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Abstract. The notion of a period of a cusp form on GL(2;D(A )), with respect to the diagonal

subgroup D(A )� � D(A )�, is de�ned. Here D is a simple algebra over a global �eld F with a

ring A of adeles. For D� = GL(1), the period is the value at 1=2 of the L-function of the cusp

form on GL(2; A ). A cuspidal representation is called cyclic if it contains a cusp form with a non

zero period. It is investigated whether the notion of cyclicity is preserved under the Deligne-Kazhdan

correspondence, relating cuspidal representations on the group and its split form, where D is a matrix

algebra. A local analogue is studied too, using the global technique. The method is based on a new

bi-period summation formula. Local multiplicity one statements for spherical distributions, and non-

vanishing properties of bi-characters, known only in a few cases, play a key role.

1. Statement of Main Result

A central simple algebra over a local or global �eld F has the formMm(Dd), where

Mm is the algebra ofm�mmatrices, andD = Dd is a division algebra central of degree

d (dimension d2) over F (see [We]). Denote the multiplicative group of M2m(Dd) by

G. This is an algebraic group over F , which is an inner form ofG0 = GL(2n), n = md.

When F is global, put G = G(F ), G = G(A ), where A is the ring of adeles of F , as

well as Z = Z(F ), Z= Z(A ), where Z is the center of G. Denote by C the (standard)

Levi subgroup of the (upper triangular) parabolic subgroup of type (m;m) of G; then

C consists of h = diag (A;B), A;B 2 GL(m;Dd). As usual, C = C(F ), C = C(A ).

Let � be a character of the idele class group A
�=F�, with �2n = 1. For g in G , put

�(g) for �( det g) (one could also consider an arbitrary character � of ZCnC ).

This note concerns the integrals P�(�) =
R
ZCnC

�(h)�(h)�1dh of cusp forms � in

L20(ZGnG ) on G (see [BJ]) over the cycle ZCnC . The value of the linear form P� at

the cusp form � is called the �-period of � on the cycle ZCnC . The convergence of
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the integral follows at once from the rapid decay of the cusp form � on ZGnG , since

ZCnC has �nite volume. Cuspidal (automorphic) representations � (= irreducible

submodules of the G -module L20(ZGnG ) of cusp forms in L2(GZnG )) which contain a

form � with a non-zero �-period are called (here) �-cyclic. We say that � is cyclic if

it is 1-cyclic and �-cyclic. We put P for P1.

The interest in such cyclic � originates from studies of arithmetic cohomology, and

lifting of automorphic forms. Such studies were initiated by Waldspurger [Wa] using

the theory of the Weil representation, in the case of m = d = n = 1. Jacquet

[J1] introduced a new technique for the study of such cusp forms, which he named

the \relative trace formula". It is based on integrating the kernel of the convolution

operator Kf (x; y) over x and y in two cycles ZC1nC 1 and ZC2nC 2. The case of the

group C � C and the subgroups C 1 = C 2 = C embedded diagonally, coincides with the

standard trace formula.

In general Jacquet's relative trace formula involves no traces; it is a summation

formula, equating a geometric with a spectral sums. The case C 1 = C 2 considered

in this note is called here the \bi-period summation formula". Another notable case

is introduced in Jacquet [J2] (see also [F3]); there C 2 is a unipotent subgroup, and

Fourier coe�cients of the cusp forms (in addition to cycles) are obtained. We then

refer to this special case of Jacquet's relative trace formula as the \Fourier summation

formula". It is my pleasure to use this opportunity to thank H. Jacquet for his interest

and inuence, in the context of this note and that of other works in this area.

In this note we study a general case of the bi-period summation formula, with

arbitrary m; d; n. Naturally, the general case { introduced here { opens up a new area

of research, where more open questions than proven results are available. Our main

purpose in this note is to point out some of these new notions and questions, as well

as to prove the following conditional result.

Denote by V the �nite set of F -places v where Dd does not split, thus for v 62 V the

group Gv = G(Fv) is isomorphic to G
0
v = G0(Fv) (Fv is the completion of F at v).

Theorem 1.1. Let u; u0 be two places of F . Assume that Dd splits at u (Dd(Fu) =

Md(Fu)). Let � be a cuspidal G -module whose component �u at u is supercuspidal.

Let �0 be the cuspidal G 0-module which corresponds to �.

Suppose that (WH1) and (WH2) hold for �v (v 2 V [ fu0g), and that the com-

ponent �u0 at u0 is bi-elliptic (see below). If � is cyclic then �0 is cyclic (namely

P�(�
0
1) =

R
ZC0nC 0

�01(h)�(h)
�1dh 6= 0 and P (�02) 6= 0 for some cusp forms �01; �

0
2 2

�0 � L20(ZG
0nG 0), C0 = fdiag (A;B);A;B 2 GL(md)g), and the bi-character of �0v is

not identically zero on the set of bi-regular elements of G0
v
which come from Gv, for

all v.

Suppose that (WH1) and (WH2) hold for �0
v
(v 2 V [ fu0g). If �0 is cyclic, �0

u0
is

bi-elliptic, and the bi-character of �0v is not identically zero on the set of bi-regular

elements of G0
v
which come from Gv (v 2 V ), then � is cyclic.

Proposition 2.1 establishes (WH1) in a special case, and Proposition 4.1 establishes

the \bi-period summation formula", our main global tool. The proof of Theorem

1.1 is completed with Propositions 4.6 and 4.7. Then we state and prove Theorem

5.1, which concerns the transfer of the notion of cyclicity from G to an inner form

G
00 whose invariants have the same denominators as those of G . The local Theorem
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5.2 establishes an analogue of Kazhdan's density theorem [K1], Appendix, for our

bi-distributions. Finally Theorems 5.4 and 5.6 are local analogues of Theorem 1.1,

dealing with the transfer of the notion of local cyclicity from �v to the corresponding

�0v. A \quadratic" analogue of our work is carried out in [F4]. It will be interesting

to compare the results of [F4] with those of the present note.

The cuspidal G -module � = 
�v and the cuspidal G 0-module �0 = 
�0
v
correspond

if �v ' �0v for almost all v (where Gv ' G0
v). It is shown in [FK2] that the cuspidal

G -modules � with a supercuspidal component �u at some place u 62 V occur with

multiplicity one in L20(ZGnG ); that they satisfy the rigidity theorem: if �1 = 
�1v
and �2 = 
�2v have supercuspidal components �1u ' �2u, and �1v ' �2v for almost

all v, then �1 ' �2; and that the correspondence de�nes an embedding of the set of the

cuspidal � with a supercuspidal �u into the set of the cuspidal �0 with a supercuspidal

�0u. The image consists of the �
0 whose local components �0v are obtained by the local

correspondence of relevant representations of Gv to relevant representations of G
0
v
, for

all v. In particular, if � corresponds to �0 then �v ' �0v for all v 62 V .

In fact [FK2] sharpens the work of Bernstein-Deligne-Kazhdan-Vigneras [BDKV]

and [F1] Ch. III, where the case of �0 with a supercuspidal and in addition another

square-integrable component, is dealt with. The global theorem requires in particular

establishing the local correspondence not only for tempered local representations, but

also for relevant local representations (since the generalized Ramanujan conjecture {

asserting that all components of a cuspidal �0 are tempered { is merely a conjecture).

The notion of relevant representations (the representations which may be compo-

nents of a cuspidal G -module) is introduced in [FK1] in a similar context (of an r-fold

covering of GL(n)), where they are shown to be irreducible and unitarizable. This

notion was later used e.g. by Patterson and Piatetski-Shapiro [PPS]. Of course all the

main ideas in the proof of the correspondence are due to Deligne and Kazhdan. Their

proof in the case of m = 1 (d = n; i.e. G is anisotropic) { which is remarkably simple

{ is explained in [F2].

