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A remark on local-global
principles for conjugacy classes

Yuval Z. Flicker

Abstract. A local-global principle is shown to hold for all conjugacy classes of any inner
form of GL(n), SL{n}, U(n), SU(n), and for all semisimple conjugacy classes in any inner form
of Sp(n), over fields k& with ved(k)<1. Over number fields such a principle is known to hold for
any inner form of GL(n) and U(n), and for the split forms of Sp(n), O{n), as well as for SL(p)
but not for SL(n}, n non-prime. The principle holds for all conjugacy classes in any inner form of
GL(n), but not even for semisimple conjugacy classes in Sp(n), over fields k& with ved(k)<2. The
principle for conjugacy classes is related to that for centralizers.

Introduction

Let k be a perfect field with virtual cohomological dimension (ved) <2. (Recall
that ved(k)=cd(k(v/—1)), where v/—1 is a square Toot of —1, and cohomological
dimension cd(k)=cd(Gal(k/k)) is defined e.g. in Serre [Se], Sections 1.3.1 and I1.3.1.
We denote by k a fixed algebraic closure of k.) For any ordering ¢ of k, write ke
for a real closure of k (in k) whose ordering induces ¢ on k (such a k¢ is unique up
to a unique isomorphism). An algebraic group G over k is said to satisfy the real
closures principle if the restriction map

H'(k,G)— [ [ H (ke, &)
£

is injective, where £ ranges over the real spectrum Sperk of k. Note that Sperk
is a compact Hausdorff totally disconnected space, consisting of the orderings of k.
A basis for the topology of Sper & is given by the sets {{;a>0 in &£}, a€k (see e.g.
Scharlau [Sc|, Section 3.5). Such a G satisfies the strong real closures principle over
k if the map is injective also when £ ranges only over any dense subset of Sper k.
The strong real closures principle holds for any connected linear algebraic group
G over any (perfect) k with ved(k)<1 (Scheiderer [Sch], Chernousov [C]), and the
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real closures principle holds for any connected, semisimple, simply connected, linear
algebraic group of classical type over any field k with ved(k) <2 {Bayer-Fluckiger
and Parimala [BP]).

A number fleld &k has ved(k) <2, its real spectrum is the finite set of its real
places, and the real closures principle for such a k coincides with the local-global (or
Hasse) principle (the restriction map H'(k, G)—]], H{k,, G} is injective, where v
ranges over all places of the number field k), for any connected, semisimple, simply
connected, linear algebraic group G, since for such a G, H*(k,, G) is trivial for every
non-archimedean v.

When the cohomological dimension cd(k) of k is finite, the real spectrum is
empty and the real closures principle amounts to asserting that the pointed set
H'(k,G) consists of a single element. This is the case of a totally imaginary number
field (where cd(k)=2), and a function field of a curve over an algebraically closed
field, for example cd(C(z))=1.

The pointed set H'(k,G) parametrizes the torsors (right principal homoge-
neous spaces) over k (see e.g. [Se], Sections 1.5.1-2), and the principle implies that
a torsor T' over k is trivial (is the distinguished element of H(k, G))—namely it
has a k-point, so T'(k)#0-—if T'(ke)#0 for all £ in Sperk, or for all £ in any dense
subset of Sper & in the strong case.

Of course the last question can be asked in the context of any variety over k.
Conjugacy classes in linear algebraic groups are of special interest in group theory
and representation theory, and this note concerns the question of whether an anal-
ogous principle holds for conjugacy classes in G. We say that  and y in G(k) are
conjugate in G(k) if there is a g in G(k) with Int(g)x=gzg~? equal to y, and we
write z~y in G(k). If x and y are in G(k), then z~vy in G(k) implies that z~y in
G(k¢) for each & in Sper k. We say that the (strong) real closures principle holds for
the conjugacy class of y in G(k) if the converse holds, namely for z and y in G(k),
if z~y in G(k¢) for all € in (any dense subset of} Sper k, implies that z~y in G(k).

The following is a “real closures principle” analogue of Bartels [Bal, Satz 2,
which dealt with the number field case.

Theorem. Let G be o linear algebraic group over a field k with an order-
ing (thus Sper k08, hence char k=0) for which the (strong) real closures principle
holds. Fix y in G(k). The (strong) real closures principle holds for the conjugacy
class of y i G(k) if and only if the (strong) real closures principle holds for the
centralizer Gy=2Zg(y) of y in G.

