need to compute the index in T*%(R) = {(z,y,0y,0%);z,y € R}, v00 =1 =
yoy} of the image under (1+0) of T*(R), thus of (14-6)(a, b, ob,0a) = (a/ca,b/ob,ab/b,ca/a).
Again [E' : R}] = e(E/F), hence [T**(R) : (1+60)T*(R)] = e(E/F)?, and the measure factor
is e(E/F). O

This computation is naturally used also in the case where E'/F is ramified, which we consider
next.

E. Comparison in stable case (I), £/F ramified.

Here ord(D) = 1. The twisted orbital integral is a sum over p = (p1, p2), p; € R*/R*2, (p;
=u; € {1,¢} and p; = 0), and over ji, j2 > 0 (these parametrize the representatives r € R,,),
of the product of the index ¢7*772, and the quantity: 1 if m = 0,(¢?> — 1)¢® 2 if 1 < m <
min(vy, vs), 2¢™ 2 if v; < m (for some 4, but then v = v; = vy, and m +v < X, and
p1/p2 = ui/uy € (Bl/BZ)RX2). In this last range: v < m < X — v. Note that when
2N; — v+ 1 < m for some i, we have N; = N,. Without loss of generality assume that
Ni < Ns. Thus we get 4¢™ N2 times the sum of

i 1 _ q—N1—1 1 _ q—N2—1
T SR Dl i st i
Ogl/l SNI OSVQSNQ
q Ni—1 No—1
— 1 — g Ni=1y(1 = g~ N2—1).
(q—1)2( q )(1—q );
R I D M S DR
0<v1<N; 0<r2 <N, 1<m<min(v1,v2)
2
(1_q Z q—u1 IJ2 3m1n(u1,IJ2) )
0<l/1<N1
0<IJ2<N2

qq _—11 Z q -1 Z (q2u2 B q—u2) + Z (q2u1 N q—ul) Z q—uz]

0§U1§N1 0§V2SV1 OSIJ1SN1 U1<U2§N2
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(here we used Ny < Ns)

_ q(q2 o 1) Z [q_ul(qzuri-z -1 B q—l/1—1 ) N (q21/1 B —ul)q_N2_1 _ q—l/1—1
3 _ 2 _ —1 _ -1 _

q 1 <o, q 1 q 1 q 1
_ q q2 _ 1) Z |:ql/1+2 _ q—IJl B ql—IJl _ q—2U1 B q—N2 (qzyl B q_ul) + qU1 _ q—2U1]

¢ —1 oo -1 g—1 qg—1 qg—1

q(¢®> — 1) v, @ 1 a™ 5, ., 1 qg g™

= q + - ¢ =g + -

¢ -1 0<;Nl[ (q2—1 q—l) q—1 (q2—1 q—1 q—l)]

_a@® =DMt g+l @M1 7 1M g+l

-1 "qg—1 -1 -1 q¢—-1 1-¢1 ( > -1

)]

qg—1
glg> =1) 1—g ™Mt ¢%— L Vit TR @@= 1) et
-1 (¢-1) "¢*-1 q+1 ¢*> -1 ’

and (since 4¢m+2vgiitiz = 4qN1+N2gm)

C= > o= Y @)

0<v<min(Ni,N;) v<m<X—v ¢—1 0<v<N;
RS ek B A
q—1 1—qt g—1 7

Then A+ C + B is

q2

BN Q=g ™M HA-¢™ N+ @ -+

(qN1 49— 1 qul—N2+1

P (g™ 147

q3 _ 1q_N2)]
2

q N vl =1 g-—1
= O R G Ty e @ ™)

~1
=1 ELSCE U 7;3 — 0 T (g V).

The product of this with 4¢™V**N2 is the product of 4¢?/(q — 1)? and

1+q+ ¢

).

This is the stable twisted orbital integral of 1x at the strongly f-regular topologically
unipotent element ¢, = h~'t*h under consideration. The stable orbital integral of 1k in
GSp(2, F) at its norm is computed similarly. The only differences are that there are only
two conjugacy classes in the stable class of the norm, parametrized by p which ranges over a
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set {1,e} of representatives for RX/R*2. The constraint p;/ps = ui/us € B1B2R*? in the
twisted case (of Sp(2, F)) is now replaced by p = u € B{B}R*?. Hence we obtain 3 of the
expression which was computed in the evaluation of the stable orbital integral of type (I) of
1k on Sp(2,F). Hence we obtain 1 of exactly the same expression obtained in the twisted
case, except that the parameters Ny, No, X of £, = h='t*h will be denoted by n1,ns, x in the
case of its norm. As in the unramified case we have x = ord D + Ny + Ny,ord D = 1, and
X =ordD + ny +ng. If Ny < Ny then ny = ny = Nl; if ny < ny then Ny = Ny = ny. When
n1 = no and N; = Ny we have ny = ny = N; = Ny and X = Y, then the comparison follows
at once. When N; < N, the twisted expression is 4¢%/(g — 1)? times

1+N; + q2+2N1

NN (1 g=Ni=1y(g 142N _ q—N2—11 +4q

1 1+ q+q?

q —q ).

The expression for the non twisted integral at the norm is the product of 2¢%/(¢ — 1)? and

—Nl—l)( L4 N1+ N, —Nl—ll +q1+N1 +q2+2N1 )

2N, 1 _
( 1 1 1+q+¢?

q —q
Multiplying the last expressions by the measure factor 2 = e(E/F'), as computed in the Lemma

of Section D, we conclude that these expressions are equal. The case where n; < ns follows
(e.g. on interchanging n’s and N’s). The comparison is then complete in Case (I).

F. Endoscopy for H = GSp(2), type (I).

The computations of the orbital integrals of 1 can be used to compare the unstable orbital
integral of 1x at an element of type (I) or (II), where there are two conjugacy classes in the
stable conjugacy class, with the orbital integral of 15 on the proper endoscopic group Cy of H.
The unstable orbital integral is a difference of the two orbital integrals, multiplied by a transfer
factor. These objects are as follows. The dual group H of H = GSp(2) is GSp(2,C), and its
principal endoscopic group has dual which is the centralizer C’o =7 ﬁ(diag(l, -1, -1, 1)) ~
(GL(2,(C) X GL(Q,(C))/. Thus Cy = (GL(Q) X GL(2))/{(,2, 2z Hl

Let Ty be a maximal torus in H. Its group of cocharacters is X.(Txg) = {(z1,y1,y2, T2);
T1+ &3 = y1 + y2}. Its dual group is X*(Tg) = X.(Tx) = {(21,t1,t2, 22)}/ (2, —2, —2, 2)).
The z;,yi, zi,t; are in Z; Ty denotes a maximal torus in E[,TO in ACA’O, Ty in Cy. The group
X(To) = {(z1,y1,92, 22); 21 + T2 = y1 + Y2} is isomorphic to X (Tx), via Xu(Tr)=>X.(To),
(21, tl, t2, 22) — (Zl—|—t1, Zl—l—tQ, tl—f-Zz, t2—|—22). The dual map, from X* (T()) = {(Ul, V1, V2, ’U,Q)}
[{(z,—2,—2,2)) to Xu«(Tg), is given by (u1,v1,...) — (w1 +v1,u1 + v2,v1 + ug, v2 +us). The
tori Ty and Tg are determined by their cocharacter groups, thus we obtain an isomorphism,

w1 O vy O -1 . / /
To = Tw, (( 0 uQ)v( 0 02))/(272 ) > diag(z1 = uivy, T2 = u1v2,TH = UV, T] = Ugv2).
The dual group data includes a choice of a set of positive roots o > 0, so that we have a

discriminant D(t) = al;[0|1_a(t)| ont € T. In particular, on Ty we have Do (( "y u02 ), (o 1?2 ) =

|1 — uy/uz||l — v1/v2|, and on Tg we have

DH(diag($1,$2,$/2afC/1)) = |1 —z1/22||l — m1/25||1 — ma/25||L — w1/ .
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The quotient is

D (urv1, u1v2, ugv1, ugv2) /Do (') 1?2 ), (' 1102 )) = [1 = @1 /2|1 — za/h).

In the case of tori of type (I) the isomorphism Ty=>T g yields a map of F-rational points

At Ty — Tg, induced from ((% ), (¢ 0 ))/(z27Y) = 2% = diag(z1 = tity, 72 =

tioty, oxy,011). If 2 = a; + BiV/D, then z = [x1,%3] = h™'z*h, where h = [h'p, b)),
lies in Ty (= {h™*(y1,y2, 092, 091)h;y; € EX}), and a stably conjugate but non conjugate

element is given by zp = [x1g, X2], where x1p = (ﬁ1§_1 ﬁlal?R),R € F’* — Ng/pE*. Then the
unstable orbital integral is ®{% (r) = @1, (z) — @1, (rr). For emphasis, we sometimes write

Ky for K of H, and K for the standard maximal compact of Cj.

The orbital integrals on H and Cy depend on a choice of Haar measures, which we choose in
a compatible way, as follows. Denote by to a regular element in Ty C Co, and = = A(t) for its
image under A : Ty — Ty C H. We have CD%;O (to) = fTo\Co 1k, (9" o0g)dc, (g)/dr,. Here dg,
is a Haar measure on Cp, while d7, is one on Tp. A Haar measure is unique up to a scalar, deter-
mined by the volume of the maximal compact subgroup. The function 1, is the unit element
in the Hecke algebra C.(Ky\Cy/Ky), thus it is the quotient of the characteristic function of K
in Cy by the volume |Kp| of Ky according to d¢,. In particular, the measure 1k, d¢, is inde-
pendent of the choice of |Ky|: the integral fCo 1k,dc, is 1. We can then assume that |Ky| =1,
so that 1k, is the characteristic function of Ky in Cy. This is used in all of our computations
above, to simplify the notations. Similarly @{{KH (x) is fTH\H 1, (h=tzh)dg (h)/dr,, , and we
may assume that |Kg|i,, = 1 and 1g,, is the characteristic function of K in H. The problem
is to relate the measures dr,, and dr,. This we do by means of the morphism A : Tg — Tg.
Given a measure dr,, on Ty, we can define a measure A*(dr, ) = dr,, o A on Ty. Then there is
p > 0 such that dp, is pA*(dr, ). The factor p is given by the following computation, in which
R, , R, , denote the maximal compact subgroups in Ty, T, and |Rr,|, |Rr,, | their volumes.
Thus

|Rr,| = dr,(Rr,) = pdry, (MR,)) = p|Rry, |/[Rry « M(Ray))],

and u = [Rp,, : M(Rr1,)]||Rr,|/|Rry |, or [Rry, : A(Rr,)], if we take — as we do — dp, and dp,,
to be normalized by |Rp,| = 1, |Ry,,| = 1. Then dp, = [Rr, : A(Rr,)|\*(dr,, ), and we relate
(D{{KH (CE; dH/dTH) with [RTH . )\(RTO)](I)f;;O (to; dC’O /dTo)-

1. Theorem. Let E/F be a quadratic extension, and x = h=(xy, 22,029, 021)h a regular
element of type (I) (thus xi0x1 = wo0x9) in GSp(2, F). Introduce ti,t2 € E* by t1/oty =
r1/0xa, tyfote = x1/x2. Suppose that t1,ts are units, in Rj. Let XE/F be the non trivial
character on F'* /[Ng,pE*. Then

XE/F((.Tl —oxy)(r2 — 0$2)/D)|1 — 1 /ox||]1 — 5172/0332@{{;;5(:6; dg/dr,,)
= [Rry, : A(Bz) 00 (5 5, (% o8))sdoy /dr,)

=00 (4 o) (5 ))sden/ A ).
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Proof. To compute the right side recall that if t = a4 bv/D,t = (
we have

*D) then on G = GL(2,F)
q|(t — ot)/v/D|~' =1, D € TR%,

/T\G Lie(g™ tg)dg = 1 (1) 1)_1{ (q+D|(t—ot)/VDI~1 =2, D e R*.

Recall that x1 = t1ts, xo = t10ts, ©; = a; +6;V D, 3; = Bl{ﬂ'ni, B; € R*, put n = min(nl, ng),
|y — ap| = ¢7X. Suppose that z is absolutely unipotent. Then y > 0, and we have:

2. Lemma. The unordered pair {|(t,—oty)/v/D|~1, |(ta—ots) /v D]~} equals {q™, ¢x~"|D|}.

Proof. This is the statement n = N and x = Ny + Ny + ord D, proven in “Notations” of
Section D. Here is an alternative proof. The product of the two terms is indeed ¢X D, since

¢ X =y — az| = |v1 + 011 — T3 — TX4|

= |t1t2 + at10t2 - t10t2 - t20't1| = |t1 - O't1||t2 — 0't2|.
This is also equal to
= |&1 — oxa||z1 — 2| = (a1 — a2)?® — (B1 + B2)°D|Y?|(c1 — 2)? — (81 — B2)2D|Y2.

If |y — az| < |B1 £ Ba for both choices of sign then the two factors are |(8; + (2)v/D| and
|(B1 — B2)V/D|, one of which has to be ¢~"|v/D|, as required. Note that n; < no implies
2ny +ord D = x. If |B1 + (2| < |ag — ag] < 1 for some choice of sign, then the identity
displayed above implies that |8; F 82| = 1 and |D| = 1, thus || = |f2| =1, so n; = ng =0,
and one of the two factors is equal to 1. The lemma follows. O

In conclusion, the orbital integral on Cj is the product of 1 R (t1)1 R (t2) and

(¢—1)72(¢"* = 1)(¢¥" " —1), DenR”,
(-1 2((g+1Dg" -2)((¢+1)¢¢"—2), DeR".

Let us consider first the case where E/F is unramified, thus D € R*. Here the factor
[1—z1/0x1||l—22/0x2| = |1 —01||x2—02| = |B1f2D| is ¢~™ ~™*. Further, Ng,p Ry, = R*,
and Ng/p B> = R*m?%, hence XE/F is the character on £ which is trivial on R, and takes
the value —1 at w. Then xg/r((z1 — oz1)(z2 — 022)/D) = Xg/r(P1P2) = (=1)"T"2, and
the transfer factor is (—¢)~™ ~"2. The unstable orbital integral @i;"s (x) is a difference of two
sums, each of which was computed in the case of the stable orbital integral, which is the sum
of the two integrals in question. These two orbital integrals are parametrized by p, ranging
over the set {1,7} of representatives for F* /Ng,p E*, with p = 7?,p € {0,1}. The sum (over
J1, 72 > 0, with 2 dividing j1 — (j2 — p)) has now the coefficient (—1)? (the coefficient was 1 in
the stable case), which is equal to (—1)71+72 = (—1)m—vitnz—vz,

Consequently the unstable orbital integral is the sum of the following three sums.

22 2 = > (Bm=0)+dm>1)(1—q¢)¢*™")

0<r1<ny 0<r2<ny 0<m<min(v1,v2) 0<m<n
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1 +1 —v —v +1 v
[ Y 2y (g 3T s (g
m<vi<ni q m<vi<ni q
m<va<na
+1 _
Y gk
m<va<nsg q
Z Z %(q + 1)2(_q)n1+n2—2u L 9gMT,
0<v<nv<m<2n—v q
Snma) 3, )
0<v<n 2n—rv<m<xy—v
1,qg+1 oy v qg+1
= d(n1,n2)[ Z Z 5(—)292n 2 2qmrR 4 Z L
0<v<n2n—v<m<y—v q n<m<xy—n q
The [...] in the first sum is
(@+1)* D (=g —(g+1) D (=9 —(g+1) D, (-9 +1
0<j2<nas—m

0<j;<n;—m 0<j1<n;—m

— (_q)nl—{—nQ—Zm‘

Hence the first sum is

()™ (1+ (1= Y. ¢™) =™ 1+ 1 +q )" 1))

The second sum is

(_q)n1+n2(u)2 Z [qu—{—l Z qm]'

q 0<v<n 0<m<2n—2v

] s

Here [...]is ¢"T1(¢®" "2 - 1)/(¢— 1) = (q/(q — 1))(q2”_” —¢"). Hence 0<z:< [..
(a/(a =) (" = 1) times 3 "= (¢"*' = 1)/(g 1), and we get
(_q)n1+n2 ((] + 1)2 (q2n+1 o qn+1 - qn + 1)
(¢—1)%q '

In the third sum n = ny = ny. It is the sum of two terms, namely

q+1 — _ q+1 q" —1 _
()% D T 1) /(- 1) = (—q )2q2"q”+27(q e (X" — 1)

q 0<v<n
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and
q +1 2n n+1 qx—2n -1
—q . q _—
q q—1

The third sum is then

1
)n1+n2 q + n+1(qx—2n o 1)(qn+1 + qn - 2).

(~a (¢ —1)%q

When ny; < ny we have n = ny and xy = 2n, and the sum of the three sums is

(=)™ (g = 1)?[(q— 1)*+ ¢ (g + D(¢" = D{(g— 1)*+ (¢ + 1)(¢"" = 1)}],

and [...]is ((¢ + 1)g™ — 2)2. If (n =)n; = na, we need to add the third sum (which is zero
when ny # n2), thus to [...] we add ((¢+ 1)¢"™ — 2)(¢q + 1)¢"(¢X~>" — 1). Hence in all cases
(n1 = ny or ny # ng), the unstable orbital integral adds up to

()™ ™ (¢ - 1) ((¢+ 1g" —2)((¢ + L)g* ™™ — 2).

Since the transfer factor is (—¢)~™ "2, our comparison is complete in the case where E/F is
unramified.

Next we consider the case where E/F is ramified, thus D € wR*.

The factor |1 — z1/021||l — x2/0xs| = |B1B2D] is ¢~ "2~ 1. Further Ng/p EX = R**r?,
so that xg/p is trivial at 7(= ng/pmE,Tg = /-7, thus we take D = —) and its restric-
tion to R* has the kernel R*2. Since (r; — ox;)/V/D = ; = Bim™, the transfer factor is
xe/r(B{B3)q~™ "1 The unstable orbital integral is a difference of two integrals, indexed
by p which ranges over a set of representatives {1,u} for R*/R**(= F*/Ng/pE*). The
stable orbital integral was a sum, over p, of the two integrals. We expressed each of these
two integrals as sums, of terms denoted above by A, B, C, which are also sums, over different
domains of summation. Over the domains of summation of A and B, the contributions as-
sociated to p = 1 and p = u are equal, yielding a factor 2 in the computation of the stable
integral, and a factor 0 in the case of the unstable integral. Over the domain of summation of
C, namely 0 < v < n = min(ny,ns) and v < m < x — v, we have the condition p € B} ByR*2.
In the computation of the stable integral we obtained in C a coefficient 1: precisely one of
the p € {1,u} satisfies p € B{B,R*2. In the unstable case the contribution appears in the
positive (resp. negative) integral if xg,r(B1B3) is 1 (resp. —1). Hence the unstable orbital
integral is xg/p(B1B3) - 2¢™ 7™ - C, where we recall that

C=qlg—1)"(¢¥ " = 1)(¢"*t - 1).

Multiplying by the transfer factor xg/p(B{B5)q~™ "2~ we are left with 2(q — 1)72(¢¥™" —
1)(¢"*1 —1), which is the orbital integral of 1 on Cj in the case where E/F is ramified, using
the following.
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3. Lemma. The index [Rr, : N(R1,)] is 1 if E/F is unramified, and 2 if E/F is ramified.

Proof. Recall that )\((tl,atl), (tz,atz)) = (z1 = t1la, x93 = t10le, 029, 0x1). Thus given 1, zo
in RE, we look for solutions tq,ts in R]:i for the equations x1 = t1tq, x9 = tioty. It suffices
to solve m1/xy = ta/ots in ty € RJ. Denote by E' the group {z/oz;z € E*}. When
E/F is unramified, E' is equal to {z/oz;z € R}, so ty exists. When E/F is ramified,
write z = tn'y,t € Ry. Then z/ox = u/ou(—1)", and since u/ou = 1(modmg), the group
{z/ox;z € RE} has 1ndex 2 in E', and x1/z2 = ta/oty has a solution in ¢y € R if 1 = 2,

but not when ;1 = —z2(mod7g). Note that z;/zs = +1(modwg), since z10x; = Ta0x9
implies that x /2 - o(x1/xs) = 15 if 21 /25 = a + bv/D then a® —b?D = 1, and a? = 1(mod ),
so 21/x2 = a(modwg) = +1(mod7g). The lemma follows. O

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the #-orbital integrals can be used to compute the unstable k-6-
orbital integrals, at a strongly #-regular topologically #-unipotent element t* = (1, to, ota, ot1)
(thus t*0 is topologically unipotent) of type (I). The character s is defined on the group
(F*/Ng/pE*)? of f-conjugacy classes within the stable §-conjugacy class of t*. Thus x =
K1 X kg, k; on F* /Ng,pE*. The stable case is that where x; = 1,7 = 1,2. The endoscopic

group associated with x with x; # 1(: = 1,2) is C (GL(2) x GL(2 ))/ We deal with this

case now. The norm Ngt* is ((tlot2 a(t?@) ) (tlgt2 tor,))- Tt = ai+b; VD, then Ag c(t*) =

(ty — ot1)(ts — oto)|p/|tioty - taota|¥? = |bibeD|p. If N; = ord(b;),n; = ord(B;), where
1 = titys = a1 + f1VD,xy = tioty = as + 2/ D, then the orbital integral (I)ch (Net*)
of 1g, on C at the norm Ngt* is a product of two integrals of 1x on GL(2,F) at the
conjugacy classes with eigenvalues (z1,0x1) and (z2,0x2). By Lemma F.2, this integral is
the product of (¢M*! —1)(¢—1)~1 and (¢™>*! —1)(¢ — 1)~! when E/F is ramified, and of
((g—1)¢™ —2)(¢—1)"* and ((¢ — 1)¢™? —2)(¢ — 1)~! when E/F is unramified.

Theorem. Let t* be a topologically 0-unipotent strongly 0-regular element of type (I). Then

Iﬁ?l((tl — O'tl)/2\/5) Iﬁ?z((tz — O'tz)/2\/5)AG,C(t*)(b'fK (t*@) = q)fKC (th*)

Proof. When E/F is unramified, p; ranges over {1,7}, which represents F*/Ng,pE*, and
then r;((t; — ot;)/2v/D) = k;i(b;) = (—1)Ni. When E/F is ramified, p; ranges over a set
{1,e} of representatives for R*/R**(= F*/Ng,pE*), k;(r) = 1, and since b; = B;wNi, the
factor k;((t; — ot;)/2V/D) = k;(b;) is ki(B;). The k-O-orbital integral is a sum no different
than the stable orbital integral, except that the summation over p; and py in F'* /Ng,pE*
is now weighted by the sign k1 (p1)k2(p2). Indeed, recall that p,, is p if m is even, but it is
p = (p1, p2) if m is odd, where {p;, p;} = {1,m} if E/F is unramified, and p; — p; = —1/p; is
a permutation of RX/R*? if E/F is ramified. Hence in our sum

Zfﬁ p1)k2(p2) Z Z [R7 : T - NrKor~ 1]#mem

m>0reRr, ,



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 59

replacing pp, by p changes neither the factor #L;, o, Dor the index [...]. The indexing set
R, is not changed either, when E/F is ramified. However, when E/F is unramified, R,,
defined by j; = p;(mod 2), is changed when p is replaced by p,,. In this unramified case we
may replace p,, by p provided we multiply each summand by (—1)"(—1)" = 1. The weighted
sum thus obtained is precisely the same as that obtained in the proof of Theorem F.1, which
deals with endoscopy for H = GSp(2), type (I), and computes the unstable orbital integral of
type (I). The theorem follows. O

Twisted endoscopic group of type I.F.3, F/F unramified.