The proofs of [F2], [F1] Ch. III, and [FK1], are based on the \Deligne-Kazhdan"

simple trace formula, and that of [FK2] on a sharper form, the \regular" trace formula,

where regular, Iwahori-invariant functions, are used. The proof here does not involve

any trace formula, yet we do use some of the ideas which play key roles in the develop-

ment of the simple trace formula. Our main global tool is a new \bi-period summation

formula", obtained on integrating over two copies of ZCnC the spectral and geometric

expressions for the kernel of the convolution operator r(f) on L2(ZGnG ), multiplied

by the value of � at one of the variables, for a test function f with a supercuspidal

component fu. An observation of Kazhdan implies that r(f) factorizes through the

natural projection to the space L20(ZGnG ) of cusp forms.

On the spectral side of our formula we obtain the periods of the cyclic cusp forms.

On the geometric side we obtain a new type of bi-orbital integrals. As in [BDKV],

[F2], [F1] Ch. III, [FK1], we choose another component { say fu0 { of the test function

f , and restrict its support to a certain set of \bi-elliptic bi-regular" elements in our

bi-periodic sense. This choice of fu0 greatly simpli�es our study of the geometric side,

indeed it makes our study possible. Yet the choice of fu0 restricts the applicability

of our technique to � and �0 with a \bi-elliptic" (a notion presently to be de�ned)

components at u0.
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2. Invariant forms

Our proof is based on two statements, (WH1) and (WH2), which we accept here

as \working hypotheses". In Proposition 2.1 we prove (WH1) in a special case. We

veri�ed (WH2) in some low rank cases; see [F5]. The (WH1) and (WH2) are analogues

of similar statements for characters, whose proofs { we hope { are applicable (after

some work) in our case too. As noted above, the present note can be viewed also as

a motivation to study these hypotheses. Both hypotheses are local. They concern an

irreducible admissible Gv-module �v (see [BZ]), where Gv = G(Fv), and a complex

valued character �v of F
�
v (and Gv too, via �v(g) = �v( det g)), with �

2n
v = 1.

Working hypothesis (WH1). Let �v be an admissible irreducible Gv-module. Then

there exists at most one (up to a scalar multiple) linear form on �v which transforms

under Cv according to �0
v
(= 1 or �v). Thus there is at most a single form P�v;�0v :

�v ! C with P�v;�0v (�v(h)�) = �0v(h)P�v (�) for all h 2 Cv and � 2 �v.

Alternatively put, dim HomCv(�v ; �
0
v) � 1, or: the restriction of �v to Cv has the

quotient �0
v
with multiplicity at most one. A Gv-module �v with P�v;�v 6= 0 and

P�v 6= 0 (we write P�v for P�v;1) is called cyclic. Each local component of a cyclic

cuspidal � is cyclic, but a cuspidal � whose local components are all cyclic is not

necessarily cyclic. Statements similar to (WH1) were established using techniques

of Gelfand-Kazhdan [GK] (cf. [BZ], (5.16)-(5.17), (7.6)-(7.10), [R], [NPS]) to prove

(existence in the case of GL(n) and) uniqueness of Whittaker models, the uniqueness

of a GL(n; Fv)-invariant linear form on an irreducible GL(n;Ev)-module where Ev=Fv
is a quadratic �eld extension ([F3], p. 163), the uniqueness of a GL(2; Fv)-invariant

form on a GL(2;Kv)-module where Kv is a cubic extension of Fv (Prasad [P], p.

1327), as well as in the cases of such pairs as (GL(n � 1); GL(n)), (O(n � 1); O(n)),

(U(n� 1); U(n)) by Bernstein, Piatetski-Shapiro, Rallis. The case of (WH1) where D

is split has recently been treated by Jacquet and Rallis (in fact, after this note was

written). I hope a proof of (WH1) in general would then appear soon. Let us verify

(WH1) in a special case.

Proposition 2.1. Let Dv be a division algebra of degree n central over Fv, and put

Gv = GL(2; Dv). For any admissible irreducible Gv-module �v there exists at most

one (up to a scalar multiple) linear form on �v which transforms under Cv according

to �v.

Proof. On replacing �v with �v 
 �v , it su�ces to deal with the case where �v = 1.

By a well-known criterion of Gelfand-Kazhdan [GK] (recorded also in [P], p. 1327;

[F3], p. 163), it su�ces to �nd an involution g 7! g# (g## = g; (gh)# = h#g#) on Gv

which preserves Cv , such that any bi-Cv-invariant distribution on Gv is �xed by #.

We shall check that the involution de�ned by g 7! g�1, has this property. For that,

note that the group Gv is the disjoint union of the open set

[
xy 6=0

Cv

�
I x

0 I

��
0 I

I 0

��
I y

0 I

�
Cv =

[
� 6=0

Cv

�
I I + �

I I

�
Cv ;
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the closed set Pv =

��
� �

0 �

��
, and the closed set

Cv

�
I �

0 I

��
0 I

I 0

�
Cv
[
Cv

�
0 I

I 0

��
I �

0 I

�
Cv:

A bi-Cv-invariant distribution which is supported on the open set, or on Pv , is

invariant under g 7! g�1, since

�
I I + �

I I

��1
= ���1

�
�I 0

0 I

��
I I + �

I I

��
�I 0

0 I

�

and �
I x

0 I

��1
=

�
�I 0

0 I

��
I x

0 I

��
�I 0

0 I

�
:

It su�ces then to consider bi-Cv-invariant distributions on the closed set

" [
x2Dv

Cv

�
I x

0 I

��
0 I

I 0

�
Cv

#
[

2
4 [
y2Dv

Cv

�
0 I

I 0

��
I y

0 I

�
Cv

3
5 :

Via f 7! ~f , where ~f(x; 0) = f

��
I x

0 I

��
0 I

I 0

��
and ~f(0; y) = f

��
0 I

I 0

��
I y

0 I

��
,

such a distribution can be viewed as one on X = f(x; y) 2 Dv � Dv;xy = 0g,

which is D�
v -invariant, where D

�
v acts by ~f 7! ~f t, ~f t(x; y) = ~f(t�1x; yt). We need

to show that such a D�
v
-invariant distribution on X is �xed by ~f 7! ~f#, where

~f#(x; y) = ~f(�y;�x). The D�
v -invariant distribution �0(

~f) = ~f(0; 0) on X is clearly

#-invariant.

The evaluation f 7! f((0; 0)) gives rise to an exact sequence

0! C1
c (D�

v )� C1
c (D�

v )! C1
c (X)! C1

c (f(0; 0)g) = C ! 0:

For the spaces of distributions we have the dual exact sequence

0! C ! C1
c (X)0 ! C1

c (D�
v )

0 � C1
c (D�

v )
0 ! 0:

Taking invariants under the action of D�
v
on X by t : (x; y) 7! (t�1x; yt) we get

0! C ! C1
c (X)0D

�

v ! C � C ;

since any D�
v -invariant distribution on D�

v is a multiple of f1 7!
R
D
�

v

f1(x)
dx

jxj
(jxj =

absolute value of the reduced norm D�
v
! F�

v
). The involution # acts on this exact

sequence by (x; y) 7! (y; x), hence trivially on C , and by interchanging the two copies

of C in C � C .

To prove the proposition we only need to show that the image of C1
c
(X)0D

�

v in C �C

is �xed under #. Namely we need to show that the image is contained in C � (1; 1), or

that for any distribution L on X we have L(f1) = L(f2), where f1 is the characteristic

function of D0
v � 0, and f2 is that of 0 � D0

v, in X . Here D0
v is the multiplicative
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group of D1
v = fx 2 Dv ; jxj � 1g: For this, let f be the characteristic function of

f(x; y) 2 X ;x 2 D1
v
or y 2 D1

v
g. If � 2 D1

v
� D0

v
has j�j of maximal value, then

L(f�) = L(f) and L(f1 � f2) = L(f � f�) = 0; as required.

I am indebted to D. Prasad for communicating to me the last paragraph, which

simpli�es my original proof. However, the general case would require using Bernstein's

Fourier transform techniques. This will be given elsewhere.

But let us sketch Bernstein's technique in the case of Gv = GL(2; Fv)(n = 1): We

need to show that any F�
v
-invariant distribution E on Fv�Fv (F

�
v
acts by t : (x; y) 7!

(tx; yt�1)) which is skew-#-symmetric (where # : (x; y) 7! (y; x)), is zero.