Let Orb(y) be the conjugacy class of y in G. It is a smooth locally closed
k-subvariety of G (Borel [Bo], Proposition 11.6.7). Its set Orb(y, k) of k-points is a
disjoint union of G((k)-orbits. The (strong) real closures principle for the conjugacy
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class of y in GG(k) can be restated as asserting that: if z€Orb(y, k) lies in the G(k¢)-
orbit of y in Orb(y, k¢) for all £ in (any dense subset of) Sperk, then z lies in the
G(k)-orbit of y in Orb(y, k).

Examples

While Bartels [Ba] uses Theorem 4.7 of Asai [A] (which Asai attributes to
Hijikata (in Japanese}), that the local-global principle holds for conjugacy classes
in orthogonal, symplectic and unitary groups over number fields, to conclude that
this principle holds for all centralizers G, in these groups over number fields, one
can also use the theorem to recover Asai’s theorem from the results of Springer—
Steinberg [SS] (used also by Asai [A]), as noted in [Ba] and below. For other fields
we shall just use the general results of [SS] on centralizers of elements in reductive
groups, to learn about conjugacy classes. We proceed to discuss these examples.

Let G be a connected reductive k-group. Hence the derived group G9* of G
is semisimple. The centralizer G;=Z¢(s) of a semisimple element s in G(k) is a
reductive k-group. The centralizer G is connected when the derived group G
of G is simply connected. This assertion is Corollary 8.5 of Steinberg [S] when G
is semisimple; the case of a reductive G follows from the fact that Gi=(G%"),-T
for any maximal torus 7' containing s. In particular, when ved(k)<1, the strong
real closures principle holds for conjugacy classes of semisimple elements in (any
inner form of) the classical groups GL(n), SL{n), U(n), SU(n) and Sp(n).

The real closures principle does not hold for a general k with ved(k)=1 and
the non-connected orthogonal groups O(n), n>2, hence neither for centralizers nor
for conjugacy classes of semisimple y in O(n) (in fact,

ker [ 1,004)) = [ ke, 0(a)|
3

consists of all quadratic forms ¢’ with the same dimension and signatures as the
quadratic form ¢, but ¢’ may have a different determinant than ¢, so the kernel is
in bijection with

B epos/ (*)2 =ler [Hl(k, o) T ' e, Mz)] ,
£

the quotient by the squares of the set of elements in k* which are positive for
each £).

The centralizer G, of any element y in GL(n, k) is a connected k-group ([SS],
I11.3.22). The same holds for any k-form of GL(n)/k, in particular for the unitary
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group U ([SS], IV.2.26(i)). Hence the strong real closures principle holds for all
centralizers Gy, and all conjugacy classes, of yeG(k), when G is GL(n) or U(n), or
any inner form over & thereof, provided ved(k)<1.

Suppose that k has characteristic zero. Then any unipotent group R over k is
an extension of affine lines, hence H'(k, R) is trivial. Let u be a unipotent element
in G(k). Then its centralizer Z=G,=Z(u) in G admits the Levi decomposition
CR, where R is the unipotent radical of Z and C is reductive (not necessarily
connected), both defined over k, and R is normal in Z ([H], Section 0.2). The exact
sequence 1—R—Z—C—1 yields a long exact sequence of cohomology whose Oth
part is the short exact sequence

1—R(k)— Z(k) — C(k) — 1,

as Z is the semidirect product of C' and R. Then H'(k,Z)=H'(k,C). Now the
group C is a product of groups GL (if G is GL; [SS], Corollary IV.1.8) and also U
if G is unitary ([SS], IV.2.25). If G is Sp or O, then C is a product of copies of
groups of the form Sp and O ([SS], IV.2.25). Hence the real closures principle does
not hold for unipotent conjugacy classes in the groups Sp or O, in general, even
when ved(k)<1.

For general conjugacy classes, note that y in G(k) has the (Jordan) decom-
position y=su=us into unique commuting semisimple and unipotent elements s
and u in G(k). The centralizer Zz(y), or Gy, of y in G, is equal to Zy(u), where
H=Zg(s), by the uniqueness of the Jordan decomposition.

When G is GL, U, Sp or O, the group H is a product of groups of the same type
as G, and of GL(n), possibly over field extensions of k. For the real closures principle
for these groups we then need to investigate centralizers of the form Z¢(u), where
u is a unipotent element in G(k).