When E/F is unramified, the orbital integral of 1x on the twisted endoscopic group of
type (3) of Section L.F is ((¢ + 1)|b2|™t —2)/(¢ — 1), |b;] = ¢~ Ni. Tt has to be divided by
the factor Ag.c, (t*) = |(z — t)(zy — 2t)(wz — yt)|/(Jat[**|y2]) = |z — z[|ey — TY|lay — ya|
(see the last lines of Sections LF and 1.G). Here 2 = a; + b1v/D and y = ay + by/D are
topologically unipotent, which means that they lie in 1+ 7 Rg. Then ord((zy—Zy)(zy—yz)) =
ord(a?b3 — a3b?) = ord(b3 — b?) = ord(a? — a3) = X. Hence the inverse of the A-factor is
¢V TX. We show below that the s-orbital integral is (—q)™ X ((¢ + 1)¢™> —2)/(¢ —1). Put
ka,cy(u) = kp((z — T)(zy — Ty) (2 — yT)), where kg(Rym'y) = (—1)". We conclude the
following.

Theorem. Let u be a topologically O-unipotent strongly 0-reqular element of type (I). Then

ka,o. (WAgc, (W) BT (uf) = BFF (u)

if E/F is unramified, while when E/F is ramified, the left side vanishes.

Proof. The computation of the twisted orbital integral is as in Section D. The s-orbital integral

is
7 (uh) = 79O W) =N "k(p) Y N [RE T NrKyrTU#LL
K p m>0reR,,
where u = h~!'t*h is topologically unipotent. Put N = min(Ny, Ny), where N; = ord(b;).
The factor #L}nmm is equal to #L}nm, and the index [...] is independent of p. When E/F is
ramified we also have R, = R,, hence the sum vanishes. In the case where E//F is unramified,
p = (p1,p2),pi € {1,m},u; =1, and py, is p if m is even, but it is p = (p1, p2) if m is odd,
where {p;, p;} = {1,7}. The indexing set R, , defined by j; = p;(mod 2) is changed when p,,
is replaced by p. Hence we can replace p,, by p at the price of multiplying each summand by
(=1)™.

The sum over r is a sum over ji,j2 > 0 such that j; — p;, j2 — P, are even, and over ¢; in
R*/R*?if j; > 0. When j; > 0 or j» > 0, and v = v; = vy < m, we have 160 € By BaR*2.
In other words, we have a sum over v; = N; —j; (i = 1,2), 0 < v; < N;, and over g; € RX/R*?
if v; < N; for i = 1,2. (If v; = N; for some i, then g; € R*/R*).

Then we need to sum over m. We have the range 0 < m < min(v,v5), then the range
v(=r1y =1ry) < m < 2N — v (since ord D = 0 when F/F is unramified (v; < m implies
v1 = v9)), and the range 2N —v < m < X —v (2N — v < m implies v < m, Ny = N», and
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m < X —v). Let (m = 0) = d(m,0) be 0if m # 0 and 1 if m # 0, and d(m > 1) be 0 if
m<1and1ifm>1.
Thus we get the sum of three expressions:

)N 2.

0<v1 <N; 0<v2<N2 0<m<min(v,v2)

= Y ()"(@Em=0)+6m>1)1-¢ D) Y Y

0<m<N m<vi<N; m<vay<Na
+1 —v —v +1 —v +1 —v
T R S AL T DI o A I
q m<vi <N q m<va<Na q

Z Z 2(u)2(—q)N1_”qN2_” . 2(_q)m+2,j;

2q
0<v<Nv<m<2N-—v

LN Y Y e S L e gym

0<v<N2N—v<m<X—v N<m<X-—-N q

+ Z Z 2(&)2(_q2)N—u . 2(_q)m+2u]‘

2q
0<v<N 2N —v<m<X—v

To compute the first expression, note that

LS M=k Y (o= (g

q

mSU1<N1 0§]<N1—m
and
e . TSR PIIRIN SR P T
q mSIJ2<N2 0§]<N2—m q
q—1 qg—1
Hence (—1)™[...] is
N/ 2 - - -

qg—1 q—1 qg—1

So the first expression is

[(@+1)g™ =2+ (1-¢72) Y ((g+ 1™ ™ —24>)].

Since >y cpenr 2" = (@M —2N) /(2 — 1), the sum is

N 2N
g —1 2q” — 1

gV F—— — 22—
a(q+1)g = Z 1
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We then get
(—g)™
qg—1

[(q+1)g™ + (¢ + 1)%¢™ (¢ — 1) — 2¢*"].

The second expression is the product of (—q)N1¢™¥2=1(q + 1)? and

D D G A D O K W U O VIC R O

0<vr<N r<m<2N-—v 0<v<N

But
@ -1 > =" - D@ -1/~ 1),
0<V<N

hence we get

GO Nt (g4 1@+ — (14 " +1)

o e AR R C q)q :
The sum of the first and second expressions is (—q)™¢?N ((¢ + 1)¢™? —2)/(¢ —1).
The third expression is the product of §(Ny, N2) and the sum of

—q Mg+ (=AY Dy D> (o™t
= g+ (=AY D (—oF =N
g+l R

= ﬁ(—qz)N((—Q)X — )N -1)

I
~~
|
)
~—
2
—~
—~
|
)
~—
~
|
L
N
2
N—r
~~
]
2
|
—_
~—

and of ¢?N ((—q)X =N — (—¢)"). Since X = 2N when N; # No, it is
)™ ((=0)* = *) (g + 1™ —2)/(q - 1).

The sum of the three terms is (—¢)™ (—¢)*[(¢ + 1)¢™* — 2]/(g — 1). This completes the
proof of the theorem, as noted before its statement. O

G. Twisted orbital integrals of type (II).

The stable #-orbital integral @i’ft(ue) of a type (II) strongly f-regular topologically unipo-
tent element © = 0(u) in G = GL(4, F)x F* is equal to the stable orbital integral @flpm’F)’St(u)
K

at u € H' = Sp(2,F). We proceed to compute this integral. Let us recall our notations,
in the case of type (IT). There are three distinct quadratic extensions Ey; = F(vV/D), Ey =
F(VAD),Es = F(v/A) of F, two ramified and one unramified, and we take E5 to be ramified,
and normalize A, D to be integral (in R) of minimal order, thus the set {A, D} consists of a
unit and a uniformizer. The Galois group of £ = FE1FEs over F is Z/2 x Z/2, generated by
o, T, such that E; is the fixed field of 7 in E, and Ey = E{°7).
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The torus T is defined by the Galois action p, thus 7 acts on T* as (23) and o7 as (14).
The torus T = h~1T*h can be realized as [¢pP (a1 + b1V D), $2P (az + bav/AD)]. A complete
set of representatives for the #-conjugacy classes within the stable #-conjugacy class is given
by s, = [#2 (a1 + b1V D), 2D (ay +b2V/AD)), where p; ranges over F* /Ng, ;pE} and ps over

F* /Ng,/p By . Here ¢P (a1 +biv/D) = (% PPy Then s, = h™'(a,b,7b,0a;e)h,a € EY,

be Ey,ec F*. Put T, for the torus (i.e. centralizer) containing s,, in H' = Sp(2, F).

There are two cases to consider. The ramified case is when F; /F is ramified, namely D = 7
and A is a unit (in RX —R*?), so that F3/F is unramified. In this case p; = uimPr, p; = ord py,
ranges over RX/R*2, thus p; = 0. The unramified case is when E;/F is unramified, thus D
is a non square unit in R*, and A = 7, so that F5/F is ramified. In this case p; ranges over
{1,m}, so p; over {0,1}, and u; = 1. In both cases Fy/F is ramified; so ps ranges over a set
{1, ¢} of representatives for R*/R*?, and p, = ord ps is 0.

p(2,F)
1

The computation of the orbital integral @i( (s,) proceeds as in case (I). We use the

double coset decomposition H' = Sp(2, F) = LiOC’&z(m)Kl, of Lemma I.J.6, to get

1 _
o (s,) = / g1 (9™ sp9)dg
TI\H!

=Y |KYm / 1g1 (2(m) " h s, hz(m))dh.

m>0 TF}\Cé/Céﬂz(m)Klz(m)*l

The integrand in the last integral is non zero precisely when h='t,h lies in z(m)K'z(m)~!

1
ﬂC’& = Kgo. Hence we get

— Z |K1|H1/ 1 Cé (halspho)dh().

ol
m>0 Tpl\Cé/KmO Km

Using Lemma 1.J.7 we have an isomorphism ¢, : C1 — C} (dm(h) = ho), dm(KL) = KS.
Define x, by ¢ (z,) = s,, and note that T, = Zcu(s,). Hence our expression is

= 3 K / Lo (k0 (o ()™ o () o (1))
= 7o, (2p)\C1 /K,
=) [Kj: K] lir (W™ h)dh.
S0 Zey (2,)\Cr

Next we change variables on Cy = SL(2,F) x SL(2,F). If m is even,

hos (Lwe) (%770 ), (7" )k

0 1r—m/2 0 1r—m/2

sends h~'z,h to h_l(((l)“(zn),(l 0 ))(I,sw):cp(l,we)((éwgm),(1 O Nh = h='s!,h, where

onx™ Omx™ ™

8y = (8p158p,) € C1, 5p, = qbfl (a1 + b1V D), Spy = QS?QD(CLQ + baVAD).
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If m is odd, and F;/F is unramified,

hoes (Lwe) (77777 00 ), (77T 0 )T, we)h

0 1r—(m+i)/2 0 1r—(m+1)/2

sends h™tx,h to h=1(( (1] :i ),ew( (1) 1(: )5, (( (1) “91- )s (; 1r91 Jwe)h, where i is taken to be 1if p; =
and —1 if p; = 1. Then h~'x,h is mapped to h='s5h, where if p = (p1, p2) then p = (p1, p2),
and pp is defined by {p1,p1} = {1,7}, and py — p2 = —1/Dps is a permutation (trivial if
1 ¢ RX?) of R*/R*2.

If m is odd, and E;/F is ramified, we take

(m+1)/2 (m4+1)/2
h— (I, w"=")((1r mo ,,—(m0+1)/2 )7 (1r mo ,,—(m0+1)/2 ))(ws, we)h,

which maps h='z,h to h_ls%h, where p; — p; = —1/p1 is a permutation, trivial if —1 € R*?,
of R*/R*2, and py + py = —1/Aps is a permutation (trivial if —1 ¢ R*?) of RX/R*2.
Put p,, = p if m is even, and p,,, = p if m is odd. We get

= [Kj: K] / 1x1 (h™'s,,, h)dh.

m>0 Ty, \C1

Using the double coset decomposition for SL(2, F') of Lemma 1.1.3 we get

=Y Y[R} : T, nrEyr[K] K}n]/ g1 (k7 'r s, rk)dk.
m>0reR, , K&

Here R =T, NKg =T, (R). Let j signify (j1,72). To simplify the notations we write p

for p,, until the index m is explicitly needed.
The decomposition of Lemma 1.1.3 is SL(2, F) = ngTME (75 ) (o w1 K if By = F(VD) is

—G-P)/2
ramified over F' (and 7 = /—mp). It is SL(2, F) = UTplta(rF o 0

4 > 0 such that j — p is even, and over e € RX/R*? when j > 1, if E;/F is unramified. Here
T} = ¢P(E1), By = F(VD) and E} is the group of # € EY with norm Ng, ,pz = 1. Further
te € T, = ¢D(E) is an element with determinant e=!. Of course, here K' = SL(2, R).
Consequently the representatives r € R, (p = (p1, p2)) take the form

“_ YK union over
0 ewgg“’)/?) ;

—3 1 0 A —j 10 ..
r= ¢,?1(7l'1 ]1)(0 (EOWF)J'I ) X ¢p2D(”2]2)(07H1'5‘2 )7 J1, ]2 Z 07

when F;/F' is ramified (11 = \/—eom and 5 = /—m denote uniformizers of E; and FEo, where
—(J1-P1)/2
g9 € R* — R*?). When E;/F is unramified, the representatives r are t.(" ¥ o (j1951)/2 )
€7|'F
X¢£2D(7r2_'72)((])-1r%2 ), where ji,jo > 0,51 — p; is even, € ranges over R*/R*? if j; > 1, and
te € ¢} (EY) has determinant e~'. Write go for the residual cardinality #R/mpR of F, and

q = q3 for #R3/m3R3.
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1. Lemma. The index [Rl : Ty NrKgr~'] is equal to @ T2 if By JF is ramified or j; = 0,
and to ¢ (qo 4+ 1)/2q0 if El/F is unramified (then q = qo) and j; > 1.

Proof. This is proven as in the case of type (I), see Lemma B.1, on noting that T1 NrKir=t =
RE'1 (jl)l X RE2 (jz)l,RE(]) = R—FW%RE, and R%—E = RE'1 X RE'2' O

2. Lemma. The integral le/Kl 1x1 (k'_lr_lsprk')dk‘ 15 equal to the cardinality of the set
0 m m

Ly =Ly = {o= (5 22) € SL R (5 ") 20 = (5 20 (5 P20}

T3 T4 b1 a T3 T4

Here we put R,, = R/T'RR, @ denotes the image in R,, of a in R. Suppose that b; =
Bﬂrgi,pi = um%’, and e, = ]1 when e(E1/F) =2 or j;1 = 0, and e, = e(€ R*/R*?) when
e(E1/F)=1 and j1 > 1, so 61 =¢(r),r € R,, and eo = 1. Then we write b, = (B;/eju;)m5,
where v; = N; — j;, (1 = 1,2), and D} = D;elu 2%?1, where Dy = D, Dy = AD.

Proof. As in case (I), see Lemma B.2, recall that d(4) = (A,eAe), and note that K}/K}
=SL(2,Rm) x SL(2,R,,)/d(SL(2, Ryy,)). O

Put X = ord(a; — as).

3. Lemma. The set L. is non empty precisely when the following conditions are satisfied:
(1) 0<m<X. (2)v; >0. (3) m < vy if and only if m < wvs. (4) If vy < m or vy < m then
v1 = va; we denote then the common value by v. (5) If v < m then (By/e1u1)/(Bz2/us) € R*2.
(6) Further, if v < m then m < 2N; —v +ord D;(i = 1,2).

If LY, is non empty, then its cardinality is: 1 if m = 0;(¢2 — Dgd™ 2 if 1 < m < 1y
(equivalently: 1 < m < vy); 2¢5 > if v < m.

abD . _ _
bf o ), i =1,2 we get a; = @z,

hence 0 < m < X = ord(a; — az). We then replace @, by 0 in the equation defining L} , and

Proof. 1If L} is not empty, then comparing the traces of (

conclude that 5/1 = 0 if and only if 5/2 = 0, thus m < vy precisely when m < vs.

The same equation shows that if 5; # 0 for some i, so v; < m, then |b]| = |by], namely
v1 = v3. The common value is denoted then by v. Assume that v(= v; = v5) < m. The set
L} consists of all (z1, 72,73, 14) € R with 2114 — 2223 = 1, satisfying

5/15/1373 = E;xz, b, D1x4 = szle, 5/1:152 = 5/25/2:63, 5/1:151 = 5/2354.
Put n = (By/e1u1)/(Ba/us). Then for each <2 ii) in LL there are as, a4 € R, with

(:v1 $2):(z;77 Y(Dyxaz+m™ " uaz):(wl n72w35’2)(1 wh VA )(12)

T3 T4 n(zi+mEn " Vaq) 3 T 0 1+wm ™" Ay

where Ay, A4 are defined (in R,,) by (" 2“2) = (" n *z:D) )(A2 ). Since the determinant is

3 T A4

one, n lies in Np, = {y € RX;y = 13 — ADB2 edudmaN>72"2 which is RX? since |[AD| < 1.

This is (5) of the lemma.
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If x lies in L, then x1, 24 are units. Otherwise w2, z3 are units, and since we are assuming
that v < m, the conditions that z satisfies imply that D} and D) are units, but AD is not
a unit. Since x1, x4 are units, if 5/151 or 5;52 # 0, namely m > 2N; — v; + ord D; for some
¢ = 1,2, then 775/ 5/1 = 5/25/ (mod 7) implies that N; = Ny and ord AD = ord D, thus
ord A =0, and B}D; = B3D, (mod (x™~(Ni=¥))). But A is not a square (Dy/D; = A), we
obtain a contradiction, and we conclude (6) of the lemma, namely that BQE =0(i =1,2).

The cardinality of L), is clearly 1 when m = 0, and it is #SL(2, R,) = (¢2 — 1)gg™ 2
when 5/ = 0, namely v; > m(i = 1,2). If v < m, the cardinality of L} is the product of
the cardinalities of the sets {As € R,,/T%R,;, ~ R/’II'FR} and {z1,73 € Ry,;23 — D123 €
1+ @5 "Ry, }. The cardinality of the first set is ¢”. The second has cardinality

#{rr,ws € Ryza? — Durh € RYIRZ 14+ 75 Ry,

The denominator is [R* : 1 + 7™ VR]/[RY : R%* = (g0 — 1)¢{" "~ ". Hence the cardinality
of L} is 2(qo — 1)~ 'q2" ™™ - (qo — Vg " - g = 2qm+2” as asserted. O

H. Orbital integrals of type (II).

We need to compare the stable f-orbital integral of 15 at a topologically unipotent strongly
O-regular element u = h=t*h of type (II), computed above, with the stable orbital integral
of 15 at the norm Nu of u. We compute this integral next. This norm Nu = h=Nt*h is
also of type (II) in our listing of elliptic conjugacy classes in H = GSp(2, F'). There are two
conjugacy classes in the stable conjugacy class of a regular element of type (II), represented here

bysp:(pfllbbfp) Wewrltea—(a;az/lA)1fa—a1+a2/\/_hesmE3 F(VA) = E),

similarly for b, p, where p ranges over a set of representatives for E3' /N, g, E*, say 1 and an
element of minimal order in R3 = Rg,. The centralizer T}, of s, in H = GSp(2, F) lies in the
subgroup

Ca={(20):(%") € GL(2, E3)'},
the prime indicates: determinant in F'*.

1. Lemma. The integral @GSp(z F)( Sp) is equal to Y [Ko : Ky pr\CA 1k, (h=ts,h)dh.

m=0
Here Cy = GL(2,F(\/Z))/ and K,, = GL(2,RE3(m))/, where Rg,(m) = R+ 1™VAR =

R+ 7" Rg,, and s, = (p_alb bgp).

Proof. Using the decomposition H = GSp(2, F) = LiOCAumK,K = GSp(2,R) of Lemma
I.J.1, we deduce that -

/ 1K(g_lspg)d9 = Z |K|H/ 1K(u;1h_1sphum)dh.
T, \GSp(Z,F) m=0 TP\CA/CAﬂumKu;ll

Put KA = C4 Nu,Ku,!. The integrand on the right is non zero precisely when h=ls,h €
U Ku,,! N Ca, so we obtaln

= Z |K|H/ lK;?L(h(;lsphO)dh’O'

"0 T,\Ca /K
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Next we use the isomorphism ¢,, : Cq4 — Cy4 (¢dm(h) = ho) of Lemma 1.J.3, which asserts
that ¢, (Ky) = K. Define z, by ¢y, (z,) = s,. We obtain

=3 Kl [ Lo () (G () ™ B ()b (1)

m>0 ZC'A(mP)\CA/Km

in which we can erase ¢,, everywhere. Changing variables h +— (1 0)(é 1/ fwm Jh on Ca, we

obtain
= § Ko / 1k, (h~ts,h)dh.
TP\CA

Using the decomposition C'y = UTTFQTK’, our integral takes the form

— Z Z[Té T, N rK'r[K, : Km]/ 1k, (K~'r~ts,rk)dk,
m>0 7T Ko
where Ty = T) N K' = T;(R) = Ry. Here R}y = {x € Rp; Ng/g,x € F*}.
Recall that ¢ = g3 = qg, denotes the residual cardinality of Ej.

2. Lemma. The index [Ty : T, N NrK'r~Y] is equal to ¢’ if E/E3 is ramified or j = 0, and to
10

(g + 1)¢’~t if E/E5 is unramified and j > 1, where r =rj , = t; ,(, - 7).
Proof. The intersection T) NrK'r~t ~ {t € T);r~'tr € K'} is
0

1 0 a bD a bDpm) °
{a+b\/56T,§;(01r;(jfz>)(b/p ap)(o,,; p):((b/p)";(j—ﬁ) p;rg ) € K'},

which is RN Rpg(j)%, where Rg(j) = Rs+m,Ry = Rs++vDriRs, R3 = Rp,, since b € T} R3.
Put Rg(j)" for RN RE( /)*. Consider the exact sequence

1 = Ry /Re(j) — R5/Re(j)* — R5/RERE(j)* — 1.

The last group is isomorphic, via the norm map N = Ng/g,, to NRy/NRENR*-NRg(j)*.
Indeed, the kernel of the norm map is contained in R’;,. When E/FEs is ramified we have NRj, =
NRg(j)*. When E/E3 is unramified, we have NRY = RY, and NRg(j)* = R3*(j > 1).
Moreover, Ry = RXR3?, since a + b\/mr = a(1+ 2\/7F) (a,b, € R; E3/F is ramified). Hence

(R : Rp(j)] = Ry : Rp(j)*] = [R5 : 1+ 73 Rp]/[Rp(5)" : 1 + 4 Rp).
The denominator here is [RY : RXN(1+@}Rg)] = [RS : 1474 Rs] = (¢—1)¢7 ', ¢ = q3. When
E/Ej3 is ramified, qg = ¢, hence the numerator is (¢ — 1)¢% 1 (since w3 = 7rE) When E/E;

is unramified, ¢ = ¢ and w3 = wg, hence the numerator is (¢ — 1)¢2U~Y. The quotient is
as stated in the lemma. O

Consider the ring S,, = R3/m'? R3, and the subring R,, = (R+ 7% R3)/7"Rs = R/7} R.
If K(x%) = {k € GL(2,R3); k = 1(x%)}, and K,, = GL(2, R3(m))’, where R3(m) = R +
T Rs, then K,,/K(m%) = GL(2,R,,) and Ko/K(m}) = GL(2,Sm)". The prime indicates
determinant in R). We emphasize that R3 = Rg, is the ring of integers in R3, while R,, is a
finite ring (m > 1); they should not be confused with each other when m = 3.
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3. Lemma. The integral fKO/K 1k, (k_lrj_plsprjpk)dk 18 equal to the cardinality of the set
L ={yeGL(2,8S,)/GL2,Ry); y_lrj_plsprjpy € GL(2,Rp)},

a prﬂ"éiF)
(b/p),’r;(J*P)
N = ords(b) = ordg, (b). O

where s, = rj_plsprjp = ( . Consequently, if L], is not empty, then 0 < j <

4. Lemma. The map L), — L, = {z € SL(2,Sy,);7e = ™Y ws,,x™t = 7(s,r)},y —
x = 7(y)y~L, is injective. It is surjective if E/Es3 is ramified, while the image has index two
if E/Es5 is unramified. In particular #L], = 3e(E/E3) - #Ly,, where e = e(E/E3) is the
ramification index of E/FEs.