First note that the restriction of such E to the complement of the coordinate axis

X in F 2
v
is 0. Indeed, on the line (tx; yt�1), txy 6= 0, this E � up to a multiple � isR

F
�

v

f(tx; yt�1) dt
jtj
. Hence E(f#) =

R
f(yt�1; tx) dt

jtj
is E(f), on replacing t by yt�1x�1,

and it is �E(f) by the skew-#-symmetry, hence it is zero.

There is another action of F�
v
, by ht(x; y) = (tx; ty). Then htE(f) = E(ht�1f),

where ht�1f(x; y) = f(ht(x; y)). The distribution E on X is said to be homogeneous

of degree n if htE = jtjnE. For example, � (f 7! f((0; 0))) and dx

jxj
are homogeneous

of degree 0.

The exact sequence

0! C1
c
(X � f(0; 0)g)! C1

c
(X)! C1

c
(f(0; 0)g)! 0

gives rise to a dual exact sequence of distributions

0! C1
c (f(0; 0)g)0 ! C1

c (X)0 ! C1
c (X � f(0; 0)g)0 ! 0:

Here C1
c
(f(0; 0)g)0 is spanned by �, and C1

c
(X � f(0; 0)g)0 by e1 = dx

jxj
, e2 = dy

jyj
.

Hence C1
c
(X)0 is spanned by �, and by e1; e2, whose images are e1; e2. Since ht �xes

�; e1; e2, it acts as a unipotent transformation on �; e1; e2. Thus (ht�1)3 acts as zero

on C1
c
(X)0. Fix a non-trivial character  : F ! C

�, and de�ne the Fourier transform

FE of E by FE(f) = E(Ff), where Ff(x; y) =
R
Fv

R
Fv
f(u; v) (xu+yv)dudv. Clearly

FE is F�
v
-invariant and skew-#-symmetric,hence zero outside the coordinate axis. On

the other hand, ht(Ff(x; y)) =
R R

f(u; v) (utx + vty)dudv = jtj�2F(ht�1f). Hence

F(htf) = jtj�2ht�1(Ff). Then 0 = F((ht � 1)3E) = (jtj�2ht�1 � 1)3FE. But the

eigenvalues of ht�1 are 1, not jtj2. Hence FE = 0, and E = 0, as required. 2

3. Bi-characters

Let Hv = C1
c
(ZvnGv) denote the convolution algebra (a choice of a Haar measure

is implicit) of compactly supported (modulo Zv) smooth Kv-�nite (= locally constant

when v is non-archimedean) complex-valued functions on Gv which transform trivially

under Zv. Fix an orthonormal basis f�vg in the space of the irreducible admissible

Gv-module �v . Introduce a bi-period distribution on Hv by

P�v (fv) = P�v;�v (fv) =
X
�v

P�v (�v(fv)�v)P�v;�v (�v):
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The linear form P�v;�0v lies in the dual ��v of �v . It also de�nes an element { denoted

P_
�v;�

0
v

{ in the dual e��
v
of the contragredient e�v of �v { by P_

�v;�
0
v

(�_
v
) = P�v;�0v (�v),

wheref�_
v
g is a basis of �_

v
dual to f�vg. Note thatP

_
�v;�

0
v

= P
�_
v
;�0

�1
v

, since

P_
�v;�

0
v

(�_v (h)�
_
v ) = P_

�v;�
0
v

((�v(h)�v)
_)

= P�v;�0v(�v(h)�v) = ��1
v
(h)P_

�v;�
0
v

(�_
v
):

Put hP�v;�0v ; �vi = P�v;�0v (�v) and hP
_
�v;�

0
v

; �_
v
i = P_

�v;�
0
v

(�_
v
). Then P_

�v;�
0
v

decomposes

as P_
�v;�

0
v

=
P

�v
hP_

�v;�
0
v

; �_
v
i�v , and

hP�v ; �v(fv)P
_
�v ;�v

i =
X
�v

hP_
�v;�v

; �_
v
ihP�v ; �v(fv)�vi

is an alternative expression for P�v(fv).

This P�v(fv) is clearly independent of the choice of the basis f�vg of �v . If �1v ; : : : ; �kv
are pairwise inequivalent, then P�1v ; : : : ;P�kv are linearly independent (for a proof see

the following Remark). Since P�v is independent of the choice of basis for �v , it is

Cv-�v-invariant, namely its value at af b
v
(g) = fv(a

�1gb), (a; b 2 Cv) is equal to its

value at fv, multiplied by �v(b)
�1. In particular the distribution P�v depends on fv

only via the bi-period integral

�(; fv) = �(; fv ; �v) =

Z
Cv=Cv\Cv�1

Z
Cv=Zv

fv(hh
0)�v(h

0)dh dh0:

The convergence of this bi-orbital integral is obvious when  is bi-regular (see below).

Note that without assuming (WH1), the bi-period distribution P�v of �v is not uniquely

de�ned.

Remark 3.1. Let us associate a bi-invariant distribution to any admissible irre-

ducible representation � of a p-adic reductive group G, and prove � along standard

lines � that it determines the equivalence class of �. Examples of such distributions

are the trace tr�(f), and the bi-period distribution P�(f) discussed above.

To introduce the bi-invariant distribution, let C1; C2 be subgroups of G, and �1; �2
characters of C1; C2 into C

�. Let Pi be non-zero linear forms on � such that

Pi(�(h)�) = �i(h)Pi(�) for all � 2 � and h 2 Ci. Fix an orthonormal basis f�g

for the space of �, and put

p�(f) =
X
f�g

P1(�(f)�)P2(�) (f 2 C1
c (G)):

If af b(g) = f(agb�1) then p�(
af b) = �1(a)�2(b)p�(f) if a 2 C1; b 2 C2. The distribu-

tion p�(f) is independent of the choice of a basis f�g. Indeed, if f�g is another such

basis, then � =
P

�
(�; �)�, and

X
f�g

P1(�(f)�)P2(�) =
X
�;;�

(�; �)(�; )P1(�(f)�)P2()
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=
X
;�

P1(�(f)�)P2()(
X
�

(; �)�; �) = p�(f):

The trace distribution tr�(f) can be recovered when G is H � H and C1 = C2
is H embedded diagonally, �1 = �2 = 1; � = � � �_, and Pi(� � �_) = (�; �_) is

the Ci-invariant form, where (�; �
_) is the duality of � and its contragredient �_. If

f = f1 � f�2 ; f
�
2 (g) = f2(g

�1), then

p�(f) =
X
�1;�2

(�(f1)�1; �
_(f�2 )�

_
2 )(�1; �

_
2 ) =

X
�

(�(f2 � f1)�1; �
_
1 ) = tr �(f2 � f1);

where f�1g = f�2g = f�g, and f�_
i
g is the basis dual to f�ig.

The distribution P� is obtained on taking C1 = C2 = C; �1 = 1; �2 = �0; P1 = P�
and P2 = P�;�0 .

Proposition 3.2. Let f�1; � � � ; �ng be a set of pairwise inequivalent irreducible ad-

missible representations of H = C1
c
(G). Then fp�1 ; � � � ; p�ng is a linearly independent

set of linear forms on H .

Proof. Denote by Vi the space of �i. Let e 2 H be the characteristic function of

some su�ciently small compact open subgroup K of G, divided by the volume of K,

such that V K

i
= �i(e)Vi 6= f0g and P1; P2 are non-zero on V K

i
(1 � i � n). Let ~�i be

the representation of H K = eH e on the �nite dimensional space V K
i
. If ~�i ' ~�j then

there is an invertible linear map A : V K

i
! V K

j
which commutes with the action of

H
K . We claim that �i ' �j .

To show this, choose vi 6= 0 in V K
i

and put vj = Avi. Then A(�i(f)vi) = �j(f)vj
de�nes an isomorphism �i ~!�j which commutes with the action of H provided that

�i(f)vi = 0 if and only if �j(f)vj = 0 for all f 2 H . But �i(f)vi = 0 i� �i(e �

h)�i(f)vi = 0 for all h in H , and e � h � f � e 2 H
K .