When k is a number field, it has ved(k)=2, and the real closures principle is
classically known to hold for the semisimple simply connected groups G, where
it coincides with the local-global principle. (The local-global principle holds also
for the split groups O(n) (Kneser [Kn], p. 134, since any element of k which is a
square in k, for all v is a square in k; this is the weak Hasse-Minkowski principle
for quadratic forms). It does not hold for the orthogonal groups associated with
quaternion division algebras ([Kn], p. 138)). Hence the local-global principle holds
for all centralizers Gy, y€G(k), and hence for conjugacy classes of such y, when k is
a number field, and G is any inner form of GL(n) or U(n). It holds for semisimple
conjugacy classes of the groups U(n), Sp(n) and non-quaternionic O(n).

Indeed, a semisimple group G of type *A4,,, By, C, and D,, over k is defined
by a simple algebra A and an involution 7#£1 of A, both defined over k; the center
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of A is k and 7 fixes each element of k except in the case ?A4,,, where the center of
A is a quadratic field extension L of k, 7 acts on L and its set of fixed points is k.
Then G(k)={xe d;z27(z)=1}. An element y of G(k) is—by definition—semisimple
regular, when its centralizer E=2,(y) in A is a semisimple commutative algebra
over k£ in A. Fix a semisimple regular y in G(k). The restriction of 7 to E is an
involution, clearly non-trivial; put P=E7. The centralizer
T=0Gy=Za(y)={zeb;zr(x)=1}

of y in G(k) is the torus Res p/k(Resg; p Gm) (the superscript (1) indicates “norm
one” elements). Since H'(k,T)=P> /N /pE*, G, satisfies the local-global princi-
ple when k is a number field. Clearly the real closures principle is not satisfied over
a general field k with ved(k)=2.

The local~global principle holds for SL(p), p prime, but fails even for semisimple
conjugacy classes in SL(n), n not prime. Indeed, a counterexample is constructed
in [Baj, p. 196, for the torus of SL(4,Q) which splits over L=Q(V/13,V17), as
the norm principle fails for L/Q (thus there is a A¢Q* which is a norm from
L,=L®qgQ), for every rational prime p, but it is not a norm from L).

For general fields & with ved{k)=2, the real closures principle holds for all inner
forms of GL{n), SL(n), SU(n) and Sp(n), but not for U(n), SO(r) and O(n) ([BP}).
It holds for conjugacy classes in GL(n, k). But it does not hold for all semisimple
conjugacy classes in the unitary, symplectic or orthogonal groups, as noted in the
discussion above in the case of number fields. It will be interesting to increase the
set of orderings of such a k to include places (non-discrete valuations?) as those
which a number field has, so that a local-global principle would hold.

Proof of the theorem

If # and y in G(k) are conjugate in G(k¢) then they are conjugate in G(k):
there is g€G (k) with z=gyg~*, thus g o (g)€G, (k) for every c€Gal(k/k). This
g is uniquely determined by z and y up to right multiplication by t€Gy(k), hence
the 1-cocycle {o++g~'c(g)} is uniquely determined up to 1-coboundaries, and it
defines a cohomology class in H'(k,G,) which vanishes in H!(k,G). This gives a
bijection between the conjugacy classes of y in G(k) within its G(k)-conjugacy class
and ker[H'(k,G,)— H'(k,G)|. Since the real closures principle is assumed to hold
for G, it holds for Gy if and only if it holds for ker[H'(k, G, )— H*(k,G)], in other
words, if and only if

ker[H*(k,G,) — Hl(ks G)] — err[Hl(kg, Gy) = Hl(kﬁ’ )]
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is injective, where £ ranges over (any dense subset of) Sper &, as required.

As for the restatement of the real closures principle in terms of the variety
Orb(y), note that the conjugacy class morphism Int: G—Orb(y), g—>gyg~?, is sur-
jective with kernel G, and the induced bijective k-morphism G/G,—Orb(y) is
an isomorphism since char k=0 ([Bo], Section II1.9.1). The long exact sequence
associated to

1—G, — G—Orb(y) —1,

namely
1— Gy (K)— G(K) — Orb(y,K) — H'(K,G,) — H'(K,G)
([Se], Section 1.5.4, K is any field extension of k), identifies
ker[H'(K,G,) — HY(K,G)]

with the set of G(K)-orbits in Orb(y, K).