Proof. For the injectivity, if 7(y1)y;" = 7(y2)y; * then 7(y7'y2) = yi'ye € GL(2,Ry).
If E/E3 is ramified then E3/F is unramified, and the map GL(2,R3) — {z = 7(z)~! €
SL(2,R3)}, y = x = 7(y)y~ !, is onto by Hensel’s Lemma. If E/E3 is unramified then E3/F
is ramified, hence 7(z) = z(modms). Thus 7(z) = 27! implies that 22 = 1(modms3), and
since ||z|| = 1, that x = £I(modms). Namely z € L,, if and only if —z € L,,. Further,
r = I(modms) if and only if x = 7(y)y~! for some y € GL(2,S,,)". Hence L,, is the disjoint
union of image(L;,,) and —image(L},). O
Remark. Put b = Brl,B € R}, and if p = unh,u € RY, we put ¥ = (B/u)wy, where
v =N — j (satisfies 0 < v < N if #L,, #0). Put m/ for 2m/e,e = e(E/FEs3). Then b’ # 0 in
Sm = R3/m PR3 = Rg/ﬂgm/eRg precisely when v < m’ = 2m/e. Let @ be the image in R,, of
ac R3.

5. Lemma. The set Ly, is non empty precisely when 0 <v < N,0 <m' < X = ords(a—Ta),
10 10

( 0e/te )Sp,r( 0 te/e )’

thus ((1) g)spﬂ,(é g)_l lies in GL(2, Ry,) or equivalently that v+m/ < X, and u € BSX? when

E/Ej3 is ramified, and v is even when FE/E3 is unramified.

and when m' > v we further have that there existse € S)X? such that 7s,, =

Proof. Suppose that z = (2; zi ) lies in Ly, thus [|z]| = 1 and 72 = 271, and zs,,27 ' = 7(s,1),
where s, , = (g bDYy and D' = Du?ry’. Taking traces we conclude that @ = 7a lies in Ry,.
a
Hence 0 < m’ < X = ordj (a — Ta), and when b = 0 we are done. Suppose, from now on,
= ("™ 7). Hence
—xr3 T1

). The relation zs,.z=" = 7(s,), but with

that b # 0, namely m’ > v. As 7z =z~ and ||z|| = 1, we have (! 7%%)

1 T‘Q\/Z

rsvVA Tz

T3 T4
there are ro,r3 in R,,, such that z = (

a replaced by 0 (since @ = 7a), is:

z1 VAV 0DD Y\ _ s  N\o (0 70D’ 1 roVA
YT = alspe =) = i 2o = (3 T3P ),
namely
(*) (5,7“2\/Z z1b'D’ )_(TE-Tﬁl-rgx/Z TE'-Tﬁ'-rm)
Vrzy ©D'rsVvA/ T b @y 8 roVA
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Then z; € S, otherwise (since ||z|| = 1) A,re,73 € R, hence D € mpR* and so
D' € m3S,,, contradicting the relation obtained on comparing the entries on second row

and second column. We denote this location by (2,2). In fact this relation, (2,2), shows that
roV A = %ﬁ/rg\/Z%—'ir?’_”Sm. Hence

TE]

r=( " rsD' VAZL +1r§,""”5m) =(} 0)( N ’"35'\/Z+1r§""”5m)
’1"3\/2 TL1 0e .,.mTllr?)\/Z T1 ’
where ¢ = 721 /21, lies in (; S)ZGL@’Sm)(sp,T).

Since v < m’ we have
B//TE/ — 2 (5//7’5/)7’:1]1 . (EI/TB)T'Z\/ZT?)\/Z — .T% — r%AT(E/) +7l'-gn’_y m = .”17% +7I'3Sm.

The first equality follows from ||(Tw\}_ ’"2‘/Z)|| = 1, the second uses the relations obtained
3

A Tz
on comparing the entries at the locations (2,1) and (1,1), and the last follows since E/F is

ramified (thus |A7(D)| < 1). Further, from (2, 1) we have 5//7'5/ =x1/T11 +1rgll_”5m. Hence
z17x1 = 1(modws). If E/Es3 is unramified, then A ¢ R*, hence 1 = a + VA, 172, =
a? — %A = 1 implies that @« = +I and 3 = 0(modms). Then a~lz; € S%2, and ¢ =
(a™lz1) /a2, is as required.

If E/E3 is ramified then E3/F is unramified, R3 / ker(Ng,/p|R5 ) ~ R* (Ng,/r : R — R
is surjective), hence ker(Ng, ,r|R5 ) has index go — 1 in RS, and so it is contained in the index
2 subgroup RX? of RY, hence x172; = 1 (modms3) implies that x; € RX?, as required. In the
lemma, 21 (or a~lz; when E/Ej3 is unramified) is denoted by ¢, as we do from now on.

Suppose again that 3 # 0in S,,, thus v < m'. The relation (2,1), and 7wz = (—1)°w3, b’ =
(B/u)r%, imply that 7(c)/e = b /70 = (=1)"¢(B/u)/7(B/u)(modx! ~¥). When E/Ej is
ramified (e = 2), we deduce that eB/u € RY, namely u € BeRY C BS}X?RYX = BSX.
When E/FE3 is unramified (¢ = 1), E3/F is ramified, hence S N R,,/A is empty, hence
Re(eB/u) = eB/u+7(eB/u) is non zero in R,,, and Re(e B/u) = (—1)"*Re (7(¢B/u)) implies
that (—1) = 0, thus v is even. Hence 7(¢)/e = (B/u)/7(B/u) (modﬂ?l_”), and the relation
(1,2) implies that

DBu/7m(DBu) = ¢/71e(mod ﬂ?’_(2N_V+0rd D))

provided that m’ > 2N —v+ord D(> v). The two relations together imply that DB?/7(D B?)
= 1(modxy ~CN=vFord D)y hamely D(B2—7B2) = 0(mod ™ t~2N). But then |a+7a| = 1,
since s, is topologically unipotent, and

(a —1a)(a+ Ta) = a* — Ta®> = D(b* — 7b%) = O(mod'irg”’“)

implies that m’ + v < X, as required. a

As usual, qg is qr,q = q3 IS qg,, and e = e(E/E3).
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6. Lemma. When L!, is non empty, its cardinality is: 1 if m = O;q?’m’/2 if e =1, and
(g + l)qgml/z_1 ife=2, when 1 <m' <v;eq)'q” when v <m'.

Proof. This is clear when m = 0, and #L/, is the cardinality of GL(2,S,,)’/GL(2, R,,) ~
SL(2,Sm,)/SL(2, R,,) where b =0, namely 1 < m’ < v. Recall that R, = R/m% R, and
#SL(2, Rm) = (2 — D)@@™ 2 = (g2 — 1)go™ /2. Also Sy, = Rg/m™ Ry, and #SL(2, Sp) =
3m'/2(

(¢2—1)¢*'~2. When e = 1,¢ = qo, and the quotient is ¢ m' =2m). When e = 2,q = ¢2,

and the quotient is (¢ + 1)¢®™/2=1(m’ = m). From now on we then assume that v < m/. In
the notations of the previous proof, the set L,, consists of the

o= T1 f—%,ﬁ/ -rg\/Z—ka
T3\/Z TI1

with ||z|| = 1, where r3 € Ry,,a € W?I_”Sm lies in R,,,v/A too (since ||z|| = 1, and TE—EI,E/ lies
in R,, by (1,2) and (2,1)), and 21 = (B/u)ra(1 + 0), where 7, € R, and § € ﬂ?’_”Sm, since
by (2,1) we have z1/(B/u) = r +1rgll_”5m,r1 € R,

In other words, L,, is the set of 4-tuples (ry, 3, a,d) € R2, x (w?'—”sm)2, such that 7a = —a,
and r2(B/u)1(B/u)(140)(14+718)—r3 A- TE—EI,E/—CLT'g\/Z = 1, subject to the equivalence relation
(r1,0) ~ (r},0") if r1(1+6) = r{(140’). Namely we take the quotient of the set of such 4-tuples
by the group 1+ RmAng’_”Sm.

To compute the cardinality of this quotient, take r3 € R,,, 6 € W?’_”Rg /wg”'Rg =
Rs/m4Rs, a = aVA, a € Ry Nl 7 SVAG ~ R oAxT S, (when e =2,4 € R is a
unit; when e = 1, v is even, and A = = 73). Now put B’ = B/u, and recall from the proof
of Lemma 5 that B /TPI = 27 (mod 73), hence B /TPI is a square, in SX2. More precisely,
21=Br,s0 BB = (EI/TEI)(TEI)Z = (§/T§/)2T%, and ’I“%E/TE/ =1,and B7B € RX2.

Since |AD| < 1 and |a| < 1, there are always two solutions in r;. The number of a’s is

the same as that of the equivalence relation by which we divide. We obtain that #L,, is
2¢0"q” (number of ri’s, number of r3 € R,,, number of § € R3/m;"R3). We are done since

L =2 L Je. 0
I. Comparison in case (II), E£/E; ramified (e = 2).

We compare the stable §-orbital integral of 1x at u = s, = [¢p] (a1 + 1V D), ;‘QD (g +
B2/ AD], a topologically unipotent #-fixed element of the form h;lt*hp, where t* =
(t1,ta, Tto,ot1;e) in Sp(2) (the integral vanishes unless e € R*, as we now assume, and then
it is independent of e), with the stable orbital integral of 1x at the stable orbit of the norm
Nt* = (z1, 721,072, 021) in GSp(2, F'). Here t; = a1 + B1VD, and ty = s + Bo/AD.

The assumption that e = 2 implies that A € R* and D = wr, and we have o? — 32D =
1 = o2 — B3AD. By the definition of the norm, xy = tity (721 = t17ts, 0721 = taoty, and
oxy1 = ot Tty). Hence x1 = a1a2+Dﬁ152\/Z+(a251 +a152\/2)\/5 = a1+b1VD. We denote
n; = OI‘dF(ﬁZ) Hence X = ordg(a1 — Tal) = OI‘dg(D\/Zﬂlﬂg) =1+ ni + no (E:_), = F(\/Z)
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is unramified over F'). Further x = ordp(a; — ap) = ordp(a? — a3) = ordp(ADB2 — D) =
1 + 2min(ny, ny), and N = ords(by) = ords(asfy + alﬁg\/Z) = min(ny, nz), since ay, ay are
units.

When e = 1, namely when E/Ej3 is unramified, we have D € R* and A = mp, thus
73 = mp, and then we have that y = ordp (a1 — a2) = min(2n1, 1+ 2n9), X = 1+ 2ny + 2ns,
and N = min(2ny,1+ 2n2) = x.

We shall use this for the actual comparison, but let us first compute.

1. Lemma. Put n} = min(ny,ne), nh = max(ny,n2). When E/Es5 is ramified, the stable
0-orbital integral of 1k at a strongly 0-regular topologically unipotent element of type (II) is
equal to

2 14n, 24-2n1
do —n1—1 —-n 1 1 q q
* 4q”1+”27 1—gy™ qX — g™~
( ) 0 ( 0 )( 0 1 % qo

(g0 — 1)

).

Proof. Let us summarize the result of the computation of the stable twisted orbital integral
in Section G. It is

O () = @O w) =303 D [Br Ty KT Ly,

0
p m>0reR,,

where u = t, = h™'t*h is topologically unipotent. Recall that L,, , ~depends on m and py,,
but for each m, the set {py,,} is the same as the set of p. Hence we replace p,, by p in the
triple sum above.

In this case there is no €, we have summation over 0 < v < n; and 0 < vy < ns, and over
0 <m < x(=1+min(2n1,2n2)). Also m < vy if and only if m < ve, and if m > vy or v, then
v1 = vo is named v, and m is bounded by min (2n1 +ord D — v,2ns + ord(AD) — V) =x— .
On this last range we have the relation u; /us € (By/By)R*%. Then the cardinality of the p’s
is 2, instead of 4, on this range. Then the stable #-orbital integral of 15 at a strongly #-regular
topologically unipotent element of type (II) is:

A D DR TR DI e S U T B W TR SR B SR

Ogulgnl OSVQSTLQ Ogulgnl OSI/QSnQ 1§m§min(u1,vg)

+ Y >, @]
0<v<min(ni,n2) v<m<x—v

—TL1—1 1 _ q—n2 1

1-—
— 4qg1+n2 [ 4o

1—yqy -1 1—q ~
3min(vy,v2) x—v+1 v+1
dy -1 dy — 4y
taldd-1) Y. V" ATt > o J-
0<vi<ni 0 0<v<min(ni,ns2) 0
Osuzgnz

Assume (without loss of generality) that n; < ng, and note that our expression is precisely
that of case (I) for ramified E/F. The lemma follows. O
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2. Lemma. When E/Ej3 is ramified, the stable orbital integral of 1x at a topologically unipo-
tent reqular element of type (II) in GSp(2, F), is

_N— N —N—
() 2q2N+11—QO 1( % gt l+gg 1)
0 l—gg' “eo—1 ¢5—1 a5 — 1

Proof. The integral is the sum over p = u € E5 /Ng,g, E*, which can be assumed to be 1 and
a (non square) unit in R in the case where E/F3 is ramified, e = 2. Then we have a sum
over 0 < v < N and a sum over m(< X —v). Note that m’ = m and ¢ = ¢2 when e = 2. Also,
in the range v < m < X — v, we have that u € BR;Z, namely the sum over p = u reduces to
a single term. The stable orbital integral is then

SN+ 2 Y. A+g e+ Y eqd”)

0<v<N 1<m<v v<m<X-—-v

1—g¢ N1 (g+1)g Y 1 y v
:2(]N[ _+_( )0 Z q ((]3 /2_1)+ Z (qgf +1_q0+1)]

_ g1 3 _ _
1=q % — 1 0<v<N o 10§u§N
_gN[l—Q‘N‘l (1+Q)qO(QéV+1—1_1—q_N_1>
C T -1 \ qg@—1 1—qg7!
—N— N
(e
go— 1\ 1—gt 0 — 1
:2q2N.1—qo_N_1[1+qo_N_1 qg+QO(qN_1+QO_N_1> 1 (+ — VY]
R R S e go—1"" 0
The |[...] here is
1 xy1 | Ny @+ 1 1+qy V! 1 45 + 9o
_1q0 + (3_1_ _1)+ -1 (_ 3_1)'
qo qp qo 1+¢q, dp
Hence our stable integral is as stated in the lemma. 0

Since we are evaluating our stable integral at the stable orbit of Nu or Nt*, we can take
X =1+4+mn1+ng, and N = ny if n1 < ngy, as we assume. Then the stable integral is

2’!11 +2

2q; —ny—1y\( 14n;+ Qo —1 +1 -l
=0 g™ g™ — (g T+ 14 gy ™
((10—1)2( ° (o qg_l(o ’ )
2113+m+n2 (1-— qo_m_l) 142, Q0 —1 _, 1 ni+1 2n1 42
—= - q 1+q ! +q ' .
@ 1) (0 @10 ( 0 0 ))

Multiplied by 2, the stable orbital integral is equal to the stable #-orbital integral computed
above, since x = 1+ 2n; as n1; < no.
Thus it remains to show
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3. Lemma. The measure factor [T*°(R): (1+0)(T*(R))]/[T#(R) : N(T*(R))] is equal to 2
for tori T of type (II).

Proof. The norm map N takes (a,b,ob,ca) in T*(R), thus a € R ,b € RS to (ab,acb,boa,cach)
in T} (R), which consists of (z, 72,072, 02), x € R}, with zox = 7(xoz) € Ry. Thus we need
to solve in a € R the equation a/ca = z/orz( = 7(x/oTx), € Ef = {y/oy;y € E{}).

As in the proof of the corresponding Lemma for tori of type (I), we have [E] : Rl] =
e(E1/F). Put b = x/a. Then o7(b) = o7(xz/a) = o7(x)/oa = x/a = b lies in R, . Hence
[T5(R) : N(T*(R))] = e(E1/F).

Next we compute the index in T*(R) = {(z,y,0y,0z); v € Rl,y € R} (thus y € Ry, yoy =
1)} of (14+6)T*(R) = {(1+6)(a,b,0b,0a) = (a/oa,b/ob,cb/b,ca/a),a € RY,b € RS}. Since
E,/F is ramified, [Fs : R}] = e(Ey/F) = 2, we conclude that [T*?(R) : (1 + 0)T*(R)] =
2e(E1/F). The quotient by e(E;/F) is 2, and the lemma follows. O

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the f#-orbital integrals permits us to compute the unstable, x-
f-orbital integrals, too. Let x be the character which defines the endoscopic group C3 = Cg,.
It is a character on the group of f#-conjugacy classes within the stable 6-conjugacy class of the
topologically unipotent element t* = (¢, t2, ot2, oty) of type (IT). This group is F* /Ng, p E{* X
F*/Ng,rEY, so k is a product k1 X k2. As Ey = F(y/—m), we have Ng, pEy = m?R*?,

hence ra(m) = 1 and Ka2(gg) = —1, where g9 € R* — R*2. Further, when Fy/F is ramified,
Ey = F(y/=€om), hence Ng, /pE{ = (eom)?R*2, and so k1(g9) = k1(m) = —1. This defines
the quadratic characters k; # 1, and k. The Jacobian factor is (when |t1]| = |t2| =1, e = 2)

tl — O'tl)z(tz — O'tz) 1/2
tlatl 'tzo'tz

A5t ta, oty, o) = |( = [B1BeDVA|p = q5 '™,

Theorem. Ift = h=1t*0(h) is a strongly 0-regular topologically unipotent element of type (1I),
E3/F is unramified, and & is the character associated with the endoscopic group Cg, then

—Ag,0, (t")k1 (01 = 011) /2VD) ko ((t2 — 0t2) /2VAD) D5, (10) = T2 (Neyt*).

When Es/F' is ramified, ®f_(t0) = 0.

Proof. The last assertion is proven in the next section. Suppose E3/F is unramified. Then the
K1k factor on the left is k1 (B1)k2(B2) = k1(B1)k1(m™ )k (B2) = ko(B1B2)(—1)™, where kg
is the non trivial character on RX/R*2. Recall that p,, is p if m is even, but it is p = (p1, p2)
if m is odd, where p; — p; = —1/p; and ps — ps = —1/Aps are permutations of R*/R*? if
E/F is ramified. Hence in our sum

Zm p1)k2(p2) Z Z [Rp: T, NrKor '#Ly, , |

m>0reR,

replacing p,, by p does not change the index [...], but it affects the part of the factor #L}n’ o
described by Lemma G.3(5): the corresponding summands will have to be multiplied by (—1)™.
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The k-0-orbital integral is the sum of

( Z Ho(uluz)) Z qg1—u1+n2—u2 (5(m — 0) + (1 _ q0—2) Z qg,m)7

w1, usER* /R*2 0<ri<n, 1<m<min(vy,v2)
OSVQ Snz

which is zero, and

Dot N 28 Y kp(urug) (—1)™.

0<v<n v<m<x—v U1, U

Here n = min(ny, ny), and uy, us range over R* /R*2, subject to the relation (Lemma G.3) that
uirugy € B1Bagy' ™" (there are two such pairs). The factor (—1)™ comes from from changing

R, to R, The last displayed sum is then

Lio(B1Ba)(—a0)™ a3 (—1) T (-0 = (~a0))

= 4(qo + 1) "wo(B1B2) (=)™ qg ™™ ¥ Y 7 [(—q0)¥ap” — ap)-
0<v<n

The last sum is

(—a0)*(1—a" )/ —gq0") = (667" = 1) /(90— 1)
= (@ — (@ "(=D)* = 1)/(q0 — 1).

The left side of the expression of the theorem is then (note that x = 2n + 1,q = ¢3) —4(q —
1)~1(¢"*! — 1). The measure factor is 4, and the right hand side is an orbital integral on
GL(2, E3) at the elliptic element with eigenvalues z,0x1, with parameter N = n. Since
E/Ej3 is ramified, by Lemma L.1.2 this orbital integral is (¢™*1 —1)/(¢ — 1), and we are done.
l

Remark. If E3/F is unramified and precisely one of k1, K, is non trivial, the same computation
shows that the associated k-f-orbital integral is zero. Such k defines the ramified twisted
endoscopic group C, of type (3) in Section LF (namely C, = GL(2,F) x E{, and E;/F is
ramified). This verifies the “ramified” claim of the Theorem of the next Section.

J. Comparison in case (II), £/FE5; unramified (e = 1).

In this case E1/F is unramified, F3/F is ramified and so ¢ = ¢g, and the stable §-orbital
integral is given by a summation over 0 < v; < ny and 0 < vy < na, over ¢ € RX/R*? if
v1 < mi, over py = uy € R*/R*?, and p; = wP1(u; = 1), p; is 0 or 1, subject to the condition
that j; — p; be even. Further, when v; < m or v < m then v; = v» is denoted by v, and
g/us € (By/B2)R*?, and m < min (2n1 —v+ordD,2ny, — v+ ord(AD)). Here D € R* and
A =mp, and as we saw x = min(2ny, 1+ 2ns3), so m < x — v when v < m. Then we obtain
the following.
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1. Lemma. The stable 0-orbital integral of 1k at a topologically unipotent strongly 0-regqular
element u of type (II) is given — when E/FE3 is unramified — by

— n n ni1+2n» 2 q— 1 no
(B 217l g (g g 2D sy

when ny < ny, and by

1
() %q—D_[2¢HMﬁ”+@+1MH%ﬁm+@ ﬂ2—@-+Dfmﬂ

when n1 < ns.

Proof. Recall that L}n,pm depends on m and p,,, but for each m, the set {p,,} is the same as
the set of p. Hence we replace p,, by p in the triple sum above. Our integral is the sum of

1
9 Z qn1—u1+n2—u2 (5(V1 =ny1)+6(vy <nyp)2- %) [1 + Z (1— q—2)q3m]
0<v1<ni 1<m<min(vy,v2)
OSVQSTLQ
and

+no2—2v q +1 +2v
2 3 T[S = my) + = (ni<m)] > 2",
0<v<n v<m<yx—v

where n = min(ny,n2). The first sum can also be written as

2 3 #n( Y a1+ Ha) YD ]

0<m<n m<ve<ns v1=n1 m<vi<ny

=2[(q — 1) (¢ = 1)((¢ + 1)¢™ —2)

)Y e L (g D =2y
" q—1 q—1

+(1—q7°
1<m<n

:2(q _ 1)—2[(q + 1)qn1+n2+1 _ (q + 1)qn1 _ 2qn2+1 +2

+ (1 - q—2) Z ((q + l)qn1~|—n2~|—m~|—1 _ (q + l)qn1~|—2m _ 2qn2+2m+1 + 2q3m)].
1<m<n

The inner sum here is

+1 +1 34ne 2¢°
ST ) = T ) =2 (@ ) (6 - ),
so we get

2(q — 1)72[(g + )g™ 2t — (g +1)g™ — 2¢™ T + 24 (¢ +1)%¢™ T2 (¢" — 1)

n n no n 2q q2_1 n
—(g+ D" (¢"" — 1) — 24+ (¢° —D+"j%jTl@3—1ﬂ
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To compute the second sum, note that m > vy if and only if m > vy, and then vy = vy is
denoted by v, and there are two possibilities. If ny < ny then xy = 2n¢, and there is no m with
ny < m < x —nq; hence v < n = ny in this case. If ny < ny then x = 1 + 2ns and n = ng,
and the m with no < m <1+ ny is m = 1 + ny. Hence the second sum takes the form

+1 1—qg™ g¢v—1
LT~ jmtns (g% : _Z_l — qq — ) +20(na < nyp)(g+ 1)g"+>m

¢"t(g" = 1) (@ = 1) 4 20(n2 < na)(q + 1)gm T

We deal separately with the two cases. When ny < ny,x = 1 + 2ny and n = nso, thus
X +1—n =2+ ny, our integral is

20— 1)7?[(g+ g™ F = (g + 1)g™ —2¢™ T +2

+(q + 1)2qn1+2n2 - (q + 1)2qn1+n2 . (q + 1)qn1+2n2

2q(q%> — 1
(g +1)g"™ —2¢"3"2 4 2¢™F 4 7%53 — (o — 1)
_|_(q + 1)(q2+n1+3n2 _ q2~|—n1+2n2 _ qn1+2n2 + qnl—i-nz + (q . 1)2qn1+2n2)].
Collecting the coefficients of g™t +n2 gnit2n2 gmi+3n2 we obtain () of the lemma.