Consequently the ~�1; � � � ; ~�n are inequivalent. It su�ces to show that the linear

forms ~p1; � � � ; ~pn on H
K are linearly independent, where ~pi is the restriction of p�i

to H
K . Fix h 2 H

K . As ~�i is irreducible and �nite dimensional, ~pi(hf) = 0 for all

f 2 H
K i� ~�i(h) = 0. We claim that for any h1; � � � ; hn 2 H

K , if

nX
i=1

~pi(hif) = 0 for all

f in H
K , then ~�i(hi) = 0 for all i. If not, denote by m(2 � m � n) the least number

of indices i with ~�i(hi) 6= 0 for some choice of hi's. Rearranging indices, suppose that

~�1(h) = 0 while ~�2(h) is invertible. But then

mX
i=2

~pi(hihf) = 0 is a shorter relation

of the same type (~�i(hih) not all zero), contradicting the minimality of m. Thus if
nX
i=1

�i~pi(f) = 0 for all f 2 H
K , taking hi = �ie (�i are complex scalars) it follows

that �i~�i(e) = ~�i(hi) = 0, thus �i = 0 (1 � i � n) , as required. 2

Working Hypothesis (WH2). Let �v be a cyclic admissible irreducible Gv-module.

Then there exists a Cv-�v-invariant (p(h
0gh) = �v(h)p(g);h; h

0 2 Cv) complex valued
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function p(g; �v), which is smooth (= locally constant if v is non-archimedean) and

not identically zero on a Zariski open (hence dense) subset of Gv (named bi-regular

below), such that

P�v(fv) =

Z
ZvnGv

fv(g)p(g; �v)dg:

In the archimedean case, this has been shown by Sekiguchi [S]. The function p(g; �v)

is named here the bi-character of �v . It is analogous to the character �(g; �v) or

��v(g) of the trace distribution tr�v(fv) =
R
fv(g)�(g; �v)dg, shown (in the p-adic

case) by Howe [H] and Harish-Chandra [HC3] to be locally constant on the regular set

(which is Zariski open), and moreover (see Harish-Chandra [HC2]) locally integrable

onGv . In fact, the introduction of the character �v makes our distribution resemble the

distribution tr (�(f)A�) investigated by Kazhdan in [K2], p. 211. The proof of [HC3]

shows that the restriction of P�v to the space of functions fKv

v
(g) =

R
Kv

fv(kgk
�1)dk

(Kv = good maximal compact subgroup of Gv) is represented by a smooth function on

the regular set. Since tr�v(fv) = tr�v(f
Kv

v
), this establishes the result for the trace

distribution. It would be interesting to extend this simple proof of [HC3] to apply in

our case too.

A similar question is dealt with in [FH], where it is shown � using Howe's orbit

method as in [HC2] � that the bi-character exists as a locally constant function on

the relatively(=bi)-regular set (introduced there), in the case of GL(n;Dv)-invariant

distributions on GL(n;D0
v
)-modules, where Dv is a division algebra central over Fv ,

while D0
v
= Dv 
Fv Ev , where Ev=Fv is a quadratic �eld extension. A recent work by

Rader and Rallis extends this method to show that the bi-character is locally constant

on the bi-regular set in the present case too. The case of a supercuspidal �v is discussed

in the Remark below.

The local integrability ([HC2]) implies that the character is not identically zero on the

regular set, in the case of the trace. The bi-character of [FH] is also locally integrable,

hence not identically zero on the bi-regular set. This quadratic case is very close to

that of Harish-Chandra's group case. But in general, p(g; �v) often fails to be locally

integrable on Gv . It may be supported on the closed proper subset of \bi-singular"

elements. It will be interesting to determine which �v satisfy (WH2). We expect all

cyclic admissible Gv-modules to satisfy (WH2), in analogy with the archimedean case,

see Sekiguchi [S] and Kengmana [Ke]. We have recently shown this (in [F5]) for n = 1

and n = 2 � using the germ expansion of the spherical character near the nilpotent

cone (due to Rader and Rallis) � and we believe that similar techniques would apply

for a general n. However this would require a separate paper, dealing speci�cally with

the local theory.

The relation�
A B

C D

�
=

�
A 0

0 C

��
I A�1BD�1C

I I

��
I 0

0 C�1D

�

=

�
A 0

0 C

��
I 0

I I

��
I A�1B

0 C�1D �A�1B

�

(A;B;C;D in GL(m;Dv), I = identity in GL(m;Dv)) shows that on the open dense



10 Math. Nachr. (1996)

subset

Xv =

��
A B

C D

�
; jAj 6= 0; jCj 6= 0; jDj 6= 0; jC�1D �A�1Bj 6= 0

�

(where jAj is detA), a set of representatives for CvnXv=Cv is given by the matrices

 =

�
I � + I

I I

�
, j�j 6= 0, � determined up to conjugacy in GL(m;Dv). Note that

Cv \ Cv
�1 consists of Z(�) = fdiag (A;A);A�A�1 = �g.

In analogy with the classical case we say that g 2 Gv is bi-regular if it is bi-conjugate

(its product agb on the right and left by a; b in Cv is equal) to  = (�) with regular

� (distinct eigenvalues). A g 2 Gv is bi-elliptic if it is bi-conjugate to  = (�) with

an elliptic �. The Zariski open set in (WH2) will be the bi-regular set. A cyclic Gv-

module �v is called bi-elliptic if its bi-character is not identically zero on the bi-elliptic

bi-regular set. Theorem 1.1 concerns � with a bi-elliptic component �u0 .

Denote by p�(z) = det (z � �) the characteristic polynomial of the conjugacy class

in GL(m;Dv) of �. In the case of m = 1, the map � 7! p� is a bijection from the

set of regular (necessarily elliptic) conjugacy classes in Dv, to the set of separable

irreducible polynomials of degree d over Fv (the same statement holds globally with

(F;D) replacing (Fv ; Dv)). In general, the map � 7! p� is a bijection from the set of

regular (resp. elliptic regular) conjugacy classes in GL(m;Dv), to the set of separable

(resp. irreducible separable) polynomials of degree dm over Fv whose irreducible

factors have degrees which are multiples of d.

In particular the set of regular conjugacy classes in GL(m;Dv) embeds as a subset

of the set of regular conjugacy classes in GL(n; Fv), n = md. A regular conjugacy

class in GL(n; Fv) so obtained is said to come from GL(m;Dv). The set of regular

elliptic conjugacy classes in GL(m;Dv) bijects with the set of regular elliptic conjugacy

classes in GL(n; Fv). We say that the bi-regular bi-conjugacy class a(�)b (a; b in C 0
v)

in G0
v comes from Gv if � is regular in GL(n; Fv) and its conjugacy class comes from

GL(m;Dv). With this de�nition, the statement of Theorem 1.1 is now complete.

Remark 3.3. If �v is cyclic and supercuspidal, then its bi-character is smooth on

the set of the bi-regular bi-elliptic elements, and the set of their transposes. Indeed,

the linear form P�v is the unique (up to a scalar multiple) non-zero Cv-�v-invariant

linear form on Hv which vanishes on the orthogonal complement of the span of the

space of matrix coe�cients of �v. Hence P�v (fv) is equal { up to a constant multiple

{ to Z
Cv=Zv

Z
Cv=Zv

h�v(fv)�v(h)�; ~�v(h
0)�_i�v(h)dh dh

0

=

Z
Cv=Zv

Z
Cv=Zv

Z
Gv=Zv

fv(g)h�v(h
0gh)�; �_idg �v(h)dh dh

0;

for any vector � 6= 0 in �v .

If g is bi-regular bi-elliptic, then it is of the form g = c0(�)c, and its bi-centralizer

Zv(g) = f(h0; h) 2 Cv � Cv ;h
0gh = gg
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is equal to

( 
h0 = c0

�
t 0

0 t

�
c0�1; h = c�1

�
t 0

0 t

��1
c

!
; t 2 Zv(�)

)
' Zv(�)

where Zv(�) indicates the centralizer of � in GL(m;Dv). This Zv(�) is an elliptic torus

{ isomorphic to the multiplicative group of the separable extension of Fv of degree n

generated by the elliptic regular element �; in particular the volume jZv(g)=Zvj is

�nite, for such g.