Stable conjugacy

The local-global principle for conjugacy classes is not the same as the weaker
notion of local-global principle for stable conjugacy classes. Stable conjugacy is a
notion which plays a key role in the stabilization of the trace formula in the theory of
automorphic forms [L], [K], [KS]. The elements = and y in G(k) are said to be G(k)-
conjugate if they are conjugate in G(k). They are stably conjugate over k (G being
a connected reductive linear algebraic group over k) if they are conjugate in G(k),
thus there is a gcG(k) such that 2=Int(g)y, and moreover g~'o(g)€GY for each
o€Gal(k/k), where GY is the connected component of the identity in the centralizer
G, of the semisimple part s of y. (We always have that g~ lo(g)€G,, hence the
second condition means that g~'o(9) Gy =G,NGY.) If the derived group G of
G is simply connected, then the centralizer of any semisimple element is connected:
GY=G; and Gy is equal to G, hence x and y are stably conjugate if and only if they
are conjugate in G(k). In general, given any z-extension a: H—»G (H is connected
reductive over k with H9" simply connected, ker a is central in H and is isomorphic
to a finite product of induced tori Resy /x Gy, k'/k is a finite extension), x and
y in G(k) are stably conjugate if and only if there exist 2’ and ¢’ in H(k), stably
conjugate and such that o(z')=2z and a(y")=y ([K], Section 3). Thus if x and y
in G(k) are stably conjugate in G(k¢), 2’ and y' are conjugate in H(ke¢), hence
in H(k), hence x and y are stably conjugate in G(k). This requires neither the
local-global principle for &, nor the local-global principle for G,.



A remark on local-global principles for conjugacy classes 53

References

[A] Asar, T., The conjugacy classes in the unitary, symplectic and orthogonal groups
over an algebraic number field, J. Math. Kyoto Univ. 16 (1976), 325-350.

[Ba] BARTELS, H.-J., Zur Arithmetik von Konjugationsklassen in algebraischen Gruppen,
J. Algebra 70 (1981), 179-199.

[BP] BAYER-FLUCKIGER, E. and PARIMALA, R., Classical groups and the Hasse principle,
Ann. of Math. 147 (1998), 651-693.

[Bo] BOREL, A., Linear Algebraic Groups, 2nd enlarged ed., Grad. Texts in Math. 126,
Springer-Verlag, New York, 1991.

[C] CHeErNOUSOV, V., An alternative proof of Scheiderer’s theorem on the Hasse prin-
ciple for principal homogeneous spaces, Doc. Math. 3 (1998), 135-148.

[H] HUMPHREYS, J., Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys
and Monographs 43, Amer. Math. Soc., Providence, R. 1., 1995.

[Kn] KNESER, M., Lectures on Galois Cohomology of Classical Groups, Tata Institute of
Fundamental Research, Bombay, 1969.

[K] KotTtwiTz, R., Rational conjugacy classes in reductive groups, Duke Math. J. 49
(1982), 785-806.

[KS] Korrwitz, R. and SHELSTAD, D., Foundations of twisted endoscopy, Astérisque
255 (1999).

[L] Lancranps, R., Stable conjugacy: definitions and lemmas, Canad. J. Math. 31
(1979), 700-725.

[Sc] ScHARLAU, W., Quadratic and Hermatian Forms, Springer-Verlag, Berlin, 1985.

[Sch] ScHEIDERER, C., Hasse principles and approximation theorems for homogeneous
spaces over fields of virtual cohomological dimension one, Invent. Math. 125
(1996), 307-365.

[Se] SERRE, J.-P., Cohomologie Galoisienne, 5th ed., Lecture Notes in Math. 5, Springer-
Verlag, Berlin—Heidelberg, 1994.

[SS] SPRINGER, T. A. and STEINBERG, R., Conjugacy classes, in Seminar on Algebroic
Groups and Related Finite Groups (Princeton, N. J., 1968/69), (Borel, A.,
Carter, R., Curtis, C. W., Iwahori, N., Springer, T. A. and Steinberg, R.},
Lecture Notes in Math. 131, Chapter E, Springer-Verlag, Berlin—-Heidelberg,
1970.

[S] STeINBERG, R., Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math.
Sac. 80 (1968).

Received September 4, 2000 Yuval Z. Flicker

in revised form October 10, 2000 Department of Mathematics

Ohio State University

Columbus, OH 43210-1174

US.A.

email: flicker@math.chio-state.edu