When ny < ng, x =2n1(= N),n=n1,x + 1 —n =1+ ny, the integral is equal to

2(g — D)7?[(q+ g™ ™t — (g + 1)g™ = 20" + 2+ (¢ +1)%¢" T2 (¢ - 1)
- (q+ 1)qn1(q2n1 o 1) o 2qn2+1(q2n1 o 1)

29(q2 — 1
N q(q )(qgm

P — 1+ (g+ g (g™ =M g™ + 1)),

Collecting the coefficients of g™t 772, ¢?n1tn2 g3mitnz ¢3n1  we obtain (%) of the lemma. [

To complement Lemma 1, we need to compute the stable orbital integral of 1x at the norm
Nu, which is a topologically unipotent regular element in GSp(2, F') of type (II), in our case
e =1, that is F/Ej3 is unramified, ¢ = qo.

2. Lemma. The stable orbital integral of 1x at the topologically unipotent reqular element
Nu in GSp(2, F) of type (II), when E/E3 is unramified, is given by

qg+1 X+41 2 X+1-N qg—1
WQNM@UV)(Q 2 2

N X—N N+1
- T g2)+ (1 -6(2IN))q = 2
0 e (- 0RIN)eTE

2 @UN/2+Y _q
qg—1 ¢ —1 )
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Proof. Here p ranges over EJ /Ng/g,E*, thus p = 7r§ with p = 0,1. There is a sum over
v(0 < v < N) such that N — v — p is even, so the sums over p and v are combined to a single
sum over ¥(0 < v < N). Further, we have a sum over the even m’(= 2m) with 0 < m/ < X,
but X = 1+ 2n1 + 2ny when e = 1, thus 0 < m’ < X — 1. When v < m’ we have that
m' < X —v,and v is even; thus v < m' < X —1—v, as v,m’ are even and X is odd. The
stable integral is then

> Y. VW =N)+(1+q s < N))

0<v<N 0<m'=2m<X—-1
(q3m’/26(0 S m/ S V) + qu+m’/25(y < m/ S X —1-— v,V eVen))-

It is the sum of

> Y - 3 T ¥

0<v<NO0<m'<v  0<m'<N m!'<v<N
g+1, n_
0<m<N/2 q

q+1 2 UN/2+1)
7qN(q[N/2]+1 —1)—

T (g1 g-1 ¢-1 7
and, writing v’ = 2v for the even v when v <m/ < X — 1 — v,
T Yoo RN Mg (Vs even) - Y NP2
0<V/' <N v/ <m/<X—1—v' N<m/<X—1-N
=Y S gy S e
0<v<N/2 v<m< X2_1 — N/2<m< X2_1 %
q+1 X—1__ _ X+1_ N N
:qu Y (g7 =) +0@IN) N (-1 g2 T — g2 )
q 0<v<N/2

N
+1 X+1 _ X+1_ N N
= 6@V L [ (1= ) = (@ - 1) g E g E ]

qg—1-¢g—1
+( (2|N)) N (] +1 ( X+1 (1 N;—l) ( N;—l 1))
-1 q—1 q q q .
This completes the proof of the lemma. 0

We can now complete the comparison of the #-stable and stable integrals.
When N is odd (6(2|N) = 0), since N = min(2ny,1+ 2ns), we have that N = 14 2ns, and
ny < ny, as well as (X —1)/2 = ny + no, so that we obtain

2 q3(n2+1) _ 1

q+1 1+2n2+n1(
g—1 ¢-1

G- 17 1) -

q

Y
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which is half the expression for the stable #-orbital integral when ny < n;.
When N is even, N = 2ny,n; < ng, the stable orbital integral is

Ll[ 1+3n1+n2 __ Lq1+2n1+n2] + 1 [2 _ 2q3n1+3
oy e -1

q+1 q—1
which is equal to half the expression for the stable #-orbital integral when ny < ny. Since the
measure factor is equal to 2, the comparison is complete in the case of type (II).

+ ¢*™],

Proof of Theorem I when FE3/F is ramified. The computations are the same as in the stable
case of Lemma 1, except that both k; are now non trivial. In this case E;/F is unramified,
thus w1 = m, hence Ng, /pE; is R*x?%, and kq(umwit) = (—1)7*(u € RX). The s-f-orbital
integral is then the sum of

Z (—qo)™ gy Z ko (ua) [0(v1 = n1) + (1 + g5 (1 < ny)]

vi,U2

1+ -q7% Y. (a0’

1<m<min(vq,v2)

(0 < v; < n;), which is 0 since us ranges over R*/R*? and

Z (_1)u—n1qn1+n2—2u[Zﬁz(uz) -(5(111 _ nl)

0<v<n w2
1 ~1 +2
+ Z o (u2) Z 5(1 +q71)0(n1 < ny)) Z 2(—q)™ ™"
U2 eEusB1 By R*?2 v<m<y—v
which is also zero (since € is determined by us, leaving us with the sum Y ks (us) over RX /R*2,
us
which is zero). O

Remark. If E1/F is unramified, k; = 1 and ky # 1, the corresponding k-f-orbital integral is
zero by the same argument. The only change will be that the powers of (—1) — introduced by
k1 # 1 — need to be replaced by 1.

Unstable twisted case. Twisted endoscopic group of type I.F.3.

The explicit computation of the #-orbital integrals can be used to compute the unstable x-6-
orbital integrals, at a strongly f-regular topologically f-unipotent element t* = (¢1, to, Tt2, ot1)
(thus t*@ is topologically unipotent) of type (II). The character x is defined on the group
FX/NEI/FEI>< X FX/NEQ/FEZ>< of f-conjugacy classes within the stable #-conjugacy class of
t*. Thus Kk = K1 X Ko, K1 # 1 on FX/NEI/FElx, and k9 = 1. The stable case is that where
k; = 1,7 = 1,2. The endoscopic group associated with x is Cy, with C, = GL(2, F) x E}. As
noted at the end of Section LF, the GL(2)-part of the norm N¢, t* is diag(ts, 7t2). Recall that
to € ES, and Ey/F is ramified. Hence by Lemma 1.1.2, the orbital integral ®1,. (diag(ts, ot2))

is equal to (q|B2] "' —1)/(¢—1) = (¢">** —1)/(¢g—1). Asusual, t; = ay; + VD and ty = o+
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B2V/AD are units, and |3;| = ¢~". Then Ag,c, (t*) = |(t1—0t1)(tita—oti7ts) (t1Tta—ta0t1)|F
(recall that this factor is computed at the end of Section I1.G) is equal to | DV Dy ((a201)? —
(c132)2A)| (recall that Ey = F(v/D) = E™ and E3 = F(v/A) = E?). As noted in the Remark
at the end of Section I, the x-f-orbital integral vanishes when E;/F is ramified. Assume that
E1/F is unramified. Then Ag ¢, (t*) is ¢7™72"27 1 if ny < ny, but it is ¢7?"* if ny > nq. We
claim the following.

Theorem. Let t* be a topologically 0-unipotent strongly 0-reqular element of type (II), E1/F
is unramified, k1 # 1 and ko = 1. Then the k-0-orbital integral of 1 is related to the orbital
integral of 1K0+ on the twisted endoscopic group of type (3) of Section LF, by

k1 (((t1 — ot1)/VD)(t1ts — otits)(t1Tts — taoty)) Ag.c, (1), (£°0) = ¢t . (Ne, t%).

1k

When E1/F is ramified, ®F _(t*0) =

Proof. The computations are the same as in the stable case of Lemma 1, except that now
k1 # 1 and ko = 1. Recall that ¢ = ¢p. Our integral is the sum of

, . q+1 -2 3
2 > (™™ (8(vr = ny) +0(v1 < )2 W)[H Z (1=q7") (=)™
0<v1<m 1<m<min(vy,v2)
Osuzgnz
and +1
2 Y (0T B = )+ i <] 3D 2=,
0<v<n v<msx—v

where n = min(ny,n2). The first sum can also be written as

92 Z m#Ll( Z TL2 1/2 Z 1_|_ 1+q 1) Z (_q)nl—ul].

0<m<n m<va<ns vi=ni m<vi<ni

Here [...] = (—¢)™ ™. Hence we get

— 2(q - 1)—1(_q)n1 [qng—i—l — 14 (q2 - 1)q—2 Z (qn2+1qm - q2m)]
1<m<n

=2(¢— 1) (=)™ g"T (¢ +1) — ¢ — q™].

To compute the second sum, note that m > vy if and only if m > vy, and then vy = vy is
denoted by v, and there are two possibilities. If ny < ny then xy = 2n4, and there is no m with
ny < m < x —ny; hence v < n = ny in this case. If ny < ny; then x = 1 + 2ns and n = ng,
and the m with no < m <1+ ny is m = 1 + ny. Hence the second sum takes the form

_ X—U _ _ v
_2(q + l)qn1+n2 Z ( Q) v 1( Q) (_l)nl—u + 25(71,2 < nl)q"1+"2 (q + 1)qn2(—1)n1+1
o<v<n
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l—g™ ¢"—1
= 2(=1)™Mgm T2 ((—q)¥ T 2_1 - qq — ) +20(ns < ny)(g+ 1)g™ 22 (—1)™ 1

=2(=1)" g™ (¢" — 1)((—q)Xq"~™ — 1) + 28(ns < n1)(q + 1)g™ 2" (=1)™ 1.

We deal separately with the two cases. When ny < n1,x = 1+ 2ns and n = ns, thus our
integral is the sum of 2(¢ — 1)~} (—¢)™ ¢*™2[q — ¢~™2] and —2(q — 1)~} (—q)™ ¢*>"2[q"> T2 — ¢*> +
1—q ™ +¢® —1]. Namely it is —2(q — 1)~ (—q)"1 ¢! T2 [gm2H1 —1].

When ny < ng,x = 2n1(= N),n = ny,x +1 —n = 1+ ny, the integral is equal to
2(q — )7 H(—=q)"[qm "2 (g + 1) — ¢®™ — ¢"2 + ¢"2(¢™ — 1)(¢'T™ — 1)]. This is equal to
2(q — 1) (=g)*™ g™ — 1].

This k-0-orbital integral relates to the orbital integral of 1 Kc, ON the twisted endoscopic
group of type (3) of Section I.F as asserted in the theorem in view of the observations stated
prior to the statement of the theorem.. O

K. Endoscopy for GSp(2), type (II).

In the case of tori of type (II) the isomorphism Ty — Tg yields a map of F-rational points
Ty — Ty, determined by A : ((to1 021 ), (to2 722 )) — diag(zy = tite, 7w = t17ty, 07T = Oty -

ty, 001 = oty - Tty). Here t; € EX,Ey = F(VD) = E™, and t, € EX,FEy = F(VAD) = E°".
As in the discussion of the stable orbital integrals of elements of type (II), we write

t1 = a1 + fiVD,ty = ay + foVDA,x1 = a1 + byVD € E*(a1,b; € EX, Es = F(VA) = E%),

and we recall that the numbers N = ords(by), X = ords(a;—7a1), x = ordp(a;—as3), are equal
to min(ny,na), 1+n1+ng,1+2N, when D € TR*, and to x, 1+2ny + 2n9, min(2ny, 1 +2n,),
when D € R*.

A set of representatives for the conjugacy classes within the stable conjugacy class de-
al leR
blR_l al )

E5 /Ng g, E*. The unstable orbital integral is the difference of the orbital integral at x(1)
(with positive sign) and the orbital integral at z(R), R # 1 (in B3 /Ng, g, E*). Recall also that
the norm map Ng,,r, followed by the inclusion, induces an isomorphism EX/Ng /B B —
Ng, pES /Ng/pE* — F*[Ng, ,pE{ (further inducing the isomorphism R /Ng g, R}, —
Ng,/rR3 /Ng/pRg—=R* /Ng, /p Ry when E/FEj3 is ramified).

termined by (x1,7z1,0721,021) is given by z(R) = ( , where R ranges over

1. Theorem. Let E be the compositum of the quadratic extensions (Ey, E2, E3) of F, and
r =h"Yx1,T01,07TT1,001)h a regular element of type (II) in GSp(2, F) (thus z1i0x1 € EY).
Introduce t, € E{ ts € ES, by t1/ot1 = x1/0T21,t2/Tty = x1/T21. Suppose that t; €
R{,ts € Ry, are units. Let xg, /r be the non trivial character on F* /[Ng, ;pE}. Then

XEl/F((:m — 0331)(7'331 — TJ$1)/D)|1 — $1/g$1||1 _ T£U1/TU;U1|(I){II;“5 ($)

= [Rry, : MBR2)IBT (g o )s (5 2,))-
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The measures are related as in the case of tori of type (I).

Proof. Let us first clarify that the absolute value |- | = | - |F is an extension of the absolute
value on F* normalized as usual by |7r| = ¢;',q0 = #(R/7rR),R = Rp. We write ¢ for
g3 = qE,, and note that

—1/2 .
i70s| = T (ms) |2 = |12 = g / (E3/F ramified ) | _ V2.
Imr| =q;t (E3/F unramified )

As in the case of type (I) above, to compute the right side in the theorem, we use the formula for
the orbital integral on GL(2, F'). We then compute the factors which appear in that formula.

2. Lemma. The unordered pair {|(t; — ot1)/vV/D|™,|(ta — ot2)/vV/D)| ™'} is equal to
{d"7?, ¢*=N72| D]}

Proof. The product of the two terms is equal to ¢~/ 2| D], since
g X% = lay — Ta1| = |z1 + oy — Ty — 0TX| = |t1ty + Ot10ty — tyote — taoty]
= |(t1 - O'tl)(tz — Ut2)|.
The last two factors are given by
|ts — ota| = |z1 — 21| = |(a1 — Ta1)? — (by — 7b1)2D|"/?
and
|t1 — O't1| = |.’171 — TO'JJ1| = |(CL1 — TCLl)Z - (bl + Tb1)2D|1/2.

If |by & 7b1| > |ay — Tay| for both choices of sign, then |(t; — ot;)/v/D| = |by & 7b1| (for the
right choice of sign), and one of |by + 7b1| or |by — 7by| is equal to |by| = ¢~ /2, as required.
If there is a choice of sign such that |b; = 7b1| < |a; — 7aq/|, then |by F 71| =1 =|D|,N =0,
and |(t; — ot;)/v/D| = 1 for some 4, and the lemma follows in this case too. O

Remark. If D € R*, namely E;/F is unramified, since t; € E we have |t; — ot{| € ¢5 = ¢”.
Indeed g = qg as E3/F is ramified. In this case X is odd, hence |(t; — ot1)V/D| ™' is ¢V/2 if N
is even, and ¢&X—M/2 if N is odd.

3. Corollary. The integral q)ig ((to1 021 ) (to2 T(; ) is the product of

Lpx (t1)1px (£2)(q0 — 1) 72
with
((q + 1)qN/2 —2)(q - g X—N-D/2 _ 1), if |ID| =1, N is even;
((g+1)gF=M72 —2)(g-q™N=1/2 1), if D€ R*,N is odd;
(@0 - 1)), if D e R (D] =g )
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Proof. Note that when |[D| = 1,4 = m and |A| = ¢~Y2, hence |(ty — oty)/VAD|™! is
¢ X=N-1/2 when N is even, and ¢®V=1/2 when N is odd. O

Remark. The transfer factor is the product of |1 — z1/0x1||]1 — T21/0T21| = |bTOD| and
xg, /F((x1—021)(T21 —T0ow1)/D) = XE, /7 (b7D) (since |z1] = 1 and the residual characteristic
is odd).

We now turn to the computation of the unstable orbital integral in the case where E/E3
is ramified. As in the computation of the stable integral, we have a sum over p € {1,u},
where u € RY — RY>. While in the stable case both terms indexed by 1 and u appeared with
coefficient 1, in the unstable case the term associated with p = 1 has coefficient 1, while that
associated with p = u has coefficient —1. Only in the range v < m < X — v there appears a
difference between these two terms. Namely in this range we have the condition p € BR;)<2
and so only one of {1,u} makes a contribution. For m with m < v both of {1, u} contribute
and cancel each other. Thus the unstable orbital integral is given by the sum

0<v<Nv<m<X-—v

The double sum here is

— v v qo _
(@-1"" D (@ -t = m(q(i( N—1) (g - ).
0<v<N

This is the product of gy = ¢*/? and the orbital integral @f}‘; of the Corollary above. Since
b= By, |brbD| = ¢ Ng;*', in fact w3 = 7p and Tp = Ng, /pm1, as Ty = VD and D = —7p.
Hence the transfer factor is xg, , r(BTB)g Nqy ! and the product of the transfer factor with
the unstable integral is indeed the integral @f}g, as asserted.

Finally we consider the case where E/Fj3 is unramified, thus D € R*. Again we have a sum
over p in EY/Ng /B, B, parametrizing the two integrals which make the stable and unstable
orbital integrals. A set of representatives for E3 /Ng, g, E* is given by {1,735}, and as usual

we write p = %5, thus 7 € {0,1}. The orbital integral is a sum over (0 < v < N) such that
N — v —p is even. In the stable case, both sums were added and thus combined to a single
sum over ¥(0 < v < N). Now in the unstable case, we need to multiply the contribution by
(—1)? = (=1)N¥ =" before adding up the sum. The unstable integral is then

> > (=) (S(r=N)+ (1 +¢ (v < N))

0<v<N 0<m'=2m<X—1

(q3m’/26(0 S m/ S V) +qy+m’/25(y < m/ S X —1-— v,V eVen))-

This is the sum of two terms. The first is

2 2 = 2, P s 3 ot

0<v<N 0<m'<v 0<m’'<N m/'<v<N
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)N, s0 the sumis (—g)N Y g™ = (—q)N(g 1) (¢TV/H - 1),
0<m<N/2

where [X] is the biggest integer bounded by the real number X.

The inner (...) is (—q

Writing v/ = 2v for the even v when v < m’ < X — 1 — v, the second term is

S RN g 6N s even) S gV

0<V/ <N v/ <m/<X—1—v' N<m'<X-1-N
= ) > (14 ¢ H(=D)Ng" ™ 4+ 6(2|N) > gt
0<V<N/2v<m<i(X—1)-v N/2<m<3(X—1)—§N

—(1- 6(2|N))%(q%(X—N) gy )

F02IN)(g— 1) =)V ((g + 1)qz X+ — 23 KHI=N) _ (g2 L 1)gN/2 4 g 4 1),

where the last equality follows at once from the corresponding computation in the stable case.
The sum of these two terms, when N is odd, is

(__L)N(q%“v“) ~D)((g+1)g2EN —2),

while when N is even it is

o )1];2 (g +1)g™? =2) (=07 ).

The transfer factor is the product of |D| = 1,|brb| = ¢~V (as |w3| = ¢~1/2), and xg, /¢ (b7b) =
XEI/F(WN) = (=1)N, since 13 = VA, A = —7, and so Ng,/rm3 = m. In view of the Corollary
above, our comparison is complete for regular elements of type (II), once we prove:

4. Lemma. The index [Ry, : N(Rr,)] is 1 if E1/F is unramified, and 2 if E1/F is ramified.

P?"OOf. Recall that )\((tl,O'tl), (tz,O’tz)) = (.Tl = tltz,T.Tl = tlo'tz,O'Tl'l = O'tl . tz,O’JJl =
O'tlo'tz), with ¢; € F; = F(\/E) . ET, and &5 € Fy = F(\/E) = F°7. Note that x10z; =
7(x1021) implies that (xy/o7x1)o(x1/oT21) = 1, hence z1/oTx1 = t1/0t; has a solution in
t1 € EJ, and our index computation is the question whether there exists a solution #; in
R{. Indeed, if such a unit solution ¢; is found, we can define the unit to = z1/t;, which
satisfies o7(x1/t1) = oT21/0t; = 1/t1 = t2 € ES. In the proof of the analogous Lemma in
the case of elements of type (I) we have seen that t; € R exists if E;/F is unramified, and
that {t1/ot1;t1 € R} has index 2 in {t1/0t1;t; € E{} when FE1/F is ramified. The lemma
follows, as does the Theorem, transferring the orbital integrals of 1 on H = GSp(2, F) to its
endoscopic group Cy = GL(2, F) x GL(2, F)/{(z,271); 2 € F*}. O

L. Comparison in case (III).

In this case the norm map goes in the opposite direction than in case (IT), and we shall
reduce the computations here to those of case (II). Let us recall the notations. The three
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quadratic extensions of F' are Ey = F(v/D), Ey = F(\V/AD),E3 = F(\/A), Ey/F is ramified,
A and D are integral of minimal order, E = E3(v/D) has Galois group Z/2 x 7Z/2 generated
by o, T such that E5 = E{?), By = E{), Ey = E{°7). The two 6-conjugacy classes in the stable

f-conjugacy class of a strongly f-regular element of type (III) are represented by ( pib bfp ), P

ranges over a set of representatives for FJ/Ng /B B X, including 1 and an element in R3 of
minimal order.

Our element is moreover topologically unipotent, and it commutes with 6, thus these rep-
resentatives lie in Sp(2, F'), and they are conjugate by #-invariant elements to the diagonal
element t* = (¢, 7t, o7t,ot; e) in the diagonal torus T*. For our integrals to be non zero, e must
lie in R*, and then the integrals are independent of e, so we omit e from the notations. Now ¢
lies in E*, and we write it as t = a + bv/D, where a = a1 + aaVA, b= By + B2V A; ;. 5; € F.
Then 7t = 7a + 70vV/D, 0t = a — bV/D, and T7a = a1 — asvVA. The norm map maps t* to
Nt* = (zy = etrt,xs = etoTt, 0wy = eTtot,ox; = eotrot;e?).