Now suppose that fv is supported on the bi-regular bi-elliptic set. Then we may

change the order of integration, obtaining (equality up to a scalar multiple depending

on the choice of �):

P�v(fv) =

Z
Gv=Zv

fv(g)jZv(g)=Zvj�(g; c�v )dg;

where c�v(g) = h�v(g)�; �
_i is a matrix coe�cient of �v . In particular the bi-

characterp(g; �v) of a supercuspidal cyclic �v is given on the bi-regular bi-elliptic set

by p(g; �v) = jZv(g)=Zv j�(g; c�v). It is therefore smooth on the bi-regular bi-elliptic

set, and on the set of transposes of these elements � which is analogously handled.

However we have not veri�ed that p(g; �v) is not identically zero on the bi-regular

bi-elliptic set. In the classical case of characters, it is veri�ed in [HC1] that the

characters of the supercuspidal representations are locally integrable functions, and

that their restrictions to the elliptic regular subset satisfy orthonormality relations.

In particular the character of a supercuspidal representation is not identically zero on

the elliptic regular set. It will be interesting to establish an analogue in our case.

Note that the theory of Whittaker models applies with GL(m;Fv) replaced by

GL(m;Dv), and a non-trivial character (uij) 7!  (
P

i
trDv=Fv

ui;i+1) on the upper

triangular unipotent subgroup (but we have no reference for this analogue). Us-

ing this it is clear that any unitarizable irreducible in�nite dimensional GL(2; Dv)-

module �v is cyclic. Indeed the linear form P�v (W ) =
R
D
�

v

W ( diag (a; 1))d�a on the

Whittaker model W (�v) of �v is well de�ned (the integral converges by the asymp-

totic behaviour of W ), it is Cv-invariant, and non zero, since the space of functions

fa 7!W ( diag (a; 1));W 2 W (�v)g contains C
1
c
(D�

v
) (with equality if �v is supercus-

pidal). Moreover, all elements of GL(2; Dv) are bi-elliptic and bi-regular, or transposes

of such, except those in the bi-conjugacy class of the identity. Hence at most one (pre-

sumably none) GL(2; Dv)-module �v may have a bi-character which vanishes outside

Cv.

4. Proof of Theorem 1.1

The main global tool in the proof of Theorem A is the following bi-period summation

formula.
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Proposition 4.1. Let f = 
fv be a test function on G which has a supercuspidal

component fu and a component fu0 supported on the bi-elliptic bi-regular set. ThenX
�

X
�

P (�(f)�)P�(�) =
X
f�g

jZ(�)=ZZ(�)j
Y
v

�((�); fv):

Here � ranges over the cuspidal cyclic G -modules with a supercuspidal component at

u, � ranges over an orthonormal basis of smooth vectors in the space of �, and f�g

ranges over a set of representatives of the elliptic regular conjugacy classes in G.

Proof. Let Kf (x; y) be the kernel of the convolution operator (r(f)�)(x) =R
ZnG

f(g)�(xg)dg on L2(ZGnG ). Here f = 
fv is a product over all places v of F of

fv 2 Hv , such that fv is the unit element f
0
v
in the convolution algebra H v of spherical

(bi-Kv-invariant, Kv being the standard maximal compact subgroup of Gv) function

in Hv , for almost all v. It is easy to see that (r(f)�)(x) =
R
ZnG

Kf (x; y)�(y)dy, where

Kf (x; y) =
P

2ZnG f(x
�1y). This is the geometric expansion of the kernel.

We take the component fu of f to be a supercusp form. A well-known observation

of Kazhdan (see [F1] Ch. III) asserts that r(f) then factorizes through the natural

projection into the subspace L20(ZGnG ) of cusp forms in L2(ZGnG ). Then the kernel

has the spectral expansion Kf (x; y) =
P

�

P
�(�(f)�)(x)�(y): The �rst sum ranges

over the set of cuspidal G -modules � (in fact with a supercuspidal component at u),

and � ranges over an orthonormal basis of smooth vectors in the space of �. Note that

it is � { and not its equivalence class { which occurs here, by virtue of the multiplicity

one theorem for such � of ([F1] Ch. III, and) [FK2].

Our formula is obtained on integrating these two expressions for the kernel, multi-

plied by �(y), over x; y in ZCnC . The integral of the spectral expression is

X
�

X
�

P (�(f)�)P�(�); P�0(�) =

Z
ZCnC

�(h)�0(h)�1dh; �0 = 1or�:

The integral over x; y in ZCnC of the geometric expression for the kernel isZ
C =CZ

dx

Z
ZCnC

X
2G=Z

f(xy) �(y)dy =
X

2CnG=C

Z
C =Z�C\C�1

dx

Z
ZnC

f(xy) �(y)dy:

We take the component fu0 of f at u0 to be supported on the bi-regular bi-elliptic

set. Consequently the rational bi-C -orbits (the set of xy, with x; y in C , and  in

G) on which f is non-zero, are those of the bi-regular bi-elliptic , represented by

 = (�) =

�
I I + �

I I

�
, where � is an elliptic regular element of GL(m;D). A

complete set of representatives of these rational bi-orbits is given by (�), as � ranges

over a set of representatives f�g for the conjugacy classes of elliptic regular elements

in GL(m;D).

Note that a(�)a�1 = (A�A�1), where a = diag (A;A). Since C \C�1 = Z(�),

where Z(�) is the group of a such that A�A�1 = �, our double integral is equal to

=
X
f�g

jZ(�)=ZZ(�)j

Z
C =Z(�)

dx

Z
ZnC

f(x(�)y)�(y)dy:
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The double integral here can be expressed as a product, for f = 
fv, of local bi-orbital

integrals. Thus we obtain

=
X
f�g

jZ(�)=ZZ(�)j
Y
v

�((�); fv);

where the sum is �nite and the product is absolutely convergent, as required. 2

The following is clear.

Lemma 4.2. Let fv 2 Hv be a function on Gv supported on the bi-regular set. Then

�(; fv) is a smooth function with compact support on the union of (Tv=W (Tv)) over

a set of representatives fTvg of the conjugacy classes of the Fv-tori in GL(m;Dv),

where W (Tv) is the Weyl group (normalizer/centralizer) of Tv, and (Tv=W (Tv)) is

the set of (�), � 2 Tv, up to (w�w�1) � (�) for w 2W (Tv).

Conversely, given a smooth compactly supported function �() on the bi-regular sub-

set of [fTvg(Tv=W (Tv)), there exists an fv 2 Hv supported on the bi-regular set, with

�() = �(; fv). Both statements hold with \bi-regular" replaced by \bi-regular and

bi-elliptic" throughout, except that now Tv ranges over the classes of elliptic Fv-tori

only.

Of course the discussion above holds not only for G but for any inner form of it,

in particular for G0 = GL(2n) (this is the split case, where d = 1). To establish

the comparison of the Theorem, we compare the geometric sides of the bi-periodic

summation formula for f = 
fv on G and for f 0 = 
f 0v on G
0. For this comparison

�x a non degenerate di�erential form of highest degree on G over F . It de�nes a Haar

measure on Gv and G0
v, hence on G and G

0, in a compatible way. These measures,

dgv, dg, d
0gv and d0g, are used to de�ne the bi-period orbital integrals �(; fv) and

�(; f 0
v
), as well as the distributions P�0(�) and P�0 (�

0).

De�nition 4.3. The functions fv 2 Hv and f
0
v
2 H 0

v
are called matching if �(0; f 0

v
)

is zero on the bi-regular 0 which do not come from Gv, while if  is a bi-regular

element of G0
v
which comes from  in Gv , then �(0; f 0

v
) = �(; fv).

For all v 62 V , where V is the �nite set of places whereDv does not split, we have that

Gv ' G0
v and we take fv and f

0
v to correspond to each other under this isomorphism.

At the remaining �nite number of places v in V , Lemma 4.2 guarantees the existence

of f 0
v
matching any fv which is supported on the bi-regular set of Gv . This f

0
v
can be

taken to be supported on the bi-regular set of G0
v , in fact on the (open) set of such

elements which come from Gv .