Note that ¢t* lies in Sp(2), thus totrtort = 1, and we omit e from the notations. Then we
have

x1 =ttt = ara + brbD + (aTh + bTa)\/l_) = A, + B1VD,
and

bra — atb
Ty = toTt = ara — brbD + (%)VAD = As + BoVAD,

where A;, B; lie in F. Further, 1 = x1001 = A? — B}D, and 1 = x3722 = A3 — B2AD. Since t
is topologically unipotent, so is a, and |bD| < 1, hence «; is topologically unipotent, |Aas| < 1
and [bD] < 1.
We proceed to relate the numbers associated with the norm map.
1. Lemma. If N; = ordp B;(i = 1,2),n = ordsb,x = ordsz(a — 7a) and X = ordp(A
As), then n = émin(2N1,2N2 +ordA),x = é(ordFA + 2ordp D + 2N; + 2N3) = é
ordgp D + 2N7 + 2Ns),ordp 3; = N;(i = 1,2), and X = ordp D + en. Here e = e¢(E/E3
e(E1/F),ord = ordp,ords = ordg,.
Proof. Note that n = ords b = ords(S; + ﬂz\/Z) = é min(2 ordg 1,2 ordg B2 + ordp A), since
ords(mp) = ordg(wg/e) = 2/e so that ords(z) = 2ordp(x) for z € F*. Further we have
x = ords(a — Ta) = OI’dg(CMz\/Z) = é(ordF A+ 2ordp asg), and noting that A; + Ay = 2ara is
a unit, also
X =ordp(A; — Ay) = ordp(A? — A2) = ordp(B?D — B2AD)

= ordp D 4+ min(2Ny,ordp A + 2N3) = ordp(Dbrb) = ordp D + e ords(b)

= ordp D + min(2ordp B1,0ordp A + 2ordp 33) = ordp D + en.
Hence {ordp 1,ordp 2} = {Ny1, N}, with ordp 3; = N;(i = 1,2) if ordp A = 1. In fact,
if [B2] = [B1] = |a1f1 — azB24], since [Aas| < 1 = |a;|, we must have |B1| = |B2[, hence
|B;| = | 5| also for A € R*.

Now (7 bf) lies in SL(2, E3), hence

1=0a®>—-0’D =02 +a3A+ 20105V A — (B + B3A+ 2ﬂ152\/Z)D
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=i + a5 A — (B} + F3A)D + 2(araz — f1 /D) VA
implies that ae = (152D /a. Since «; is a unit, the expression for x follows. O

The computation of the stable #-orbital integral for an element of type (III) follows closely
the computation of the stable orbital integral of the norm of an element of type (IT). In both

b bf) + ©1K(b7p b]:p) over p € B3 /Ng g, E*, the difference
being that in case (II) the integration is performed over GSp(2, F'), while in case (III) the
integration is over Sp(2, F'). However, the result in case (III) is exactly the same as in case
(IT), since Ts\Sp(2,F) = T\T - Sp(2, F) is T\GSp(2, F) where Ts = T N Sp(2, F'). Indeed,
det T = {acaraora; a € EX} = N, p EX = F*2.

cases the integral is a sum @4, (

2. Lemma. The stable O-orbital integral of a strongly 0-reqular topologically unipotent 0-fized
element of GL(4,F) x R* is equal to

1— q—n—l qx qn+1 1 + q—n—l
2qgn+1 . 0 ( 0 o 0 0 )

l—qp" “eo—1 @-1 g -1

when F/Es is ramified, while when E/FEs5 is unramified the integral is equal to

2 x+1—n q—ln
———q"[6(nis even e L . + ——q2
57" [6( )(q . q+1Q)

9 B(In/2+D) _q
g—1 ¢#-1

x+1 x—n

+ (¢ —q 7 )d(nis odd) —

Proof. When E/Fj5 is ramified, the computation is immediately adapted from the case of the
norm of an element of type (II), and we obtain the expression (k%) of Section I, except that
in our notations (N, X) have to be replaced by (n,x). Similarly, when FE/FE3 is unramified,
the expression of the lemma appears in the part dealing with the computation of the stable
orbital integral of the norm of an element of type (II), in Section J, except that our current
notations are (n,x) instead of (N, X). O

Similarly, the computation of the stable orbital integral of the norm of an element of type
(ITT) is immediately reduced to the computation of the stable §-orbital integral of an element
of type (II). Of course, the f-integral ranges over Sp(2, F'), and the stable f-integral is a sum
over 4 f-conjugacy classes.

The orbital integral of the norm of an element of type (III) is already stable, and the
integration ranges over GSp(2, F'). In fact the orbital integral over GSp(2, F) is a stable
orbital integral over Sp(2, F'), and each of the conjugacy classes in the stable orbit in Sp(2, F)
is represented by conjugation within GSp(2, F)). Moreover, Ts\Sp(2, F) = T\T - Sp(2, F),
and [GSp(2,F) : T - Sp(2,F)] = [F* : F*?] = 4, since the factors of similitude of ¢ € T
with eigenvalues (a,b,0b,0a),a € Ey,b € ES, aca = bob, are in Ng, ;pE N Ng,/pE5 =
Ng/pE* = F*2, while those of GSp(2, F) are in F*. Consequently, we obtain



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 85

3. Lemma. The orbital integral of the norm of a strongly 0-reqular topologically unipotent
element of type (II1) is equal to

’ _ N o 1+q1+n+q2+2N
4q(])V+N +2(q0_1) 2(1_q N 1)(qX . N —1 0 0 )

0 0 ) 1+qo+q§

where N = min(Ny, No), N' = max(Ny, N2), in the case where E/E3 is ramified, while when
E/Ej3 is unramified, the integral is

_ qg—1
2(g — 1)"2[(q + 1)q2~|—N1-|—3N2 —(q+ 1)q1+N1+2N2 _ 2q3 — (q3+3N2 ~1)]

Zsz < Nl, while Zle < Ny it is

1
2(q — 1)72[(q + 1)g* 3N+ _ gglH2N1HN2 4 7;3 — 2 (@ +1)g*M)]

Proof. When E/FEj3 is ramified, our expression is obtained from (x) of Section I on replacing
ny < ng there by N < N’ here, and x by X. When E/Fj5 is unramified, our expressions are
obtained from (x) and (xx) of Section J, on replacing n1,no there by Ny, Ny here. O

To compare the stable #-orbital integral and the stable orbital integral when e = 2, note
that ordgp A = 0 and so x = 1 + Ny + Ny and n = min(Ny, N2) = N, and X = 1+ 2n. Put
n' = max(Ny, N2). The O-expression is then

3
_ e 1,9 — 1 ' e
2qgn+2(q0 . 1) 1(1 _qon 1)(q3 - 1) l(qz — _qé—i—n—i—n _qg~|—1 -1 _qon 1)7

and the integral of the norm is twice that.
When e = 1, ordp A = 1, we have X = n = min(2Ny,1 + 2N3) and x = 1 + 2N7 + 2Ns.
When Ny < N; we have that X =n =1+ 2N, is odd, and the #-expression is

2 q3(N2+1) -1

q+1
(q — 1)2 1+2N2 (q1+N1+N2 _ qu)

while the integral at the norm is twice that. When Ny < Ny, X = n = 2N;, the f-integral is

2 q3N1+3 -1

q+1 2N1(q1-|-N1+N2_ 2 1+N2_|_q_1N1)_ 3 ,
g—1 ¢g°—1

(q—1)2q q+1q q+1q

while the integral of the norm is twice this expression.

We are then done once we show that in the case of type (III), the measure factor is %
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4. Lemma. For tori T of type (III), the measure factor [T**(R) : (1 + 0)T*(R)]/[T%(R) :
N (T i b

Proof. We first compute the index in T3 (R) = {(z,y,0y,0x);x € R,y € RS ,xox = yoy} of
the image {N(a,7a,07a,0a) = (ata,aota, Taca,cacra);a € R5} of T*(R) under N. Thus
we need to solve in a € R, the equation x/oy = a/ca. Since (x/oy)o(xz/oy) = 1, there is a
solution a in E*, and as usual we note that the index in {a/ca;a € E*} of {a/oa;a € R}
is the ramification index e(E/E3), where E3 = E°.

Given a solution a € R}, put ' = z/ara,y’ = y/aocra. Then 2’ = oy’ € R N Ry = R*,
and it remains to find b € R} such that z'(€ R*) is equal to N (b, 7b,07b, ob), thus 2’ = brb =
botb = Tbob = oboTb, or b = o7hb = b = b. Hence only the 2’ in R*? are obtained by the
norm, and we pick the factor [R* : R*?] in the index of the image of the norm in T} (R).
Thus [TF(R) : N(T*(R))] = 2e(E/E3).

The index in T**(R) = {(z,72z,07z,02);7 € R}, vox = 1} of the image (1 + 0)T*(R) =
{1+ 0)(a,7a,01a,0a) = (a/oa,Ta/oTa,0ra/Ta,0a/a);a € RE} of T*(R) under (1 + 0) is
computed next. Since zox = 1, there is a in EX with z = a/oa. We can solve in a € R}
only up to the index e(E/E3). Then the quotient e(E/E3)/2e(E/E3) is 1/2, and the lemma
follows. N

Unstable twisted case. Twisted endoscopic group of type 1I.F.2.

The explicit computation of the #-orbital integrals will now be used to compute the un-
stable, k-f-orbital integrals, at a strongly 6-regular topologically #-unipotent element t* =
(t,7t,o7t,ot) of type (III). The character & is the # 1 character on the group E5 /Ng/ g, E*
of f-conjugacy classes within the stable #-conjugacy class of ¢*. The associated endoscopic
group is C = (GL(2) x GL(2))/. The norm Ngt* is ((tgt U(th)), (tUOTt Ttoat)). Recall that
x1 = trt = Ay + B1VD lies in E), and wg = tort = Ay + BaV/AD lies in EY. The Jacobian is

Ag,c(t*) = |(t —at)T(t — ot)|p/|tTt|Fr = |bTbD|F = |b|3|D|F = ¢ "|D|F

ast =a+bvVD,ot = a—byVD,n = ords(b), thus it is g; ™ when |D|p = 1 (as then ¢ = go), and
qo 2"~ ! when |D|p = ¢ " (as then ¢ = ¢2; recall that E3 = F(v/A) = E° and E; = F(V/D) =
E™).

The orbital integral of 15, on C at Ngt* is the product of two integrals. If N; = ord B;,
Lemma [.I1.2 asserts that one of the factors, the orbital integral of 1x on GL(2, F'), at the class
with eigenvalues x5 and oy, as Fy/F is ramified, is (¢0> ™" — 1)/(go — 1). The other factor is
such an integral at the class with eigenvalues z; and oz in Ey. Then it is (g0 ™" —1)/(go—1)
if B1/F is ramified, and ((go + 1)g0* —2)/(q0 — 1) if E1/F is unramified.

Theorem. Let t* be a topologically 6-unipotent strongly 0-reqular element of type (III). Then

K((t - ot)/2VD)Ag,o (%)@, (170) = ®F, _ (Not™).

Proof. Consider first the case where E/FEj3 is ramified. Then E;/F is ramified, ord(D) = 1,
and since E/FE3 is ramified, Ng, g, E* = R5 >w”, thus p ranges over RS /RX?, and the unstable



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 87

f-orbital integral of type (III), which is described also as the unstable orbital integral of type
(IT), is a sum over p of k(p), as well as sums over ¥(0 < v < n) and m(0 < m < x) as in the
stable case. The sum over m(0 < m < v) is zero since the only dependence on p is via k(p),
and  £(p) = 0. On the range m(v < m < x —v), we have the requirement u € BRX?, thus

k(p) = K(B) = k(b) = k((t — ot)/2V/D) there (as r(m3) = 1). The k-f-integral is then

" Y 25"

= 26(B)¢"qo(g0 — )" Y (¥~ —af)
= 2(B) a0lgo — 1) g (1 — ™)/ — g5 — (gi — 1)/ (g0 — D)]
=26(B)gy" (g0 — D)2 (gd " — )(gg T = 1).

Since n = min(Ny, N3), and x = 1+ Ny + Na, the set {n + 1,x —n} is {N1 + 1, Ny + 1},
and the theorem follows when E/F3 is ramified (the factor 2 is due to choice of transported
measure).

Next we consider the case where F/FEj3 is unramified, in which case ¢ = ¢y and p ranges
over a set {1,m3} of representatives for E5 /Ng, g, E* = Rin%/RSn3". The unstable, or k-6-
integral, contains a factor (—1)? = (=1)7 = (=1)"7". Otherw1se it is the same as described in
the proof of Lemma J.2, namely Zogugn Zogm'zzmgx—l(_q)n_y*- As there, we write this
as a sum of two terms. The first is

Yooy = Y Zl+ 1+¢7Y) Y (—9™™)

0<v<n 0<m'<v 0<m’'<n m'<v<n
= > A+ 0+a) Y o)=Y (=™
0<m<n/2 0<v<n—m/' 0<m<n/2
= (=" Y "= (T =1 (g - ).
0<m<n/2

’

The second is the product of (=1)7 = (=1)"7" = (=1)", as v/ is even, and the second term
in the proof of Lemma J.2, namely it is

+1 n " . .
(q {5 2| q 1( (x+1 )/2 _ 1)(q /2 1)+q(x+1 )/2 —q /2+1]

+(1- 6(2|n>)[jf—1<q<x—">/2 — 1) 1)

Recall that x = 14+2N;+2N>, and n = min(2Ny,2N3+1),ase = e(E/E3) = 1, and ord A = 1.
Then n is even if n = 2Nj, and the sum is ¢" /(¢ — 1) times

Ni+1 _q + q+ 1 ("N — 1)(gN = 1) 4 ¢+ — gt

= ((q + 1™ = 2) (g™ - 1)/(¢ - 1),

q
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as required. When n is odd, then n = 2N5 + 1, and we get the product of (—¢)™/(¢ — 1) and

q_

q

This is the same expression as for even n, so that we are done. 0
M. Comparison in case (IV).

Strongly f-regular elements of type (IV) lie in the stable f-orbits of elements t* =
(t,ot,03t,0%t;e) in the diagonal F-torus T*. This torus is isomorphic to EX, where E is an
extension of F' of degree 4, which is not the compositum of the quadratic extensions of F'
To study the orbital integrals of 1x we may and do as usual assume that e = 1, and omit e
from the notations. Recall that E is a quadratic extension E3(v/D) = F(v/D) of a quadratic
extension E3 = F(v/A) of F, which can be described as follows.

The element A is either a uniformizer 7 in R C F or a unit e € R — R*2, taken to be —1
if —1 ¢ R*2. The element D € R3 — R2 can be described as D = a + BVA witha=0,8=1
if A=m a=0,8=1orm, if -1 € R*?> and A € R* — R*?; (o, ) € R*? or € (wR*)? if
A=-1€RX - R*2

The Galois closure E of E/F is E unless A = m and —1 ¢ R*2, in which case E/FE is
quadratic and Gal(E/F) = D4. The field embeddings E < E which fix F' are generated by
0,0(vD) = oD,c?(vV/D) = —/D,o0VA = —/A. Writing t = a+bV/D, with a = a; +aVA
and b = by + bz\/z, we have ca = a1 — asV/A and ob = by — by/A.

1. Lemma. The parameters x = ordz(a—oa) and n = ordsz(b) associated with the strongly 0-
regular topologically unipotent elements of type (IV) are equal to the corresponding parameters
X and N associated with the norm Nt of t. Further, x > 2n + ordg D.

Proof. The parameter x = ordz(a — ca) = ordz(axV/A) is ordz(as) if A € RY, and 1 +
ordz(az) = 1+ 2ordp(ay) if A = 7p = w2 (then ordz = 2ordp, we usually omit the sub-
script F'). The parameter n = ords(b) = ords(bs + bav/A) = min (ords(b1), ordz(b2v/A)) is
min (ordp(bl),ordp(bg)) if Ae R*, and min (2 ordp(by), 1+ 2ordp(b2)) ifA=mp.

The norm Nt* of ¢t* is (we put e = 1 and omit it from the notations) equal to (z =
tot,tot, ota®t, o*to3t). We claim that the element Nt* is of type (IV), associated with an
extension E’ of degree 4 of F'. This E’ is Galois and it coincides with F, unless A = 7 and
—1 ¢ R*2, In this last case, E' = E4(v/D') = F(V/D') and E} = F(V/A"), where A’ = —4x
and D' = V/A’, and E'/F is not Galois.

To verify this, put ¢ = v/oD/v/D, and note that

z = tot = (a+bVD)(ca+obVoD) = (aca+ CbobD) + (boa+ Cacb)V'D = A, + B, (1+()VD

defines elements A, and B,. These A, and B, lie in F} when A = and —1 ¢ R*2, since

then ¢ = v=1,2¢D = v=4x, (1 - O)/(1+¢) = ~¢ = —/~1, and

B, = (boa + Caob) /(1 + () = (arby — azb2 A) + (arbs — azby) 1 J_r g\/Z
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Further z € E’, since (1+ ¢)2D = 2(D = \/—4.

In all other cases we define E to be E3 and E’ to be E. In fact, if A =& and —1 € R*?,
or A€ R* and —1 € R*2, we have that ( = /—1 € R*.

In the remaining case A = —1 € R* — R*2, and D (or D/x) lies in RY — RX?, hence so
does oD (or oD /x), and so oD /D lies in RX?, and ¢ lies in RY. Then E3 = F(¢D) and
E =E;3((14+¢)VD).

When computing the parameters X, N associated with A, By, the index 3 refers to Ej.

Let us now show that n = N, namely that

. 1-
|b|3 = |bl -+ bz\/Z|3 1S |(albl — azbzA) + (albz — azbl) 1 i g\/Z|3 = |B*|3

Since t = a + bv/D is topologically unipotent, we have that a = a; + a2V/A is topologically
unipotent, and |[b| < 1 if |[D| = 1. Hence a; is topologically unipotent, and |as| < 1 if
|A| = 1. Suppose that |A| = 1. If |b1] < |bo| then |b] = |be| and |B.| = |bs| (of course,
|1 —¢|=|14|), and if |b1| > |bz| then |b| = |b1| = |B«|. Suppose that |A| = |mx|. If |b1]| > |b2]
then |b| = |by| = |B.|, and if |by| < |ba| then |b] = |bov/A| = | B,|.

Finally, let us show that x = X, namely that |a — oals = |asV/Als is equal to |[A, —0A,|5 =
|bob¢D|3. For that note that the element t = a + bv/D of type (IV) is represented by a matrix

(z b;)) in GL(2, E3)’, whose determinant lies in F'*. Thus to?t lies in F'X. Since

to’t = a® — b?D = a% + a%A + 2a1a2\/z — (b% + b%A + 2blbz\/Z)D,

and D = TI(a + BV A) with TT = 1 or 7, it follows that the coefficient of v/A is zero, hence
las| = |2a1a2| equals|II| - [(b? + b2A)S3 + 2b1bacr].

There are three cases to be considered. If A = 7w then o« = 0 and 8 = 1,II = 1, so
b2 + biw| = |b? — b3w| = |bob| implies that |agv/A| = |bob(D|. If A € R* and —1 € R*2,
then D = VA, and |II(62 + b3A)| = |II(b? — b3A)| = [(Dbob|. If A = —1 € R — R¥2,
then D = I(a + Bv/—1) with o, 8 € R*?, and we claim that |(b3 — b3)3 + 2b1bac| is equal
to |bob| = |b? + b3| = max(|b?|, |b3|). This is obvious when |by| # |bz| or when |b;| = |bs| and
b7 — B3] < [ba?.

Suppose that |b1| = |b2| = 1, put = by /by and v = a/B. To show: |22 +2yx —1|is 1. This
quantity can be expressed as |(z+7)?—v2—1|, or |(Br+ )% —a?— 32|, or |D1o D1 — (a+ Bx)?|,
where D1 = a 4+ 3v/—1. Now Dy € R} — R}?, and Ng,/rD1 ¢ R*? (otherwise Ng, /p R} =
R*2, but E3/F is unramified so Ng, rR; = R*). Hence |Dy0D; — y?| = 1 for any y € R,
and we are done.

The final claim of the lemma follows from the fact that

a’> — b2D = to*t = o(to?t) = oa® — ob’oD.

This implies that a? — ca? = ob?0 D —b2D = D(¢%0b? —b?). Since t = a+bv/D is topologically
unipotent, |a + ca| = 1. Hence |a — oa| < |D||b|?, namely x > 2n + ordz D. O
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We proceed to compute the orbital integral of the function 1x at a regular absolutely
unipotent element u of GSp(2,F). [This element is the norm of an absolutely unipotent
strongly f-regular element t of GL(4,F) x F*, the computation of whose stable #-orbital
integral — which is the analogous case of u,, p € E5'/Ng g, E*, in Sp(2, F') — will be reduced
to that of u later below, but we also deal with it parenthetically now].

Note that the stable orbit of u reduces to a single orbit. The element u can be presented as
(2 PPy = h=1(t, ot, 03, 02t)h,t € F (VD) with to®t = oto3t,t = a+bv/D, and a = (* /) if

b a a2 a1
a = ay+as/V/Alies in B3 = F(\/A) (similarly for b = by+bs /v A; ai,b; € F). If D = a+6/VA,
we put D = (g *BLA). [u, = (bpa,l b]:p) with to?t = 1]. As in the study of the case (IT), the

centralizer 7" of u in GSp(2,F) lies in Cy = {(iz); (ZS) € GL(2,E5)'}, where the prime
indicates determinant in F*. [For u,, replace T by Tpl, Ca by C}, GL' by SL, K by K!

below, and R by RE].

(u) is equal to Y [Ko : Kp] fT\CA 1k, (h~tuh)dh. Here

m=0

K., = GL(2, R3(m))’, where R3(m) = R+ 7™VAR = R + 7™ Rj.

GSp(2,F)
1k

2. Lemma. The integral ®
Proof. The decomposition G = GSp(2, F) = LiOC’AumK, K = GSp(2, R), implies that

/\G lx (97 ug)dg = Z |K|G/ L (us, R~ tuhugy, )dh.
T

m=0 T\CA/CAﬂumKufnl

Put K2 = Cp Nu,Ku!. The integrand on the right is non zero precisely when h~tuh €
umKu;L1 N C4, so we obtain

= |K|G|K;3|5i/ Lgca (™ uh)dh = Z[KO:Km]/ g, (b~ uh)dh.
m>0 T\Ca m>0 T\Ca

The decomposition C'4 = U, T'r K’ can be used to rewrite our integral as

=Y > 15 T'nrK'r Ky : Km]/ lg,, (k™ 'r~turk)dk,
m>0 r Ko

where T§ = TN K’ = T'(R) ~ Ry. Here R = {z € R;;Ng/g,x € F*}. As usual,
q = q3 = qg, denotes the residual cardinality of F5. Put e = e(E/FE3) for the ramification index
of E/E3. Denote by 3 a uniformizer of R3. It is taken to be D = mes3, 3 € RY —RX?, if E3/F
is unramified and further E/Ej is ramified; then wz = v/—D has norm Ng/g,mp = D = mes.

3. Lemma. When E/FE3 is ramified, we have GL(2, E3)" = U;>oT'r;K', K' = GL(2, R3)’,
where r; € T((l)ﬂ%) has determinant 1, and T is the centralizer of T' in GL(2, E3); here w3
is D € detT (if mg = /=D, then Ng g, mg = D). If E/E3 is unramified then (E3/F is
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unramified and)lG({/(ZEg)’ = UT"rjK', union over j > 0 and over € € R;f/Rs,<2 if 7 > 1,
where 1 = t<( en] ), det(t.) = e~1. Further, the index [T} ij’rj_l NT']is ¢’ if j =0 or

E/Ej3 is ramified, and it is %qlqj if E/Es3 is unramified and j > 1.