Conversely, given any f 0
v
whose bi-period orbital integrals are supported on the set

of bi-regular elements of G0
v
which come from Gv, Lemma 4.2 guarantees the existence

of an fv, supported on the bi-regular set of Gv , matching f
0
v .

Lemma 4.4. For any test functions f = 
fv on G and f 0 = 
f 0v on G
0 such that

fv = f 0
v
for all v 62 V , fv = f0

v
for almost all v, fu is a supercusp formant fu0 supported

on the bi-regular bi-elliptic set of Gu0 (u 6= u0, both outside V ), and fv, f
0
v matching
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for all v(2 V ), we have

X
�0

X
�0

P (�0(f 0)�0)P�(�0) =
X
�

X
�

P (�(f)�)P�(�):

The sums range over the cuspidal G 0-modules �0 and cuspidal G -modules �, whose

components at u are supercuspidal, and over orthonormal bases of smooth vectors �0

in �0 and � in �.

Proof. Our choice of matching f and f 0, as well as matching measures, guarantees

the equality of the geometric sides of the bi-period summation formulae for f on G

and f 0 on G
0 of Proposition 4.1. Hence the spectral sides are equal. 2

Lemma 4.5. Let � be a cuspidal G -module with a supercuspidal component �u(u 62

V ), and �0 the corresponding cuspidal G 0-module. Let S be a �nite set of places of F

containing V , u; u0, and all archimedean places and those where �v is not unrami�ed. If

fv 2 Hv and f 0
v
2 H 0

v
are matching (v 2 V ), fu = f 0

u
is a supercusp form, and fu0 ; f

0
u0

are supported on the bi-regular bi-elliptic sets of Gu0 , G
0
u0
, and fv = f 0v (v 2 S � V ),

then X
�02�0K

0(S)

P (�0S(f
0
S)�

0)P�(�0) =
X

�2�K(S)

P (�S(fS)�)P�(�):

Here K (S) =
Y
v 62S

Kv (' K
0(S)), where Kv is the standard maximal compact

GL(2n;Rv) of Gv ' G0
v; �

K (S) is the space of K (S)-�xed vectors in �; � ranges

over an orthonormal basis of smooth vectors in �K (S). Finally �S(fS) is
Y
v2S

�v(fv).

Proof. We work with f and f 0 whose components are spherical (Kv-biinvariant)

at each v 62 S. Note that �v(fv) acts as 0 on � unless � is Kv-invariant, in which

case �v(fv) acts as multiplication by a scalar, denoted again by �v(fv). Putting

�S(fS) =
Y
v 62S

�v(fv), the identity of Lemma 4.4 can be written as

X
�0

X
�02�0K

0(S)

�0S(f 0S)P (�0S(f
0
S)�

0)P�(�0) =
X
�

X
�2�K(S)

�S(fS)P (�S(fS)�)P�(�):

A standard argument { originally expressed by Langlands (in the case of GL(2)) {

used in [F2], [F1], [FK1], [FK2], ..., of \linear independence of characters", based on

varying the spherical components of f at the v 62 S, using standard unitarity estimates,

the Stone-Weierstrass theorem and the absolute convergence of the sums in Lemma

4.4, implies our claim. Of course, we use in the statement of the Lemma multiplicity

one theorem for G 0 and for G ([F1] Ch. III, [FK2]), as well as rigidity theorem for G 0

and for G ([F1] Ch. III, [FK2]). 2

Proposition 4.6. Suppose that � is a cuspidal cyclic G -module with a supercuspidal

component �u (u 62 V ) and a bi-elliptic component �u0(u
0 6= u). Suppose that (WH1)
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and (WH2) hold for �v for all v 2 V and v = u0. Then the corresponding cuspidal

G0-module �0 is cyclic, its component at u0 is bi-elliptic, and the bi-character of �0
v

(v 2 V ) is not identically zero on the set of bi-regular elements of G0
v
which come from

Gv.

Proof. It su�ces to show that the side of � in the identity displayed in Lemma 4.5

is non zero. Consider smooth �1;�2 in �
K (S) such that P�(�1) 6= 0, and P (�2) 6= 0.

In the following proof we regard �K (S) as an abstract representation, rather than

in its automorphic realization. Denote by �0 = �S0 the preferred K (S)-�xed vector

in �S =
O
v 62S

�v, and �x an orthonormal basis f�vg of smooth vectors in �v . Then

f�0 
 (
O
v2S

�v); �v 2 f�vg; v 2 Sg is an orthonormal basis of �K (S). Any smooth vector

in �K (S) is a �nite linear combination of such factorizable vectors.

Expressing the vector �i(i = 1; 2) as a linear combination of vectors including �i =

�0 
 (
O
v2S

�iv) etc., since P�(�2) 6= 0; P (�1) 6= 0 we may assume that the restriction of

P� to �1 and of P to �2 is non zero. At each v 2 S�V , v 6= u, u0, we choose f1v 2 Hv

such that �v(f1v)�v = 0 for all �v 2 f�vg, �v 6= �1v , and �v(f1v)�1v = �2v . Such a

choice is possible since Hv spans the algebra of endomorphisms of �v .

In fact this choice can be made also at the place u, where �u is supercuspidal. Indeed,

by the Schur orthogonality relations the matrix coe�cient f1u(x) = (�u(x)�1u; �
_
2u)

acts as zero on any �u orthogonal to �1u, and it maps �1u to �2u (if necessary, we

can multiplying f1u by a scalar). Moreover, such a matrix coe�cient is a supercusp

form (since �u is supercuspidal), as required to apply Lemma 4.5. With this choice

of fv = f1v (v 2 S � V; v 6= u0), our sum
P
P (�S(fS)�)P (�) ranges over the vectors

� whose component outside V 0 = V [ fu0g is �V
0

= �0 
 (
O

v2S�V 0

�1v). Put also

fV
0

= (
O

v2S�V 0

f1v)
 (
O
v 62S

f0v ).

The side of � in the identity of Lemma 4.5 can now be expressed as

hPV 0 ; �V 0(fV 0)P
_
V 0;�i;

where PV 0;� is the restriction of the linear form hP� ;�i = P�(�) =
R
ZCnC

�(h)�0(h)�1dh

to �V
0


 �V 0 ; PV 0;�0 lies in the dual ��
V 0

of �V 0 . The integral analogously de�nes a

linear form P_
�0

in the dual e�� of the contragredient e� of �, which consists of the �,

� 2 �. Namely hP_
�0
;�i =

R
ZCnC

�(h)�0(h)dh. Denote by P_
V 0;�0

the restriction of

P_
�0

to (�V
0

)_ 
 e�V 0 . Here f�_
v
g signi�es the basis dual to f�vg, and �0_

v
= �0

v
(e�v).

Note that �V 0(fV 0)P
_
V 0;�0

2 �V 0 . Hence hPV 0 ; �V 0(fV 0)P
_
V 0;�

i is de�ned. It is equal to

the side of � in the identity of Lemma 4.5 as explained when P�v (fv) was introduced,

before (WH2) was stated. Note that �V
0

(fV
0

)� is a cusp form for each cusp form �.

We shall now use (WH1) for �v (v 2 V
0). It asserts the uniqueness of the form P�v;�0v

on �v , up to a scalar multiple. The existence of P�v;�0v follows from the cyclicity of

�. Since the components of � outside V [ fu0g are �xed, there is a constant c(�; �0),
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depending on these components, such that

PV 0;�0 = c(�; �0)
O
v2V 0

P�v;�0v :

Our sum then takes the form

c(�; 1)c(�; �)
Y

v2V [fu0g

P�v (fv); P�v (fv) = hP�v ; �v(fv)P
_
�v;�v

i:

At the place u0 we use (WH2). We take fu0 which is supported on the bi-elliptic

bi-regular set, such that

P�
u
0
(fu0) =

Z
Z
u
0nG

u
0

fu0(g)p(g; �u0)dg

is non-zero. The choice of such fu0 is clearly possible, since the bi-character p(g; �u0)

of �u0 is locally constant on the bi-regular set, and is assumed to be non-zero on the

bi-regular bi-elliptic set.

Similarly, at each v 2 V other than u0, we can choose fv which is supported on the

bi-regular set of Gv , with P�v (fv) 6= 0, again using (WH2): the bi-character is smooth

on the bi-regular set, and is not identically zero there. As noted following Lemma 4.2,

there are functions f 0v (v 2 V ) matching the fv. The matching f
0
v will be supported

on the set of bi-regular (also bi-elliptic when v = u0) elements of G0
v which come from

Gv.

With this choice of fv (v 2 S), since � is cyclic, the right side of the identity displayed

in Lemma 4.5 is non-zero. Hence the left side is non-zero. This means that �0 is cyclic,

and P�0
v

(f 0v) 6= 0 (v 2 S) for the matching function f 0v. Since the matching function f
0
v

is supported on the bi-regular (also bi-elliptic when v = u0) elements of G0
v which come

from Gv , and
R
ZvnG0v

f 0
v
(g)p(g; �0

v
)dg 6= 0, the bi-character p(g; �0

v
) is not identically

zero on this set, as asserted. 2

Proposition 4.7. Let �0 be a cuspidal cyclic G
0-module which corresponds to a

cuspidal G -module �. Suppose that �0u is supercuspidal (u 62 V ), that �0
u0

is bi-elliptic,

and that for each v 2 V , the bi-character of �0
v
is not identically zero on the set of

bi-regular elements which come from Gv. Suppose also that (WH1) and (WH2) hold

for �0
v
(v 2 V [ fu0g). Then � is cyclic.

Proof. The discussion at the places v 2 S � V [ fu0g, including the case of the

supercuspidal component at u, is as in Proposition 4.6. The assumptions at u0 and

v 2 V permit producing matching functions fu0 and fv for functions f 0
u0

and f 0
v
for

which the left side of the identity displayed in Lemma 4.5 is non-zero. The proof then

proceeds as that of Proposition 4.6. 2

This completes our proof of Theorem 1.1.
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5. Corollaries and analogues

Theorem 1.1 concerns the correspondence from the group G to its split inner form

G
0 = GL(2n; A ). An analogous discussion can be carried out from G to any inner form

of it. We shall consider next a special { but illuminating { case, of the correspondence

from G to its inner form which has the same rami�cation, as follows.

Recall that the set of rami�cation of G = GL(2m;Dd) is denoted by V . Thus

inv vG = inv vD = iv=dv 2 1
d
Z=Z, with integral 0 < iv < dv , (iv ; dv) = 1, d =

l:c:mfdv; v 2 V g (so dv divides d), and
P

v2V inv vG = 0 (modZ). Also inv vG = 0

for v 62 V .

Now the inner form of G to be considered is G00 = GL(2m;D00
d
), speci�ed (see [We])

by: inv vD
00 = 0 unless v 2 V , and then inv vD

00 = jv=dv 2
1
d
Z=Z, where 0 < jv < dv

are integral with (jv ; dv) = 1, and
P

v2V inv vD
00 = 0 (in 1

d
Z=Z).

The work of [FK2] establishes a bijection between the sets of cuspidal representations

with a supercuspidal component, of these two groups. In fact, the conjugacy classes

in Gv and G
00
v
are in natural bijection, determined by their characteristic polynomials

(in the semi-simple case). The corresponding local components have equal characters

under this identi�cation of regular conjugacy classes. In particular, �u is supercuspidal

if and only if the corresponding �00
u
is. The proof of Theorem 1.1 can be repeated in

this context to establish the following.

Theorem 5.1. Let � be a cuspidal cyclic G -module with a supercuspidal and a bi-

elliptic components (at u, u0) such that (WH1), (WH2) are held for �v (v 2 V [fu
0g).

Then the corresponding cuspidal G 00-module �00 is cyclic, so are its components, and

�00
u0

is bi-elliptic.

We can also derive some purely local results. The �rst will be an analogue of

Kazhdan's density theorem for characters (see [K1], Appendix). It does not rely on

(WH2), but we do assume that there exists a supercusp form fu on Gu (an inner form

of GL(2n; Fu)) with �(g; fu) 6� 0. For example, fu can be taken to be a coe�cient of

a cyclic supercuspidal �u, which we need to assume exists.

Theorem 5.2. Assume that (WH1) holds for every irreducible admissible (cyclic)

representation �w of the inner form Gw of GL(2n; Fw). Then P�w is de�ned. If

fw 2 Hw is a test function such that P�w(fw) vanishes for all cyclic �w, then the

bi-orbital integral �(; fw) is zero on the bi-regular set of  in Gw.

Proof. Choose a global �eld F with completions Fu, Fw, and an inner form G of

GL(2n) over F whose group of points over Fu, Fw is Gu; Gw, and a global character

� with the components �u; �w. Assume that �(g; fw) is not identically zero on the

bi-regular set of Gw. We shall show that this leads to a contradiction.

Since �(; fu), �(; fw) are locally constant on the bi-regular sets of Gu, Gw (Lemma

4.2), we can �x a third place u0, a bi-elliptic bi-regular global element 0 in G, which

is bi-elliptic in Gu0 , and fu0 2 Hu0 which is supported on the bi-elliptic bi-regular set

in Gu0 , such that �(0; fv) 6= 0 (v = u;w; u0).

Since 0 2 Kv for almost all v, and f0
v
� 0, the integral �(0; f

0
v
) is non zero for

all v outside some �nite set S of places of F . At the remaining �nite set of places we
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choose fv to be the characteristic function of a small neighborhood of 0 in Gv ; then

�(0; fv) 6= 0. It follows that �(0; f) 6= 0, where f = 
fv, and that if  is rational

(in G) with �(; f) 6= 0, then  is bi-regular bi-elliptic (since it is such in Gu0).

Since f is compactly supported, such  = (�) lies in a �nite set of bi-orbits; indeed,

the set of characteristic polynomials of the associated � is both compact { depending

on the support of f { and discrete (since � is rational) in the set of polynomials of

degree n over A (' A
n+1).

The totally disconnected topology on Gu0 permits choosing an open closed neigh-

borhood of the orbit of 0 which does not intersect the orbits of the other rational 

with �(; f) 6= 0. Replacing fu0 by its product with the characteristic function of this

neighborhood, we obtain f such that �(; f) 6= 0 for a rational  implies that  is in

the bi-orbit of 0.

We now apply the bi-period summation formula of Proposition 4.1, to our function

f on G . The requirements of this Proposition 4.1 are satis�ed. Indeed, fu is super-

cuspidal, and fu0 is supported on the bi-elliptic bi-regular set. Our assumption that

P�w (fw) vanishes for all �w implies the vanishing of the spectral (left) side of the

summation formula. Hence the geometric side is zero. But it contains a single term,

indexed by 0. So �(0; f) = 0, a contradiction to the assumption that �(g; fw) is not

identically zero on the bi-regular set of Gw, as required. 2

Remark 5.3. Theorem 5.2 and its proof remain valid if we do not assume (WH1),

but instead we assume for all �w that P�w(fw) = 0, where P�w is de�ned by means of

any Cw-invariant linear form P�w on the space of �w, and any form P�w;�w .

Finally we prove a local analogue of Theorem 1.1, assuming that the bi-elliptic

part of (WH2) holds for every admissible irreducible representation �u0 of GL(2; Du0),

where Du0 is a division algebra central of rank n over the local �eld Fu0 . Namely we

assume that the bi-character p(g; �u0) of any (not only supercuspidal as in the Remark

3.3 following the statement of (WH2)) such �u0 is locally constant on the (necessarily

bi-regular bi-elliptic) set of Gu0 .

Theorem 5.4. Let �u be a cyclic supercuspidal Gu-module satisfying (WH1) and

(WH2), where Gu is an inner form of G0
u
= GL(2n; Fu). Then the corresponding

square-integrable G0
u
-module �0

u
is cyclic.

Remark 5.5. The local correspondence is de�ned by means of character relations

(see [F1] Ch. III). The corresponding �0u is square-integrable, but not necessarily

supercuspidal.