[Remark. The case of SL(2, F53) is dealt with in Lemma I.1.3. If E//E5 is ramified and F5/F is
unramified, then 73 = D = e € det T,. If E/Ej3 is unramified then SL(2, F3) = UTplrj K1
j >0, 2 divides j — p, where p = ords p, and 7. = t. diag('ir;(j_ﬁ)/z, 67rgj_ﬁ)/2)].

Proof. We use the disjoint decomposition GL(2, E3) = Uj»oTT;K,r; = diag(1,7%). Here
T=A{(} bf)}, a,b € E3. When E = E3(v/D)/FE;3 is ramified, we can take g = /=D, then
Ng/g, (V—D) = D = 3 is a uniformizer of E3. As detT = Ng/g, E* contains w%, if h = trk
lies in GL(2, F53)" then we may assume that det h = ||h|| lies in R*, and there is some ¢y € T
with ||tor|| = 1. Then [|t| € R} N Ng g, E* = R3>, so |t| = 2 for some ¢ € R*, and
h=¢e tt -tor-ek,|le”t]| =1 and ||ek| € R*.

When E/FEj is unramified then so is E3/F, and w3 = w(=7p). Since Ng, g, EX = 1R},
if h =trk € GL(2, E3)" then by changing ¢ we may assume that ||h]| = ||r|| = 7. Now k can
be changed by r—'tr € K, so ||k|| € R} can be changed by ||r~'tr|| = Ng, g, (Rs+74vDR3)*,
which is RY if j =0, and RX? if j > 1.

The intersection 7" N ij’rj_l = {t € T';r~Yr € K'} consists of the a + bv/D € E*

with (g =i 5 )(F ") (g ems) = (_ap. "P) in K, thus b € T} Rs, namely it is Rp(j)* N

b a 0 61[% S_Ib‘ll'g_‘j
Ry, Re(j) = Rs+miREg = Ry +mV/DR3. Note that Ry, = {x € R}; Ng/p,© € R*} contains
ker Ng/g,. Put Rg(j) = Rp(j)* N Ry When e =2 or j > 1, NRS = NRg(j)* = R}?,
where N = Ng/p,; when e = 1 and j = 0, we have NRj = R3. The index of the lemma is
the kernel in the following exact sequence:

1 — Ry /Re(j) — R5/Re(j)* — R5/RERE(j)* — 1.

The term on the right is isomorphic via the norm N to NRS/NR;NR* - NRg(j)*, which is
trivial if e = 2 or j = 0, since then NRg(j)* = NRj, while if e = 1 and j > 1, it is the group
RY/R*RY? ~ 7./2. Consequently it remains to compute

[R%: Re(j)*] = [R} : 1+ m}Rp]/[Re(j)* : 1 + miREg).

The denominator here is [RY : RY N(1+74REe)] = [RY : 14+ 7}Rs] = (¢—1)¢7~", when j > 1.
To compute the numerator, note that when e = 2,73 = 7% and qg = g3 = ¢, so the numerator
is (¢ — 1)¢*~'; when e = 1,7 = 73 and qg = ¢ = ¢?, so the numerator is (¢ — 1)¢g?0U~1,

The lemma follows. O
Our orbital integral then takes the form

/T | Ll gy = S S IRy s Re (i) ][Ko ¢ Ko / ey, (K™ ur; k) k.

m>0 j,e Ko
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If the integrand on the right is non zero then u € T’ N rngrj_sl = Rg(j)'. Further, [Ky :
K fKo dk can be written as fKo/Km dk, and this last integral is in fact a sum. To describe
this sum, put S, = R3/m®™R3 D R, = R/®™R = Rs(m)/m™R3, where R3(m) = R +
7™ Rg. Recall that K,, = GL(2, R3(m))’. Put K(x™) = {k € GL(2, Rs)’; k = I(mod7™)}.
Then K,,/K(m™) = GL(2,R,,)(m > 1) and Ky/K(n™) = GL(2,S,,)’, where the last prime
indicates determinant in R,,. In these notations, we have

4. Lemma. The integral fKo/K 1k, (k_lrj_’elurj,ek)dk 18 equal to the cardinality of the set

Ly, ={y € GL(2,5m)"/GL(2, Ryn); y~ "1 furjcy € GL(2, Rpy)}.
O

[Remark. In the case of Sp, replace u by u,, and note that GL(2,Sp,)'/GL(2, Ry,) is
SL(2,S,)/SL(2,Ry), so the same answer is obtained].

5. Lemma. #L,, = e3 - #L), where e3 = e(E3/F) is the ramification index of E3/F, and
Ly, = {x € SL(2,Sp);00 = 7,20, .2~ = o(u;.)}, where W, is the image of rj_,slurj,s in
GL(2,Sn)".

Proof. The map y — = = o(y)y~! is an injection of I/ in L,,. Indeed, if o(y1)y; ' = o(y2)y5 "

then o(y; 'y2) = yi'ys lies in GL(2, R,,). The map is surjective if e3 = 1. Indeed, in this
case the map GL(2, R3)' — {z € SL(2,R3);00 = 271}, by y — o(y)y~!, is onto by Hensel’s
Lemma. When e3 = 2, we claim that L,, is the disjoint union of the sets Im(L/,) and
—1Im(L!,). Indeed, when E3/F is ramified, we have ox = z(modws). If ox = 27!, then
r?> = I(modws). Since ||z|| = 1, this implies that x = +1(modw3). Clearly, x € L,, if and
only if — € L,,. Now x = I(modm3) if and only if z = o(y)y~?!, for some y in GL(2,S,,),
again by Hensel’s Lemma. ([l

Our aim is then to determine when is L,, non-empty, and to compute its cardinality. Recall
that b = Brd, and rje = diag(l,eﬂ'g), so we put b = B'n{,v = N — j and B’ = B/e, and
D' = Dex’ . [In the Sp case: Recall that b = Brl, 5 = urf, and rj. = diag(1,e(esms)i~7?),
where €3 = 1 unless E/F3 is ramified, E3/F is unramified, and then 73 is . So we put b’ =
B'mY,v=N—j,and B' = B/eclu (e5 = 1 = ¢ if E/Fs is ramified), and D' = De?u?(esms)?).
Note that b #01in S, = R3/m™R3 = R3/m5*™ R3 precisely when v < m' = mes.

6. Lemma. The set L], is non empty precisely when 0 < v < N,0 < m/ = egm < X =
ords(a — oa). In this case, if m' > v then we have that v +m' < X as well as: v is even
when E3/F is ramified; ¢ € BRX? and j > 1 (namely v < N) when E/F is unramified
e € uBELRY? and v < N when E/F is unramified, while if Es/F is unramified and E/E3 is
ramified, then u € BejR}?].

If L, is non empty, its cardinality is as follows. #Ly = 1; if 1 < m/’ < v then L],
has cardinality ¢3™' /% if e3 = 2, and q?’m’/z(l +q7Y) ifes =1; if v <m' < X — v then
#L), = (2/e3)qi"q” if E/F is ramified or v < N.

Proof. The element u,; . is (2 E?), hence 0 < v < N. If z € L, then zu; .z~ " = o(uj.).
Taking traces we conclude that @ = 0@ lies in R,,, and since « is w5*, we have 0 < m' < X.

(o)
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Clearly #L} = 1, while when 1 < m’ < v we have b = 0, and L', = GL(2, Sp)"/GL(2, Rin) =
SL(2,Sm)/SL(2, Ry). Recall that #SL(2, Ry) = (g2 — 1)g¥™ 2 = (g2 — 1)g>™/*) 72 as
R, = R/m™R, m/ = mes. Also S,, = Rs/mJ" R3, hence #SL(Z, S) = (¢ — 1) ~2. When
es = 1,q = ¢2, and #L' = (¢ + 1)¢®"/2=1. When e3 = 2,q = qo, and #L' = ¢3™'/2,
Consider then from now on the case m’ > v, namely b # 0 in S,,.

Suppose that x lies in Ly,. From ||z|| = 1 and oz = 7! we deduce that

or1y O0OXI2 _ T4 —xI9 : thus © — 1 TQ\/Z
oxs3 [ —I3 1 Tg\/z or1

with 21 € Sy, and re, 73 € Ry,. The relation (@ — @) = 0(4j. — @)z implies

(Mﬂ 05D >:< 7 r2\/Z> (0 5’3’)

50'(1'1) bDT’g\/_ T3\/Z 0'(1'1) E/ 0

“ (5 V7)o ) = (O o).

This relation consists of four relations, which we denote by (u,v) = (row, column), 1 < u,v < 2.
We claim that there is n’ = o(n)/n, withn € S)%, and even n € SX? unless F//F is unramified

~—"

. R _ _ 10\ ,10,_
and j = 0, such that z lies in (On,)ZGL(Q,Sm)(qu), namely oUj. = (On,)ujs(()n,) L oor
((1) 2)_1@-6((1) 2) € GL(2,R,,). For this purpose, note that the relation (2,1) implies that

ox1 = 210(b) /b (mod " =), while (2, 2) implies that rov/A = r5v/A-D'b /o (b ) (mod 77 ~).
Put o' = 0(5/)/5/ € S . In other words, for some f,g,¢" in R3 we have

B < T 7"3\/@/5//0(5/) +7rgll_”f>
-~ \r3V/A :Ula(y)/gl +7rg”’_”g’

B <1 0) ( 1 (5’/05’)r3\/2-5’+7rg1’—uf>
N0 7 )\ (@ /ob)rs VA z+ 7 g '

If F5/F is unramified then w3 = 7, b = B'n”, and so / = J(EI)/FI. Using ||z|| = 1 we

note that I I I
b/ob =x1-(b/ob)oxy — (b /ob)roavA - 15V A.

Again (2 1): (_l/agl)axl = zq, and (1,1): ( /ab )TQ\/Z = o(D )7“3\/Z imply that b/ab
lies in 22 — T'SAO'(D )+ ﬂ?’_”Sm, which is 23 = w3S,, unless E/F is unramified and j = 0.
In this case (E/F unramified and j = 0) z; lies in S5, and (2,1) implies that 05//5/ =
axl/xl(mod'irgl_m). Together with 5//05/ = 13, we obtain zy0r; = 1(modws). If x; =
a1+ f1VA, A =m, then o = 1(mod), and v = oz1/z1 = on/n,n =1+ (B1/a1)VA € SX2.

If E3/F is unramified, the norm map N = Ng, /r induces a surjection from Fy, where F, is
the residue field of R, to Fy , where Fy, is the residue field of R. Note that ¢ = g3 is q? here.

Hence ker(N|RY) has index go + 1 in RY, so it is contained in the subgroup Rx? of index 2 in
R, hence z1 € S)X? (unless E/F is unramified and j = 0).
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In particular, if E3/F is ramified, since b = §/7r§, (2,1) implies that x1/ox; = (EI/UEI)
(=1). As SX N R,,V/A is empty, Re(a:l/E/) = :cl/EI + a(:cl/E/) is non zero, and equal to
itself times (—1)”. Then v is even when ez = 2.

Let us show that if m’ > 2N — v + ordz D(> v), then m’ < X — v. We shall use the

auxiliary result, that there is n € S;< such that (é 2)(5 vD’ )(é 2)_1 is in GL(2, R,,). Namely
a

b = 0'(’[75/) and 5/3//77 = a(yﬁl/n). Recall that b = (B/e)n} and D' = De2n¥, so VD' =
DBex?N=v. [t/ = (B/euel)ny, D’ = De?u?(esms)®, V'D' = BDeughn?N="). It m' > v
then (B/e)/o(B/e) = on/n(modwy* ~"). If m' > 2N — v + ords D, then BDe/7(BDe) =
77/077(1’nod'ir;,nl_(2N_V+Ord3 D)). [Replace € by euel]. Since m' —v > m’ — (2N — v + ords D),
together we have DB?/o(DB?) = 1(1’nod1r;n’_(2N_'/+0rd3 D), namely (a — oa)(a+ca) = a2 —
sa? = Db2—o(Db%) = 0(mod w7 t¥). Since a is topologically unipotent, la—ca| < |a+ca| = 1,
and so X > m/ + v as asserted. In particular, X > 2N + ords D.

In fact, unless F/F is unramified and j = 0, we have that 7 lies in S2. Then m' > v implies
that nB/e € RX, or e € BnR} C BSX2RX. [Replace ¢ by euel]. If e3 = 2 then RXSX2
is S and no new information on ¢ is obtained. But when ez = 1 we have R} SX? = SX2.

Hence when j > 1 and E/F is unramified, there are two choices for e, but only one contributes
to our orbital integral, namely e € BS2, or € € BR§<2 (the two possibilities for € were in
R} /RX?). [Replace ¢ by eue}]. Note that in case (IV), if e(E/Es) = 1 then e(Es/F) = 1
(e(E/E3) =1 and e(E3/F) = 2 is case (II)). If e(E/E3) = 2 or j = 0, then ¢ can be taken to
be any representative of R3 /R, so we obtain no constraint on €. [If e(E/FE3) =2 thene =1
and we get u € Bel RX?).

It remains to compute the cardinality of L,, when v < m/ < y — v. First, L,, consists of

B'/oB')D'rsVA —
x = (r;\}z( /o iwlr?"/_Jr“) such that ||z|| = 1,a € 5 ~"S, N RV A; 71,73 € R,y =

§/r1(1+5), Je W?’_”S’m. Here we used the relation rov/A = rg\/z-ﬁlgl/ay(mod'rrg"”’_”), and
xl/Fl =7 +7r§n’_”5’m for some r; € R,,. Consequently, Ly, is the set of (ry,r3,a,6) € R2, x
(W?’_”Sm)2, such that ca = —a, and r%ﬁlaﬁl(l +0)(1+06) — r%A(FI/UFI)ﬁl —arsVA =1,
taken under the quotient by the equivalence relation (r1,0) ~ (r],d") if r1(1+96) =ri(1+ '),
in other words we take the quotient by 1 + R,, N ﬁgL’_”Sm.

To count the number of elements in L,,, we need to solve the defining equation. Thus we take
any r3 € R,,,0 € W?’_”Rg/'irg"”’Rg = R3/m4R3, and a = a/A, ain Rmﬂw?l_"_ordS(ﬂ)Sm ~
R,, mw?'—“sm (when e3 = 1,A € RX; when e3 = 2,viseven and A =7 = w3). If j > 1
or E/F is ramified, we saw above that 5//05/ = 22 + m3S5,,. Since z; = Elrl + W?’_”Sm,
we have B /oB = EQT%, namely 1 = B 0B r2, so that there are two solutions in r1 to the
equation which defines L, (as L, is non empty; note that Ng, rRY = R*% R* is contained

in Ry 2/63). We conclude that L,, consists of 2¢{"¢" elements (2 for ry, ¢” for §, qf* for r3, a
cancels the relation ~). This completes the proof of the lemma when j > 1 or E/F is ramified.

Suppose now that j = 0 and E/F is unramified (and m’ > v). We claim that L,, is empty.
If not, let = be in L,,. The relations (1,1) and (2,2) imply that rov/A = r3v/A- Db/ob =
r3v/A - o Dob/b(modwy ~™). Note that D’ = D and o/ = b, B’ = B, when j = 0. If r3 # 0
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in R,,, then (b/ob)?D = oD = (?D, where ( = \/oD/D € RY. Hence ob/b = +(, and
so b =rvD,r € R (or b = r/\/D). This is impossible, since b € R3 (and VD ¢ Rs). If
rg = 0 in R,,, then ro = 0 in R,,, and ||z|| = 1 implies that 1 = zy0xy, hence z; € SJX.
Then (2,1) implies that b/ob = xz1/0x1, and (1,2) that b/ob = (0x1/x1)(cD/D). Together
(b/ob)2 = oD/D. But oD/D = (2, s0 ob/b = +¢ = +0v/D/VD, so b =rv/D or b = 1"/\/_

with € R, and b ¢ Rg3, a contradiction. The lemma follows.

This completes our discussion of the orbital integral in case (IV). The twisted #-orbital
integral of a strongly f-regular topologically unipotent element of type (IV) is a sum of two
integrals, which can be reduced as usual to orbital integrals @Sp(z F)( tp) in Sp(2,F). The
sum of these integrals is the stable orbital integral of 1x at (or tosp € ES/Ng/p,EX),
on Sp(2, F). It coincides with the orbital integral of 1x at any element in the stable orbit,
on GSp(2, F) (the stable orbit on Sp(2, F') is the intersection with Sp(2, F') of the orbit in
GSp(2,F) ). Consequently, to show that QJGL(4 FyxaL, F)’St(te) GSp(z F)(Nt)

we simply need to observe that both @GSP(Z F)( t) and @ifp(z F)(Nt) depend only on the
parameters N and X attached to Nt (and n, x attached to t). Since n = N and x = X, the
comparison is complete, once we show that the measure factor in the case of type (IV) is equal
to one. This we do next.

is equal to ®;

7. Lemma. For tori of type (IV), the measure factor [T**(R) : (1 + 0)T*(R)]/[T}(R) :
NT*(R)] is equal to 1.

Proof. First we compute the index in T} (R) = {(z, 0%z, 02, 0%z);2 € R} x0’x = o(zvo’z)}
of the image NT*(R) = {N(a,0a,0%,0%a) = (aca,ac3a,cac?a,c%ac?a);a € RS} of T*(R).
Note that the extension E/F of degree 4 is Galois, in which case E' = FE, except in

the totally ramified case, where E = F(y/\/z), and —1 ¢ R*2. In this case o/ = —/7
and o\/\/T = (\/V/&, where ( = /=1 ¢ R}, and E' = F(\/y/—=). Let us verify this,
namely that if a € E, then aca € E'. Write a = a; + agﬁ, with a; = b; + ¢;/m. Then
aca = (a1 + ag\/ﬁ) (61 + 62\/\/—_7r) = a1a1 + axa@z/—m + (@ras + Calag)\/ﬁ, where

a; = b; — c;/m. So a;a; € FX, we write \/y/m as the product of \/v/—m and a\/C, and it
remains to show that (ajas + Caias)/v/C lies in F/(v/—m). Note that since —1 ¢ R*?, one of 2

and —2 is in R*?, and ¢ = ((1+ C)/\/i2)2. To simplify the notations, suppose that 2 € R*2.

Then /¢ = (1+¢)/v?2, and 1//C = (1 — ¢)//2. Then the sum of

aras(l — () = (b1 — cxv/m) (ba + cav'm) (1 = ¢) = (bib2 — crcom + (bicz — baci) V) (1 — )
and

@12 (1 +¢) = (b1 + e1v/m) (by — VM) (14 ¢) = (biba — crcom — (bica — baea) V') (1 4C)
is 2010y — 2c1com — 2(b1cy — bacy)y/—. It lies in F(\/—m) as required. 2

Thus we need to solve in a € R} the equation = aca, where x € R, satisfies zo?z =
o(zo?z). For this, note that the product ac?ac(ac?a),(a € R}), ranges over R** when
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D = \/m, over R*? when E/Ej is ramified and E3/F is unramified (D € R*), over R* if E/F
is unramified (we simply use the fact that in a quadratic extension K/k, Ng /kRIX{ is Ry if

K/k is unramified, and R* if K/k is ramified, or R:e(K/k) in general). For the same reason,
zolx, (v € RY), ranges over Ry” if F/FEs is ramified, and over RY if E/F3 is unramified. If
further xo2z is fixed under o, then the o-fixed xo?x ranges over: R*? if E/E3 and E3/F are
both ramified, R* if E3/F is unramified. Indeed, (a4 v D)2 = a2 + 2D +2a6V D is o-fixed
precisely when a8 = 0. When D =7, a+ VD € R} only when o € R*, 8 € R, thus we have
B =0, and the o-fixed elements of RY? are R*2. If D € R* then the o-fixed elements of R}?
are R*?2U DR*? = RX. In conclusion, the index [T} (R) : NT*(R)] is equal to 1 = [R* : RX]
when E/F is unramified, to [RX : R*?] = 2 when D € R* and F/Ej3 is ramified, and to
[R*? : R*4] = 2 when both E3/F and E/E3 are ramified, namely to the ramification index
e(F/E3) in all cases.

We also need to compute the index in T*%(R) = {(z, 0z, 0

(1+0)T*(R) = {(1 +0)(a,0a,0%a,0%) = (a/c*a,0a/c%a,0%a/ca,0%a/a);a € RS }.

3v,0%r);x € Rf, 0%z = 1} of

Since ro?x = 1, there is a solution a € E* to x = a/o?a, and as usual, the index of {a/02a;a €

R%} in {a/c%a;a € EX} is e(E/FE3). The lemma follows. O

With this, the comparison in the case of type (IV) is complete. But for completeness, and
possible future applications, we now write out this integral. I am grateful to J.G.M. Mars for
pointing out errors in an earlier version of the formulae below, and suggesting corrections. It
is best to deal separately with three cases: When e(E/E3) = e(E3/F) = 2, when e(E/E3) =
2,e(E3/F) =1, and when e(E/F) = 1.

The stable #-orbital integral of 1x at a strongly #-regular topologically unipotent element
u = 0(u) of GL(4,F) x GL(1, F) of type (IV), with invariants n, x, is given by the following
expressions.

If e(E3/F) = 2, then e(E/E3) = 2, and we get a sum over m’ = 2m and 0 < v < n, of ¢"~"
times: ¢3™'/2 = @3 if 1 <m/ < v, and ¢*¢* if v = 2w and v <m' < x — /. Since ¢ = qqo
(also note that x = 2n + 1 in this case), our sum is

DR DR L W G SR
0<v<n 0<m<v/2 0<v<n/2 v<m<x/2—v
x/2]+1—v _ qzl

. [
DD S AT D M

0<m<(n—1)/2 0<j<n—2m—1 0<v<n/2
DA 1) P2 (/2] _qy(gln/2 )
= — + qn .
(¢ —1)* (¢—1)(¢* - 1) (¢—1)?

If e(E3/F) = 1 and e(E/FE3) = 2, we have ¢ = ¢2, and m’ = m. Our sum is then over
m(0 < m < x) and v(0 < v < n) of the product of ¢, and of: 1if m =0, (1+¢~1)g>™/2 if
1 <m<w,2¢"t2if v <m < x —v. (Note that x = 2n + 1 in this case). Namely we have

Z g 1+ 1_|_q Z q3m/2_|_2qu Z qm/2 :

0<v<n 1<m<v r<m<x—v
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which is

" =1 ¢"(g+1) 7" g2 1 gt 1] + gt (g2 — 1)(gxm /2 — 1)
q—1 2 -1 q/2 -1 q—1 (q*/% —1)2 '

Finally, when E/F is unramified, ¢ = g2, m’ = m and the sum ranges over 0 < v < n, and
0 <m < x —v. (In this case x = 2n). It takes the form

ﬂ Z qn—u(1+ Z (1+q—1)q3m/2+qu Z ng)-|—1—|— Z (1_|_q—1)q3m/2

q o<v<n 1<m<v v<m<y—v 1<m<n
_(g+1)q" =2 g" g+ 1)(g"? — g2 -1
BRE (@7 =177
1/2 2 n/2 _ no_ 3n/2 _
q qg+1 _1q 1 gq 1 q 1
( ) [ n—1 ] +q1/2(q+1)

(¢3/2 — 1) q1/2_1_ q—1 @21
To repeat, we have no use for these explicit expressions, except the observation that the final
expression depends only on the parameters n and x attached to u, since the parameters N

and X attached to the norm Nu of u are equal to n, x.

This completes our discussion of the comparison of the stable #-orbital integral of 1x at the
strongly f-regular element us = sbu of GL(4, R) x GL(1, R), with the stable orbital integral
of 1x at the norm N (us) of us, in the case where s = I. It remains to compare these integrals
when s is not (stably) -conjugate to the identity.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The computations of the #-orbital integrals of a strongly #-regular topologically unipotent
element ¢ = h='t*0(h),t* = (t,ot,03t,0°t), of type (IV), can be used to compute the x-0-
orbital integral too. In this case k is the non trivial character of the group F3/Ng /B, B, and
it defines the endoscopic group Cs = Cg,. The Jacobian factor is

(t —o?t)?o(t —o?t)? 172
toto2to3t B

Ag.cy(t, ot, o3, o%t) = | bv/Dls = ¢~ |D|3/%.

Note that [b]3 = ¢~", as n = ords(b), while |D| = 1 when F/FEj3 is unramified, or |D|3 = ¢~!
when E/FEj3 is ramified.

Theorem. If t' = h='t*0(h) is a strongly O-reqular topologically unipotent element of type
(IV), then ®% _(t'0) is 0 if E3/F is ramified, while if E3/F is unramified then

Ag,c, (1)K ((t — 0°t) /2V D) ®F, (10) = ®T2 (Noyt*).

Proof. Note that r((t — 0%t)/2VD) = xg/m, () = X5/m,(B1Y}). When E/Fj is ramified and
E3/F is unramified, we take D = —mes(e3 € RS — RY?), then Ng g, (VD) = mes, and so
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Ng g, BX = (me3)PR}?, and xg/m, : E5 /N, EX>{+1} has xg/g,(€3) = x5/m, (1) =
—1. Then xg/g, (B7%) = Xg/B,(0)(—1)". When E/F is unramified, D = €3, Ng g, Ry =
R3,XE/E,(B) = 1,XE/B,(T3) = —1, and xg g, (BwY) = (—1)". Moreover, the norm N¢,t*
is the elliptic element in C3 = GL(2, F3) with eigenvalues r = tot and o2z. As z = A, +
B.(1 4 ¢)VD and |B,|s = ¢"™ by Lemma 1, Lemma LI.2 implies that the right hand side is
(¢ —1)/(qg — 1) when E/Fj5 is ramified, and it is ((¢ + 1)¢" — 2)/(g — 1) when E/Fj is
unramified. We then turn now to the computation of ®f_(t0).

When E/E3 and E3/F are both ramified, as Ng g, E* = ﬂ%Rgd, the unstable #-integral
includes a sum over p € EJ /Ng g, EX = R} /R}? of k(p), while no other term depends on p.
Hence (1) + s(e3) = 0, and ®F_(t0) is zero in this case.

When E/Ej3 is ramified and E3/F is unramified, in addition to the sums over v and
m which appear in the stable #-orbital integral, we have an additional sum over p = u €
E}/Ng/p,E* = R} /R}?, of £(u) times the terms indexed by v,m (and we need to divide at
the end by 2, a measure factor). If 0 < m < v, the term indexed by v, m is independent of wu,
and k(1) +r(e3) = 0(es € RX —RX?). If v < m < x—v, then we have the relation u € Be,R}?,
and k(e3) = —1, hence x(u) = k(B)k(e3)? = k(B)(—1)7. The k-0-orbital integral is then

Yoo Y oMt =2%(B)(—)" Y (D)Y@ —agth)/ (w0 - 1)

0<v<nv<m<y—v 0<v<n

_ " (1= (Ca) ™" ()
= (26(B)(=9)"q0/(q0 — 1)) (43 1—(—q)t  —q -1 )

=26(B)qo(—9)" (1 — ¢¢ " (—1)™") (1 + ¢ (-=1)") /(1 — 5)
= 26(B)qo(—q)" (¢" ' = 1)/(q — 1),

since ¢ = g2 and x = 2n + 1 in our case. The theorem follows in this case too.

It remains to deal with the case where E/F is unramified. Since Ng/p, E* = R;%%Z we
have that p = w”,p ranges over {0,1}. The decomposition of SL(2, E3) was such that j > 0
and 2 divides j —p, and when j > 1 we have the additional sum over ¢ € RY/RX?. In summary
we have a sum over v(0 < v < n), of 1 if v =n, and of ((¢+1)/2¢)(—¢)" " if 0 < v < n, and
a sum over m, of 1 if m = 0, of ¢g3™(1 + ¢~ ') if 1 < m < v, both terms are multiplied by 2
(two &’s) if v < N, and of 2¢5*¢” if v < m < x — v, in which case ¢ € BRX? (50 we have only
one ¢). In other words we have the sum of

D1+ ) g+ (=) Zl+q (@+1) > ™)

v=n 0<v<n 1<m<v

¢+l v
>, 2—q(—Q) > 27
0<v<n v<m<x—v

and

(since x = 2n, the sum in the last row can extend to 0 < v < n). The first sum adds up to

> Y (X Y z > (o).

0<m<nm<v<n 1<m<n m<v<n
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The inner sum is (—¢)™~™, so we get
q+1 (g+1) ((=q)" — 1)
_\n + _\n _ m _ (_ A\ 1 +
(~0" + = —(=9) 1<%:<n( ©)" = (0" (14 == )
(=" g+1 1
- I o) +1—q7h).
qo + 1 ( q() ( qo) qO )

The second sum adds up to

@+ Vg (=™ Y (-7 > qénzw > (20X = (—q0)")-

-1
0<v<n v<m<x—v qo(qo ) 0<v<n

As x = 2n, the inner sum is ((—qo)" - 1) Y o0<v<n(—00)", and we finally get

(qo(iﬁ)lq)o((;g)j 1) (@™ + (—q0)" ™ + (—q0)" — 1).

The sum of our two sums is

—q)" [qg+1 +1)(1—gq qg+1 1, qg+1
( (]) q qgn ((] )( 0) (_qo)n_ — +1_q01+ (_qo)n
go+1 [g—1 qo(qo — 1) qo(q0 — 1) qdo
= (—q)" (g+1)g" —2
g—1

since ¢ = ¢3, as required. O



100 YUVAL Z. FLICKER

PART III. Semi simple reduction.
A. Review.

To compute the stable f-orbital integral of 1x at a strongly #-regular element ¢ in G =
GL(4,R) x GL(1, R), we may assume that the centralizer T' = Zg(t) of t in G is a f-invariant
torus in G, and so the centralizer Zg(t0) of t0 in G is the centralizer T? of # in T'. Decomposing
t0 as t0 = u - sf = s6 - u, a product of an absolutely semi simple element s and a topologically
unipotent element u, which commute with each other, we deduce that v € T?. We have
OF (t0) = OF (ush) = CDlZZGIES(Q(Z) (u); moreover, when t,t" are stably f-conjugate, so are s, s,
and if s = s', then u, v’ are stably 6-conjugate. Here t'0 = u's'0 = s'0 - u/.

The decomposition of the norm NT of t is Ns- Nu = Nu - Ns, where Ns is absolutely
semi simple and Nu is topologically unipotent. Indeed, we expressed the tori 7" in the form
h=1T*h, where T* is the diagonal torus and h = 6(h) € G. Correspondingly t = h™1t*h, s =
h=ts*h,u = h=lu*h, and the norm is defined by N(a,b,c,d;e) = (abe, ace, bde, cde; abede?),
namely it is defined purely in terms of the (absolutely semi simple in the case of s*, topologically

@ZH(NS)

unipotent in the case of u*) entries of s*,u*. Hence ®F (Nt) = L2 (3o

then reduced to the study of QJZG(SQ)( ) and @lzlf(Ns)(u).

We shall then distinguish the cases according to the values taken by Ns*. The main case is
that of Ns = I, dealt with above; here s is f-conjugate to I and Zg(f) = Sp(2, F'). We shall
proceed now to deal with each of the f-elliptic tori, of types (I) — (IV), and list the various

possibilities for Ns* other than I. Then we compute Zg(s0) ( C Za(s0(s ))) and the integral
CDlZG(SQ)( ), as well as the centralizer Zg(Ns) and the integral @ZH(NS)(NU,). Fortunately the

K
centralizer Zg(s) and Zg(Ns) are just various forms of groups closely related with GL(2, F),
whose orbital integrals are well known. To simplify the notations we note that the entry e
in GL(1, F) must be in GL(1, R) for our integrals to be non zero, and then our integrals are

independent of this e. Hence we take e = 1, and omit it from the notations.

(Nu), and we are

B. Case of torus of type (I).

In our usual notations, s = h~1(sy,s2,082,081)h, and so s0(s) = h~1(s1/0s1,52/0s0,
082/82,081/51)h, where oh-h™! = (3) o) = (14)(23).
(1) Suppose that s1/0sy = s2/0sy # £1. Then Zgg)(s0(s)) consists of h~ ( g)h A, B €
GL(2,E). The subgroup Zgg)(s) consists of g = h_l(‘g g)h with gsf(g)~1 s( —Ls*h).
Putting f = —s2/81 = —0s2/0s; € R*, this relation amounts to B =

||A||_1(é ?)_114( ! 0) The group Zg(s0) of F-rational points is determined by the relation

_ A 0 0
W g fraf)h = oh 1 4 loAl- f.oa.7 )T, Which amounts to [|A]| - |¢A] = 1, and

|Al|lcA = fwAwf~t, f = ((1) 2) Consequently | A|| = a/oa for some o € EX, and A’ = o~ 'A

satisfies 0 A’ = fwA'wf~t, so A = (;;b ZZ) ranges over a group which is F-isomorphic to
GL(2,F) if f € Ng/pE*, or over an anisotropic inner form D' thereof if f € F' — Ng/pE.
Here the prime indicates: determinant in Ng/pE*. Indeed, the determinant of a4 is

1/aoa.
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The topologically unipotent element v = h=1(uy, us, cus, cui)h lies in Zg(s0). It commutes
with sf, and with s € T', hence with . Also h = 0(h). Hence uyjou; = 1,usouy = 1, and so

ui = a; /ooy, and A = (") u02) has [|A]| = ;fi%25. Then a™'A = (l/agml l/a?m2 ).

The stable f-orbital integral is the sum of f-orbital integrals, parametrized by (F* /N E*)2.
Let us show that precisely two such f-orbits intersect K. Recall that if 0 = usf = sfu and
t'0 = u's'0 = s'0u’ are stably 6-conjugate then so are sf, s'0, and if s = s’ then u, v’ are.

Lemma. Only one 0-conjugacy class in the stable -conjugacy class of s intersects K.

Proof. The element s; = z + yv/D € Ri(z,y € R;D € R* or wR*) is absolutely semi
simple. Hence |z| = |y| = [D| = 1. Indeed, if |[yD| < 1 then z € R* (since s; € R}) and
s1 = z(1 + yv/D/x) has a non trivial topologically unipotent part 1 + yv/D/xz, contrary to
the uniqueness of the decomposition into absolutely semi simple and topologically unipotent
parts. Moreover, |z| = 1. Indeed, if |z| < 1, then s; = yv/D(1 + z/yv/D) again has a
non trivial topologically unipotent part. Now the group F'*/NE* is represented by R =
1,m, and the f-conjugacy classes within the stable #-conjugacy class of s are represented by
[( y/a;h meRl )s (y/ﬂiiz meR2 )], R1, R2 € {1,7}. By Part I, Proposition H.3, the #-conjugacy class
does not intersect K unless it is represented by s(R; = Rp = 1). O

Consequently the #-conjugacy classes of t0 = usf which contribute to the stable #-orbital
integral of 1x have absolutely semi simple part represented by sfl. They are represented by
t0 = ush = sbu and t'6 = u'sf = sOu', when u and v’ are topologically unipotent stably
conjugate elements of Zg(s#). As noted above, Zg(s6) is F-isomorphic to (an inner form of)
GL(2,F)". A regular elliptic element of this group has two conjugacy classes within its stable
conjugacy class, parametrized by F*/NE*. In fact the stable class is the intersection with
GL(2,F)" of the orbit in GL(2, F). We conclude that (when the stable integral is non zero,
E/F is unramified and)

@?I,(St(usg) — @ZG(SQ),St(u) _ (DGL(Z,F)(U,),

1z (s0) - Tlk

where the last u is the conjugacy class in GL(2, F') determined by the eigenvalues 1/az0a;,
1/ay0aq, where u; = «;/oay.

We now turn to the norm of s = h~'s*h. It is determined by Ns* = (slsz, §10S2, S20S1,
a(slsz)), which is s1082(s2/0s2,1,1,052/s2), since saos1 = s1052 € R*. Note that s1/0s9 =
x1 4+ y1V/D is absolutely semi simple (# +1), hence z1,y; lie in R*. The stable conjugacy
class of Ns consists of a single conjugacy class, represented (in GSp(2, F')) by (the product of
syosy € RX with) [(7! nb ), I]. The centralizer of Ns is

Y1 T1
ZGSp(2,F)(NS) = {[taA];t S TvA S GL(27F)/7 ||t|| = ||A||}7
T={(""7) € GL2,F)}.

The norm Nu of u lies in Zggp(2,7)(N5); it is determined by Nu* = (UlU;Q,UlUUz,UzUUI,
O'(UIUQ)), and we have u;ou; = 1. The “t” part of Nu* is determined by (Ule,U(U;lU;Q)).
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The “A” part is determined by the eigenvalues (uioug, usouy) = (uy/usg,us/uy). The two
conjugacy classes of Nt within its stable conjugacy class are represented by NsNu and NsNu/',
where the “A” parts of Nu, Nu/, denoted A, A’, are stably conjugate, but not conjugate, in
GL(2,F)". Tt follows that

Cbifp(z’F) (NsNu)* = q’f;;ii;f)(NS)(NU)St = ‘I)?I(L(Z’F)(Ul/uz, uz/uz).
The last term is the orbital integral of 1x on GL(2,F) at the elliptic regular orbit with
eigenvalues uy /uz, ug/u;.

To compare our orbital integrals on GL(2, F') of 1k, at the class determined by the eigenval-
ues (uy/usg,us/u1), and (uy,us) in the f-case, note that we have seen above that the integral
is given by an explicit expression, depending only on |uy/us — ug/uq|, respectively |u; — uz].
Since |ui| = |ua| = 1 (u is topologically unipotent), these two terms are equal, and so are our
stable - and stable orbital integrals, when s1/0s; = s9/0s9 # *1.

(2) The second case to be considered is when s1/0s1 = 0s3/s2 # +1. In this case Zg(g) (s0(s))
consists of g = h_1(23)(61 g)(23)h, (23) = diag(1,w,1). Then Zgg)(sf) consists of g with
gs0(g)~1 = s = h=1s*h, thus

(23)(5 5)(23)s" (9 0)@3) (93 (1, 5) = 5%,

. 52 0 — §2 0 —
— 1 — ><7 —
) with f = 0s1/s9 = s1/0s2 € R*, then B = ( Ywet A= tew( )~1

0 osy 0 os1

namely if f = ((1)3
= [|A[|7 fAfE

Now Zg(s6) consists of h=1(23)( 2 0

0 |A|-t FAf! )(23)h which are equal to
o171 (23) diag(0 A, [0 A1 - oA 1) (23)0h.

Since oh-h™t = (% ), and so (23)ch-h~1(23) = (3} o ), this relation amounts to ||A||-[lc Al| = 1

w 0

and A = ||A||f~'woAwf. Then ||A|| = afoa,a € EX, and A’ = a~'A = (,% "), As

f~lob oa
in the previous case we see that there is only one f-orbit of s in its stable #-orbit which

intersects K. It is represented by (23)diag ((2 yf), f(_my _ZD))(Q?)), if s, = 2 +yVD, and

|z| = |y| = |D| = 1. The f-orbits within the stable 6-orbit of t0 = s - u are two, the other is

t'0 = s0 - u/, where u,u’ are stably conjugate in the group whose F-points are (f_lo_b Uba) €
GL(2, E) (thus this group is GL(2, F)’ or an anisotropic inner form D'*, depending on whether
f € NE*X or f ¢ NEX). Note that u = h™1(23)(u1, oua, ug, ouq)(23)h, and wou; = 1. If

U; = ai/o-ahA = (1:)1 022 )7A/ = éA = (1/0((310‘2) 1/a01a2 )7 then

G,s _ x2Zqg(s0),st _ xGL(2,F
O " (us) = @70 (u) = LA (W),
Here we noted that the stable orbital integral in GL(2, F')" of the elliptic regular element with

the same eigenvalues as A’, is equal to the orbital integral in GL(2, F') of the orbit determined
by A’.
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The norm of t0 = usf is determined by Ns* Nu*. Here Ns* = (8182, 51089, 82051, 0(5132))
is the product of 5155 = 0(s152) € R* with (1,052/82,82/082,1). Since 0s1/51 = (052/82)7 !
# +1 lies in E* — F N E', we have that Zgs,(Ns) = {[A,t]; A € GL(2,F),t € T, | 4| =
I}, T = {(Z wa) € GL(2,F)}. The stable f-orbit of Ns consists of a single orbit, which
intersects K as can be shown by the arguments of the previous case. There are two orbits in
the stable orbit of NsNwu. They are represented by the two orbits in the stable orbit of A, in
GL(2,F)’, where Nu is [A,,t]. In other words,

@?5p(2,F),st(NsNu) _ q)IZZijI(jS)F) (Ns),st(Nu) _ q)if(2,F) (Au)
Now A, is the elliptic regular orbit in GL(2, F') with eigenvalues ujus, o(ujus), so the last
orbital integral is given by a closed formula depending on |ujus — o(ujusg)|. In the f-case,
the final orbital integral on GL(2, F') is given by the same formula, depending on |u; — ous|.
But ou; = u; ' and u; are topologically unipotent. Hence |ujus — 1/ujuz| = |(u1uz)? — 1| =
lugus — 1| = |uy — uy '], and the equality of the stable integral at N(us) with the stable
f-integral at us follows.

(3) The third case to be considered is that when s;/0s1 = o0sa/ss = —1. In this case
0 zD
051 = —s1 = —xv/D and 05y = —s5 = —yv/D, and s can be represented by s = ( gyé) )
Only one f-conjugacy orbit in the stable f-conjugacy class of s intersects K. Tt is the
one represented by s, thus || = |y| = |D| = 1; all other f-orbits are represented by
0 wDRl
( y/gh yDORl ),Ri € {1,m}. The centralizer Zg(s) of s in G consists of g =
m/RQ 0
0 0 T
h=lgih with gsf(g)~! = s. It is then isomorphic to SO( yg ) (recall that 0(g,e) =

T 0
(6(9),€llgll). This group is isomorphic to (GL(2) x GL(2))/, where the prime denotes the
group of pairs (z1,z2) with equal determinants. An isomorphism is given by mapping (a:l =

(o Zi ),z2) to [E21 il el Ziiz ). In particular, an elliptic conjugacy class with eigenval-

ues ((G Ugl), (*801 Uoﬁl)) will be mapped to the class of (ay/001,a1/B1,001/0061,001/61).
There are two conjugacy classes within the stable conjugacy class of an elliptic regular el-
ement in (GL(2,F) x GL(2,F))/. Indeed, if T is the centralizer of this element, we need
to compute H'(F,T) = H~'(Gal(E/F), X.(T)), where X,(T) = {X = (z1,22,y1,y2) €
Z4 w1 + x5 = y1 + y2}, and 0 X = (x9,71,y2,91). Thus we need to compute the quotient
of the group of X € X,(T), with the property NX = 0, where NX = X + 0X, by the
span of X —oX = (21 — 2,29 — x1,Y1 — Y2,Y2 — y1). Note that y; + y2 = z1 + x5 implies
that y1 — ya = 1 + 12 — 2ys = (x1 — x2) — 229 — 2y2. Hence our quotient is Z/2Z, as as-
serted. Now if t0 = sfu = usf, then u = h™1u*h lies in the centralizer Zg(sf) = SO(2,2) =
(GL(2,F) x GL(2,F))/. Since u commutes with s, it commutes with 6. Also #(h) = h,
hence §(u*) = u*, and as u* = (uy, u2, ous, ouy), we have ujou; = 1 = ugous. Consequently
the #-conjugacy classes within the stable #-conjugacy class of t0 = usf, which intersect K,
are given by usf and u’sf, where u,u’ represent the two conjugacy classes within the sta-

ble conjugacy class of u in (GL(2,F) x GL(2, F))/ This last stable class is the intersection
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with (GL(2, F) x GL(2, F))" of the orbit in GL(2, F) x GL(2, F) which is determined by the

eigenvalues ((al,aal); (Bl,aﬁl)) with ajoay = o0, and uy = ay/0f1,us = a1/p1 (thus
urug = ay/oay,uy/us = B1/0f1). We conclude that

G,s _ xZa(s0),st _ x/xGL(2,F)xGL(2,F ar 0 B1 0O
q)th(use) = q)lsz((sez (u) = q)lx( . )(( 0 aa1)7( 0 aﬁl))'
Consider next the norm N(us), which is determined by Nu* - Ns*. For Ns* we have
N(diag (\/5(33, Y, =Y, —a:))) = zyDdiag(1,—1,—1,1). Its centralizer Zgg,(ns) in GSp(2, F)
is (GL(2,F) x GL(2, F))/, consisting of the matrices [g1, g2]. The norm

Nu* = N(uy, ug,o0us, ouq) is (uluz, UL0U, OUTL - Us, a(uluz)).

There are two conjugacy classes in the stable class of Ns- Nu in GSp(2, F'), given by Ns - U,
where U is the intersection of the orbit of Nu in GL(2,F) x GL(2,F), with (GL(2,F) x

GL(2, F))/ Hence our stable orbital integral is

(bGSp(2,F),st(NS . NU) _ (I)ngp(z,p)(Ns),st(Nu)

1k 1z, (Ns)

GL(2,F)xGL(2,F UL 0 uUy-oU 0
(DK (B ExGLl )(( 102U(ulu2))’( 10 2uz-o'u1))'

On the right we wrote the eigenvalues which determine the orbit, not a representative in
GL(2,F).

We can now compare the stable with the #-stable orbital integral. Both are given by explicit
closed formulae, which depend only on the A-factor, which in the f-case is the product of

o o«
|(j - 1)(a—1 - 1)|1/2 = |(U1U2 - 1)0’(U1U2 — ]_)|1/2 = |(’U,1’U,2)2 — ]_| — |U1U2 _ O'(U1U2)|
1 1
and
|(ﬂ _1)((T—B1 2 = (M 2 2 = (2 g = 2 s — wsou,
Uﬁl ﬁl (%] U1 U9 m U1

since u; are topologically unipotent and u;ou; = 1. But the product of the right hand sides is
the factor which appears in the non twisted case, and our comparison is then complete.

This completes our discussion of the proof of the Theorem for elements of type (I). We
dealt with t0 = usf according to the values taken by sf(s). The main case is that where
the orbit of sf(s) contains the identity. Above we dealt with the cases where s6(s) is —1I,
or its eigenvalues take precisely two values ((tl,tl,tl_l,tl_l) or (tl,tl_l,tl,tl_l)). The re-
maining cases are where the eigenvalues of sf(s) take the form (1,—1,—1,1),(1,¢,¢t7%1),
(=1,t,t=, =1), (t1, ta, t3 1 t7h), with ¢,¢; # 1. They can similarly be handled. The central-
izer will even be of smaller rank. We leave these cases to the reader.