Proof. Suppose that invGu = iu=du, 0 < iu < du. We shall work with a global

�eld F such that its completions at the places u1 = u; : : : ; u2du are isomorphic to Fu,

and at the places u01 = u0; : : : ; u0n it is Fu0 , and with an inner form G of GL(2n) over

F with Gui ' Gu (1 � i � 2du) and Gu0
i

' Gu0 (1 � i � n). We shall carry out a

comparison with the inner form G0 of G which is split at the places udu+1; : : : ; u2du ,

but with Gv ' G0
v
for all other v.

We compare the bi-period summation formulae for G and G
0 of Proposition 4.1.

At the places udu+1; : : : ; u2du we use matrix coe�cients of �u, while at the places
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u01; : : : ; u
0
u we take the test functions to be supported on the bi-elliptic bi-regular set.

At the places u1; : : : ; udu we take the fui and f
0
ui

to be matching and supported on

the bi-regular set (of elements which come from Gui in the case of f 0
ui
), as in Lemma

4.2. At all other places, fv = f 0v under Gv ' G0
v . Since both f = 
fv and f 0 = 
f 0v

have supercuspidal components and components supported on the bi-elliptic bi-regular

sets, Proposition 4.1 applies. Since f and f 0 are matching the geometric parts of these

formulae are equal.

Note that f can be chosen so that the geometric side of the bi-period summation

formula is non-zero. Indeed, since �(g; fv) is locally constant on the bi-regular set

(Lemma 4.2), and is not identically zero there for v = ui or u
0
i
by our assumption on

�u and fu0
i

, there is some rational bi-regular bi-elliptic element 0 with �(0; fv) 6= 0

for such v. This relation clearly holds with fv = f0
v
for almost all v. At the remaining

�nite set of places we choose fv supported on a small neighborhood of 0, and argue

as in the proof of Theorem 5.2 that f can be chosen so that �(; f) 6= 0 for a rational

 implies that  is in the bi-orbit of 0. Applying Proposition 4.1 with such an f we

conclude that there exists a cuspidal cyclic G -module �, in fact with the component

�v at v = u1; : : : ; u2du , and a bi-elliptic component at u01; : : : ; u
0
n.

Since we have (WH1) and (WH2) for �v (v = ui) by assumption, and also at v = u0
i

((WH1) by Proposition 2.1, (WH2) on the bi-elliptic set by assumption), the proof

of Proposition 4.6 implies that the corresponding cuspidal G 0-module �0 is cyclic. In

particular its components, including �0
u
, are cyclic, as required. 2

An analogous argument establishes a converse to Theorem 5.4. Under the same

assumption at u0 we have the following.

Theorem 5.6. Let �u and �0
u

be corresponding supercuspidal Gu- and G0
u

=

GL(2n; Fu)-modules. If �0u is cyclic, satisfying (WH1) and (WH2), whose bi-character

is not identically zero on the set of bi-regular elements which come from Gu, then �u
is cyclic.

If the existence of a cyclic supercuspidal Gu00 -module �u00 is assumed { as in Theorem

5.2 { then the same proof establishes Theorem 5.6 with \supercuspidal" replaced by

\square-integrable". In particular we have also the local analogue of Theorem 5.1. Let

�u be a supercuspidal Gu-module (square-integrable if the additional assumption at

u00 is made) satisfying (WH1/2), and G00
u
is an inner form of Gu with invGu = iu=du

and invG00
u = ju=du, (iu; du) = 1 = (ju; du). The corresponding G00

u-module �
00
u is

supercuspidal (resp. square-integrable) by [F1] Ch. III. If �u is cyclic then so is �00
u
.

Acknowledgements

A Humboldt Fellowship and the hospitality of Rainer Weissauer at Mannheim are gratefully

acknowledged.

References

[BZ] J. Bernstein, A. Zelevinskii, Representations of the group GL(n;F ) where F is a nonar-
chimedean local �eld, Russian Math. Surveys 31 (1976), 1-68.



20 Math. Nachr. (1996)

[BDKV] J. Bernstein, P. Deligne, D. Kazhdan, M.-F. Vigneras, Repr�sentations des groupes
r�eductifs sur un corps local, Hermann, Paris (1984).

[BJ] A. Borel, H. Jacquet, Automorphic forms and automorphic representations, Proc. Sym-
pos. Pure Math. 33 (1979), I 189-202.

[F1] Y. Flicker, Rigidity for Automorphic forms, J. Analyse Math. 49 (1987), 135-202.

[F2] Y. Flicker, Transfer of orbital integrals and division algebras, J. Ramanujan math. soc. 5
(1990), 107-122.

[F3] Y. Flicker, On distinguished representations, J. reine angew. Math. 418 (1991), 139-172.

[F4] Y. Flicker, Quadratic cycles on GL(2n) cusp forms, J. Algebra 174 (1995), 678-697.

[F5] Y. Flicker, Orbital integrals on symmetric spaces and spherical characters, J. Algebra
(1996).

[FH] Y. Flicker, J. Hakim, Quaternionic distinguished representations, Amer. J. Math. 116
(1994), 683-736.

[FK1] Y. Flicker, D. Kazhdan, Metaplectic correspondence, Publ. Math. IHES 64 (1987), 53-110.

[FK2] Y. Flicker, D. Kazhdan, A simple trace formula, J. Analyse Math. 50 (1988), 189-200.

[GK] I. Gelfand, D. Kazhdan, Representations of GL(n;K) where K is a local �eld, in Lie
groups and their representations, John Wiley and Sons (1975), 95-118.

[HC1] Harish-Chandra, notes by G. van Dijk, Harmonic analysis on reductive p-adic groups,
Springer Lecture Notes 162 (1970).

[HC2] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's
Papers in Pure and Applied Math. 48 (1978), 281-346.

[HC3] Harish-Chandra, A submersion principle and its applications, in Collected Papers, vol. IV,
Springer-Verlag, New-York, 1984, 439-446.

[H] R. Howe, Some qualitative results on the representation theory of GLn over a p-adic �eld,
Paci�c J. Math. 73 (1977), 479-538.

[J1] H. Jacquet, Sur un r�esultat de Waldspurger, Ann. Sci. ENS. 19 (1986), 185-229.

[J2] H. Jacquet, On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. 97 (1987),
117-155.

[K1] D. Kazhdan, Cuspidal geometry on p-adic groups, J. Analyse Math. 47 (1986), 1-36.

[K2] D. Kazhdan, On lifting, in Lie group representations II, Springer Lecture Notes 1041 (1984),
209-249.

[Ke] T. Kengmana, Characters of the discrete series for pseudo Riemannian symmetric spaces,
in Representation theory of reductive groups, Proc. Univ. Utah conf. 1982 (P. Trombi, ed),
Birkhauser, Boston-Basel (1983), 177-183.

[NPS] M. Novodvorski, I. Piatetski-Shapiro, Generalized Bessel models for a symplectic group
of rank 2, Math. USSR Sbornik 19 (1973), 243-255, 275-286, and 21 (1973), 499-509.

[PPS] S. J. Patterson, I. Piatetski-Shapiro, The symmetric-Square L-function attached to a
cuspidal automorphic representation of GL3, Math. Ann. 283 (1989), 551-572.

[P] D. Prasad, Invariant forms for representations of GL2 over a local �eld, Amer. J. Math.
114 (1992), 1317-1363.

[R] F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups,
in Proc. Sympos. Pure Math. 26, AMS, Providence, (1974), 425-430.

[S] J. Sekiguchi, Invariant spherical hyperfunctions on the tangent space of a symmetric space,
in Algebraic Groups and Related Topics, Advanced Studies in Pure Mathematics 6 (1985),
83-126.

[Wa] J.-L. Waldspurger, Correspondence de Shimura, J. Math. Pure Appl. 59 (1980), 1-113;
Sur les coe�cients de Fourier des formes modulaires de poids demi-entier, J. Math. Pure
Appl. 60 (1981), 375-484.



Flicker, CUSP FORMS WITH PERIODS 21

[We] A. Weil, Basic Number Theory, Springer-Verlag, Berlin 1974.

Department of Mathematics

231 W. 18th. Avenue

The Ohio State University

Columbus, OH 43210-1174

USA