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 105

C. Case of torus of type (II).

In this case F is the composition of the quadratic extensions of F', which are 'y = F' (\/5) =
E™,Ey = F(VAD) = E°7, E3 = F(v/A) = E°, and the #-conjugacy classes within the stable
-conjugacy class of s = h=1s*h = h™1(sy, 89, 782, 051)h, a f-elliptic strongly f-regular element

ai a2DR1 b1 b2ADR2
ag/Rl a1 )’(bz/Rz )] Rl 6 F /NEl/FE]_ 7R2 E

F*/Ng, rE}. Further h = 0(h) = [hlp, hyp], where by, = (T/2VP ~1/2) and 5, = ay +

of type (II), are represented by [(

1 —-vD
asV'D € EY sy = by + by/AD € Ey. Now we consider such t0 = usf = sfu, where
sf is absolutely semi simple. So is (s0)? = s0(s) = h™Y(s1/0s1,82/T82,T52/82,081/51)h.

Since val(AD) = 1,s3/7s2 must be 1. Indeed, had it been —1, we would have had that
sy = avAD,a € F*, but then s, cannot be a unit. Note that a + B/ can be absolutely
semi-simple only when 8 = 0,a € RX. Then, multiplying s by the scalar s;* in RX, we may
assume that s; = 1. The case where s1/0s; = 1 is the main case, considered in Part IT above.
Suppose that s;/os; # 1. As we just noted, D must then be a unit. Put s; = a + BVD. If
a =0 (and |f| = 1), then s;/0s; = —1. Otherwise, since s1/0s; is absolutely semi simple, we
have that both «, 3 lie in R*.

In the first case, where s1/0s; = —1, we have s*0(s*) = (—1,1,1,—1), and Zg (39( ))
{h71[A, B]h}. Then Zg(sf) is the set of g = h=1gih, such that [|g]| = 1 and gsf(g)~! =

0 BVD 0 B8VD
s = h™'s*h. The last relation is gl( 1 ! )tgl = ( . ! ), or, since g; =
BVD 0 BvVD 0

[A, B], Bew'B = cw, namely B € SL(2), and Aw*A = w. Since ||A|| = ||g1||/||B|| = 1, we
have A = cAe = diag(a,a™!). In summary, Zg(s0) = {h~! diag(a, B,a")h;a € GL(1),B €
SL(2)}. In the second case the same is true, since s1/0s; # £1 implies that Zg (s0(s)) =
{h_l[(g 2),B]h}, hence Zg(s0) = {h™ [(0 °),Blh;a e GL(1), B € SL(2)} (using ||lg|| = 1).

To find the rational points, note that 7h - h=1 = [I, (_2\2@ 1/2 o AP and that orh - h™' =

[( 2(3/_ 1/20‘/5),1]. The relation ¢ = o7g then translates into B = o7B € SL(2, E;), and

acta = 1. The relation g = 7¢ implies a = 7a € E, and 7B = dwBwd~!, where d =
diag(1/2vVAD, -2V AD). Hence B = (_4XDW 7. Smce —AD = Ng,/p(VAD), B ranges
over the group SL(2, F). In conclusion, the stable #-orbital integral is

595 (ush) (05t () _ S st (m 0 ) _ pGLER) (tgz TO ) .

12 (s6) 1k 0 7Tus Lk U3

Indeed, u = h™!(uy, us, Tuz, cui)h has “B” part (us, Tus), which in the last integral above is
interpreted as the conjugacy class in GL(2, F') with eigenvalues uy, Tus. This integral is given
by an explicit expression, depending on |us — Tus|.

The norm of ¢ lies in a torus of type (II) in GSp(2, F'), whose elements are of the form

(R PDR) " where R ranges over a set of representatives for E5/Ng g, E*. We have that

D € R*, hence A = 7, hence E3 = F(y/A) is ramified over ' and E / Ej3 is unramified, and
so R ranges over {1,m3 = v/A}. Now the norm Ns of s = h™'s*h, s*

= (81,82,7'82,0'81) is
h=1(s1s9,81782,081 89,051 Ts2)h; but s5 = 1, so this is h~ (0 051) ( o ) whose stably
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Bfg’l ﬁDR). Here we denoted by & the h used
above in the description of representatives for the 6-conjugacy classes, and use h to denote

ho= (TYRVAO) A O (72D T2 which realizes the torus of type (IT) in GSp(2, ).

Since # € R*,D € R* and « is 0 or in R*, (g *Bf) lies in K. Its non-conjugate but stably

conjugate but not conjugate is represented by (

conjugate orbit, represented by (181:71 ’BDR), R = ((1] ’(;

[.H.3, and the fact that Ns is absolutely semi simple). Hence the stable orbital integral of 15
at N (su) will be reduced to a single orbital integral.

The centralizer Zgsp(Ns) of Ns = h™'(a + 8V D,a — 3V/D)h, consists of

(X 0\, ,1(0 —w)\ (!Xt 0 0 w
g="h <o Y)h_)‘h <w o>< o tv1){w o))"
_3—1 X 0 | X 0

=h <0 )\th_lw>h_h (0 >\||X||_15Xs>h'

To find the rational points, note that as hy = (i VA ), Tha-hy' = w,and Th-h=t = (7" 0.

), does not intersect K (use Proposition

VA 0 —w
The relation g = 7¢ then reads 7X = wXw, hence also || X|| = ||[7X]||, and A = 7A € E[.
Further we have oh - h™! = (4\/,40_17511; _“’6/3“ AD) Hence g = og implies 0 X = A| X || 'wXw

and that || X|| - ||cX]|| = AeA. We then write A\/||X|| = v/ov with v € E. Since E; =
F(v/D)/F is unramified, we may and do take v in RY. Then o(vX) = w-vX - w, and so
or(vX)=vX lies in GL(2, F5), and 7(vX) = w - vX - w further implies that vX ranges over
a group F-isomorphic to GL(2, F) (namely (fb Tba),a,b in Fy). In particular, for our u* =

U2 0)
Y

(w1, ug, TUz, 0u1), we have Nu = h=(uyua, uyTus, usouy, Tusouy )h, whose “X” is uy ( 0 rus

and || X|| = u?,v =u7', A =1 (thus Nu = h_l(%( u;%X)h). The stable orbital integral of 1x

at NsNu is then

ZGSP(NS),St
1z, (Ns)

(NU) :(I)GL(Z,F)((UQ 0 ))

1k 0 Tus

7P (NsNu) = ®
Again this is given by an explicit formula, depending only on |uy — Tus|, and the equality of
the stable #-integral with the stable integral follows.

D. Case of torus of type (III).

In this case E again is the compositum of the quadratic extensions E; = F(v/D) = ET,
Ey, = F(VAD) = E°7, B3 = F(J/A) = E?, of F, and the f-conjugacy classes within a
strongly f-regular stable f-orbit are represented by t; = h='t*h = (blf:’l bZR) with R = 1
or R € B3 — Ng/g, E. Here t* = (t,7t,07t,0t),t = a + bWD,a = a1 + asVA,b = by +
bav/A,a;,b; € F. Further, h is such that 6(h) = h,7(h)h~* = (7* %), and o(h)h~! =

0 —w
(—1/4\/AD 0

0 . m)(ew “). As usual we distinguish the cases according to the values of

$10(s1) = h™'(s/os,7(s/os),07(s/T5),0(s/T5))h,
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where t10 = u1510 = s10u; is the decomposition of 1 into a product of commuting absolutely
semi simple 5160, and topologically unipotent uy, elements. Also s; = h=1(s,7s,07s,08)h. Now
510(s1) is absolutely semi simple, hence so is s/0s = a’+b'v/D(a', b’ € R3). If D = w(A € RX),
then ¥’ = 0, and so @’ = £1. If 0s = —s, then s = bv/D and s; ¢ K. Hence s = s is the case
where s16(s1) = I, which is handled above. Hence D € R*, and A = 7, so E/FEj3 is unramified,
and F ranges over {1,m3}. Then we write 0s/s = x + yv/A(z,y € R1), and conclude again
that y = 0 (since os/s is absolutely semi simple and A = m), hence 7(os/s) = os/s € R;.
The cases to be considered are s/os = 1 — but this is the main case considered above — or
os = —s,or os/s # +1.

If 0s = —s, then s = bv/D,ob = b = by + byv/A € R, from which it follows that
the stable f-conjugacy class of s; intersects K in a single #-conjugacy class, represented by
s; with R = 1. The centralizer Zg(s)) consists of g = h™lgih, such that ||g|| = 1 and
gs10(g)~t = s1 = h™1s*h. The last relation can be read as gls*(g o) = s*(g o). Hence
Zg(s0) is the group of g = h™lzgsx™1h, where z = (b,7b,1,1), and g, = (B, B') in 50(3} o)
The relation ||g]| = 1 implies that g2 indeed lies in the special orthogonal group. Note that
1Bl = B

Next we determine the rational points Zg(sf). The relation 7(h)h=1 = (

o _, ) implies
that if g = 79, and go = (B, B’), then 7g2 = 7(B, B') = (B,wBw), since ( _Ow) is (I, w)

under the isomorphism 50(3}1(‘]’) ~ (GL(2) x GL(Z))//Z. Thus B € GL(2,E;), and B’
lies in a group isomorphic to GL(2,E;). Further, the relation ¢ = og can be expressed

as o(B,B') = Int(z)(B, B'), where x = ((1 0 ),(Tbo))((_l/‘l‘/‘ﬁ 0 ), I)(we,cw), since

—w 0

0brb”7 Y 0 b 0 4/AD
diag(b~1, 7b=1, 7b,b) = ((;,2,): (V))). Tt follows that B takes the form (g, %, o "),
and B’ is (—a(;)b/Tb Uyw), namely B, B’ range over groups isomorphic to GL(2, F), and they
satisfy || B|| = ||B'||. The element v = h~'u*h,u* = (u, Tu,ocTU,ou), commutes with 6, hence
uou = 1. Then there is v € Ry with v = v/ov, and as an element of SO(SJ 0 )su* can be

expressed as v* = ((";" U(vom) ), (" MOM)). As noted above, there is only one #-conjugacy

class in the stable -class of t160 = wuys16, which intersects K. Moreover, there is only one
conjugacy class in the stable conjugacy class of v* in (GL(2, F) x GL(2, F))/ Indeed, if T is
the centralizer of v* in this group, H'(F,T) is the quotient of X = (x1, 2, z3,74) € Z* with
1+ 290 =0 = 23 + ;U4(7'X = (z1,%2,24,23),0X = (22,21,24,23), and NX = X +0X +
7X 407X is O), by the span of X —7X = (0,0,y,—y), 0 X — 7X = (z, —x,0,0), namely it is
zero. Hence

G,st _ =GL(2,F)xGL(2,F) UTV 0 VOTV 0
By (ush) = ( ( 0 a(m-v)) ’ ( 0 TUO'U) )

is a product of two orbital integrals on GL(2, F'), which depend on the factors
vty — o(vTv)| = |utu — 1|, and |voTv — TVOV| = |u/TU — 1|.

The norm Ns; is determined by Nsi = (s7s,s07s,7sos,07ms0s) = brbD(1,—1,—1,1).
Hence the centralizer Zgsp(Ns1) = Zgsp( _06) consists of [B, B'| with ||B|| = ||B’||. The
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element u* = (u,7u,0Tu,ou) has norm Nu* = (uru,uotu, Tuou,cuotu) = [(“7° ngm),
(5 mom )]- The stable conjugacy class of an element of type (IIT) in GSp(2, F) consists of

a single conjugacy class. We conclude that

(DGSp(Z,F)(NSINUI) _ (I)GL(Z,F)XGL(2,F)< <u7u 0 > (um’u 0 ) )

Li li 0 o(utu) 0 Tuou

is a product of two orbital integrals on GL(2, F'), which depend on the factors |utu—o(uru)| =
|(utu)?—1| = Juru—1]|, and |uoTu—o(uoTu)| = |(uoTu)?—1| = |luocTu—1| = |u/7u—1|. Here
we used the fact that uou = 1, and that u is topologically unipotent, so that |uru + 1| = 1.

This completes the comparison when os = —s.

The remaining case is when os/s # +1. Since 7(0s/s) = os/s, we have that $16(s1) =
h=(s/os,s/os,0s/s,05/s)h, and so Zg(s160(s1)) = {h_l(ﬁ E?, )h}. Further Zg(s16) is the
set of g = h™lgih,g1 = (ﬁg,), with ||g|| = 1 and ¢s10(g)~! = s;. This translates to

(1BIl - 1Bl = 1 and) B( 5)'B" = (), thus B = (7)1 ) B ()G )" =

0 0s/\10 10V 0 s
1BII=* (7, _OS)B(:)S _OS)_I. Note that s/7s = o(s/7s). Thus Zg(s16) consists of
g =h""diag (B, BT (5 2B %) h.

The rational points on this group, Zg(s10), are obtained on solving ¢ = 7¢ and g =
og. Since T(h)h™t = (7° _Ow), we have 7B = wBw, thus B lies in a group isomorphic

to GL(2, F1). The equation g = og leads to (¢ B,0B’) = (weB'ew,cwBwe), or to o7B =

||B||_1(T05 S)B(TOS 2)_1, and ||B|| = ||7B|| = |leTBJ||~. Hence ||B|| = v/ov,v = Tv, v can be

taken to be a unit since Ey/F is unramified. So or(v™'B) = (7 g)v_lB(gs 2)_1, and v~ 1B

lies in a group isomorphic to GL(2, F). Now u; = h™(u, Tu,ocTu,ocu)h, so B = (g Tou), and

O (uy5,0) = o7 1) (B)

1k
depends only on |u — Tu|.
The norm of sy is obtained from Nsi = (s7s,s078,Ts0s,07s-0s). The two middle entries

are equal, hence Zggp(Ns1) = {g = h~' diag(a, B,b)h;ab = ||B||}. Here h = [h'p, h'yp], since
0 1/2vD
Ns;Nuy is an element of type (IIT) in GSp(2, F). Since or(h)h~! = ( I )
—2vD 0
Zasp(Ns) consists of g with b = o7a and B € GL(2, E3). The relation

1
-1 _ 0 1/2VA
T(h)h —( CovA o )

1

Y

further implies that @ = 7a and B ranges over the matrices B = (_Jw fa) with ||B|| = aoa.

The stable conjugacy class of Nu in Zgs,(Ns) consists of a single conjugacy class (the
corresponding HY(T) is {X = (z1,72,73,24); NX = 0}/(X — 7X,X — 0X), where 7X =
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(1,23, T2,74),0X = (14,23, T2, 71), thus it is zero). Now Nu is h~ ! (uru, uoctTu, Tucu, orucu)h,

with B = ("7 ° ). Then

GSp(2,F) -~ GL(2,F) UoTU 0

and this integral on GL(2, F) is determined by the factor |uocTu — Tuowu|, which is equal to
lu/Tu — Tu/u| = |u? — (Tu)?| = |u — Tu|, since uou = 1 and u is topologically unipotent.
This is the factor obtained in the twisted case, and so the comparison is complete for strongly
O-regular elements of type (III).

E. Case of torus of type (IV).

In this case E = F(v/D) is a quadratic extension of E3 = F(v/A), which is a quadratic
extension of F. There are three cases: A =m and D = \/m;—1 € R*?>, A€ R* and D = VA
or m/A;—1 ¢ R*?2, A= —1,and D = a + VA € R3 — R3, with a, 8 € R* or tR*. In all
cases 0D = VoD,o?/D = —/D,o3/D = —\/oD, oA = —/A, so E5 is the fixed field of

0? in E. The strongly f-regular #-orbits are represented by t; = h=1t*h = (b";{ bD:‘Vl ), t* =

(t0t03t02t)t—a+b\/ﬁa (G;QQA)lfa—a1+a2\/_D (aﬁo‘?)ifD:oH—ﬁ\/_R:

ai :8
(gl Ré ) for R = Ry + RQ\/_ taken over a set of representatives for B3 /Ng, g, E*. Note

that 0(h) = h, and o(h)h~='is (1,1/4/AD, —4y/AD, 1)(2431), where (2431) denotes the matrix
with rows (0,1,0,0), (0,0,0,1),(1,0,0,0),(0,0,1,0). As usual, we consider the decomposition
t10 = s10uy = uys16, and 516(s1) = h™(s/o?s,0(s/0?s),0(0%s/s),0%s/s)h. 1f o2(s/0?s) =
s/o?s then it is £1.

Consider first the case where s/0%s # £1. Then o(s/0?s) # s/o?s,0%s/s, hence the
eigenvalues of s,0(s;) are distinct. Moreover, s/02s = a' + V'v/D with b’ € RY and D € R},
since s/0?s is absolutely semi simple and it is not in Ry. Then s = a + bWD,a,b,D €
R}, s1= (o1 "2%) lies in K for R = 1(R = I), but when R # 1 in EJ /Ng/p, E* (which
is represented by {1,m3}, since F/FEj3 is unramified), the #-conjugacy class does not intersect
K. Thus the stable #-orbital integral reduces to a single #-orbital integral.

Now the eigenvalues of s16(s;) are distinct, hence Zg(516(s1)) = {h™'dh;d = diagonal
in G}, and Zg(s10) consists of h=1g,h, g1 is diagonal matrix with g; = 0(g1), namely g; =
(r,y,y~',271). The rational points are given by og = g, thus o(z,y,y~ 1,2z~ = (2431)
(r,y,y~Lo7Y) = (y,1/x,2,1/y), and so g = h= (x,0m,1/0x,1/x)h,x € EX with zo?z = 1.
The absolutely unipotent element u; has the form u; = h™1(u, ou, o3u, o?u)h, where uos?u = 1.
Then ’

O (uy510) = DTFHEN () =1,

1GL(1,RE)’

where the prime indicates here the property zo?z = 1.

The norm Ns; of s; = h™ls*h is obtained from Ns* = (sos, s03s,0s02%s, a 3023) which
)

has distinct eigenvalues (s # o2s, hence os # 03s, and s/0?s # (s/a s),0(0%s/s)). The
centralizer in GSp(2) is then h~!(diagonal)h, and Nu* is (uou,o®(uou), (uau) o?(uou)).
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Gs e ’ : _
Then (I)IKP(Z’F)(NslNul) = QIGLI,((Il,,i)E)’(UO-U) = 1, since Zggp(e,r)(Ns) = {h™ (z, 0%z, 0z,

o?r)h;x € EX,xo?x = 1}. This establishes the matching in the case where s/o?%s # +1.

The case where 02s/s = 1 is the main case (s; = 1) considered first. So it remains to deal
with the case where 02s = —s. Here s = bv/D, and b, D lie in RZ. Hence E/FEj3 is unramified,

{1,m3} represents the f-conjugacy class within the stable f-class, s; = (g b(? ) lies in K, but

the #-orbit of (bf(t)*l blgR) does not intersect K, and our stable §-orbital integral reduces to

the G-orbital integral of 1x at s;. Now Zg(s6) is the set of g = h='gih with ||g|| = 1 and

gsf(g)™t = s = h™ls*h, thus gls*(_ow o) = s*(_ow%}). Since 0%s = —s, we have that
3, 42

s* = (s,08,0%s,0%s) is (8,08, —0s,—s), hence Zg(s0) consists of g = h™1Sg;S71h, where
S = (s,08,1,1) and g1(° “)tg, = (3} o )sllg1ll = 1. Thus gy lies in SO( 7'), and under the

0w

w 0 w 0

usual isomorphism with (GL(2) x GL(Q))//Z, we write g1 = (B, B’). The group Zg(sf) of
rational points is obtained on solving ¢ = 0g. Thus 0g; = Xg: X !, where

-1 0 1 0 0
os 0 s 0
X — s 0 0 0 0 1/4vVAD os 0
N 0 1 —4vAD 0 0 0 0 1
0 1 0 0 0 1 0 1
1 0 1 0
B 0 1 —45VAD 0 w 0
= 10 0 —1/4sV/AD 0 w
0 1 0
1 0
B 0 1 —4sV/AD 0\ (1 0 (—1.w)
N Lo 0 1)’\0 —4svAD T
0 1

1 0 1 0 _ _4s\/AD _4svV/AD 0\ —
Consequently 7(B, B) = (5 _ypyap)0B0(y _gpyap) ™ (70742 BHAP )71), and

02B = dwBwd~!, where d = diag(1l, —16s0sAv/DaD). In conclusion, B lies in a group
isomorphic to GL(2, E3)’, where the prime means determinant in F*. If g lies in Zg(s6), then
in g1 = (B, B’), B’ is determined by B. Hence Zg(s0) is isomorphic to GL(2, E3)". Moreover,

u; = h™'u*h, and u* = (u,ou,03u, 0?u), uoc?u = 1. Choose v € R}, with v/o?v = u; it exists

since F/FE5 is unramified. Under the isomorphism of SO(SJ o) with (GL(2) x GL(Q))//Z,
- uou u * ou/u ou 0 u uou .
u* is (("7 (1)),(0 Uou)), and ou* is (( 0/ (1)),( 0 1/u)) = (w(; Uou)w,( 0 (1))) (thus indeed

uy € Zg(s10)). Then

G,st = GL(2,Es)’ VOV 0
Oy (ur510) = LT ( ( 0 Uzva%) )

This is an orbital integral of 1x on GL(2,F3) (K is the maximal compact GL(2, R3) of
GL(2, E3) on the right), and it is given by a closed formula, depending only on

lvov — o?vodv|g, = [ucu — 1|g, = |uou — 1|p|lu/ou —1|F,
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since uo?

The norm Nsis h™! (sos,03(sos), o(sos), 0%(sos))h, which is equal to h™tsos(1, —1, —1,1)h
since 0s? = —s. Hence Zggp(N's) consists of g = h™1[B, B']h, ||B|| = ||B'|], and is isomorphic
to (GL(2) x GL(2))/. To determine its rational points, Zgs,(Ns), we consider the g fixed by

o. The relation 02g = g (on considering o2(h)h~!) leads to the statement that B, B’ lie in a
group isomorphic to GL(2, E3).

u=1and |z|g, = |Ng,/px|r = |voz|F.

1 0 1 0
Since oh - h~1, up to a multiple by a diagonal matrix, is (3) ?8’)( w ), and ( w ) acts
1 1

on (B, B') by mapping it to (B’, B), we conclude that the relation g = g has the solutions
h=1[B, B'|h, B’ determined by B, and B ranging over a group isomorphic to GL(2, F3)" (prime
= determinant in F'*). The norm of u; is Nu = h™(uou, uo3u, cuc?u, c>uc3u)h, thus the
B here has the eigenvalues u/ou,ou/u. We conclude that

Li li 0 ou/u

@G%@FRNaAmQ=:¢GM1&)<<WwU 0 >>,

and this integral over GL(2, E3) is given by the usual formula, which depends explicitly on
the factor
lu/ou — ou/u|g, = |u/ou —1|g, = |u/ou — 1|p|lucu — 1|

(since u is topologically unipotent and uo?u = 1). This factor is the same as in the f-case,
and the matching of the stable orbital integrals follow in all cases.
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