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A r e m a r k  o n  l o c a l - g l o b a l  
p r i n c i p l e s  for  c o n j u g a c y  c l a s s e s  

Yuval  Z. Fl icker  

Abs t r ac t .  A loca~global principle is shown to hold for all conjugacy classes of any inner 
form of GL(n), SL(n), U(n), SU(n), and for all semisimple conjugacy classes in any inner form 
of Sp(n), over fields k with vcd(k)_< 1. Over number fields such a principle is known to hold for 
any inner form of GL(n) and U(n), and for the split forms of Sp(n), O(n), as well as for SL(p) 
but not for SL(n), n non-prime. The principle holds for all conjugacy classes in any inner form of 
OL(n), but not even for semisimple conjugacy classes in Sp(n), over fields k with vcd(k)<2. The 
principle for conjugacy classes is related to that for centrMizers. 

I n t r o d u c t i o n  

Let  k be a perfect  field wi th  v i r tua l  cohomologica l  d imens ion  (vcd) _< 2. (Recal l  
t h a t  v c d ( k ) = c d ( k ( x / L ~ ) ) ,  where  x/X-f is a square  roo t  of - 1 ,  and  cohomologica l  
di  ension cd(k)=cd(Gal( /k)) is de ned e.g. in Serre [Se], Sections 1.3.1 and n.3.1. 
We denote  by k a fixed a lgebra ic  closure of k.) For  any order ing  ~ of k, wr i te  k~ 
for a real  c losure of k (in k) whose o rder ing  induces  ~ on k (such a k~ is unique  up 
to  a unique  i somorphism) .  A n  a lgebra ic  g roup  G over k is sa id  to  sat isfy  the  real 
closures principle if t he  res t r i c t ion  m a p  

is inject ive,  where  ~ ranges  over the  real  s p e c t r u m  Sper  k of k. Note  t h a t  Sper  k 
is a compac t  Hausdorf f  t o t a l l y  d i sconnec ted  space,  consis t ing  of the  order ings  of k. 
A basis  for the  topo logy  of S p e r k  is given by the  sets  { { ; a > 0  in ~}, aEk (see e.g. 
Schar lau  [Sc], Sect ion 3.5). Such a G satisfies the  strong real closures principle over 
k if the  m a p  is in ject ive  also when ~ ranges  only over any dense subse t  of  Sper  k. 

The  s t rong  real  closures pr incip le  holds for any  connec ted  l inear  a lgebra ic  group 
G over any (perfect)  k wi th  vcd(k)_< 1 (Scheiderer  [Sch], Chernousov  I t ] ) ,  and  the  
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real closures principle holds for any connected, semisimple, simply connected, linear 
algebraic group of classical type over any field k with vcd(k)_<2 (Bayer-Fluekiger 
and Parimala [BP]). 

A number field k has vcd(k)_<2, its real spectrum is the finite set of its real 
places, and the real closures principle for such a k coincides with the local-global (or 
Hasse) principle (the restriction map H 1 (k, C)--*Hv H1 (k~, G) is injective, where v 
ranges over all places of the number field k), for any connected, semisimple, simply 
connected, linear algebraic group G, since for such a G, H 1 (k~, G) is trivial for every 
non-arehimedean v. 

When the eohomological dimension cd(k) of k is finite, the real spectrum is 
empty and the real closures principle amounts to asserting that  the pointed set 
H 1 (k, G) consists of a single element. This is the case of a totally imaginary number 
field (where cd(k)=2) ,  and a function field of a curve over an algebraically closed 
field, for example c d ( C ( x ) ) = l .  

The pointed set H I ( k , G )  parametrizes the torsors (right principal homoge- 
neous spaces) over k (see e.g. [Se], Sections 1.5.1-2), and the principle implies that  
a torsor T over k is trivial (is the distinguished element of Hi(k,  G) ) - -namely  it 
has a k-point, so T(k)C;0-- if  T(k~)r for all ~ in Sper k, or for all { in any dense 
subset of Sper k in the strong case. 

Of course the last question can be asked in the context of any variety over k. 
Conjugacy classes in linear algebraic groups are of special interest in group theory 
and representation theory, and this note concerns the question of whether an anal- 
ogous principle holds for conjugacy classes in G. We say that  x and y in G(k) are 
conjugate in G(k) if there is a g in G(k) with Int(g)x=gxg -1 equal to y, and we 
write x ~ y  in G(k). If x and y are in G(k), then x ~ y  in G(k) implies that  x ~ y  in 
G(k~) for each { in Sper k. We say that  the (strong) real closures principle holds for 
the conjugacy class of y in G(k) if the converse holds, namely for x and y in G(k), 
if x ~ y  in G(kg) for all { in (any dense subset of) Sper k, implies that  x ~ y  in G(k). 

The following is a "real closures principle" analogue of Barrels [Ba], Satz 2, 
which dealt with the number field case. 

T h e o r e m .  Let G be a linear algebraic group over a field k with an order- 
ing (thus Sper kyk~, hence char k=0)  for which the (strong) real closures principle 
holds. Fix y in G(k). The (strong) real closures principle holds for the eonjugacy 
class of y in G(k) if and only if the (strong) real closures" principle holds for the 
centralizer Gy = ZG (y) of y in G. 

Let Orb(y) be the conjugacy class of y in G. It is a smooth locally closed 
k-subvariety of G (Borel [Bo], Proposition II.6.7). Its set Orb(y, k) of k-points is a 
disjoint union of G(k)-orbits. The (strong) real closures principle for the conjugaey 
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class of y in G(k) can be restated as asserting that: if xEOrb(y,  k) lies in the G(k~)- 
orbit of y in Orb(y, k~) for all ~ in (any dense subset of) Sper k, then x lies in the 
G(k)-orbit of y in Orb(y, k). 

Examples 
While Barrels [Ba] uses Theorem 4.7 of Asai [A] (which Asai attributes to 

Hijikata (in Japanese)), that  the local global principle holds for conjugacy classes 
in orthogonal, symplectic and unitary groups over number fields, to conclude that  
this principle holds for all centralizers Gy in these groups over number fields, one 
can also use the theorem to recover Asai's theorem from the results of Springer 
Steinberg [SS] (used also by Asai [A]), as noted in [Ba] and below. For other fields 
we shall just use the general results of [SS] on centralizers of elements in reductive 
groups, to learn about conjugaey classes. We proceed to discuss these examples. 

Let G be a connected reductive k-group. Hence the derived group G der of G 
is semisimple. The centralizer Gs = Z a ( s )  of a senfisimple element s in G(k) is a 
reductive k-group. The centralizer Gs is connected when the derived group G der 
of G is simply connected. This assertion is Corollary 8.5 of Steinberg IS] when G 
is semisimple; the case of a reductive G follows from the fact t h a t  Gs=(Gder). s 'T  
for any maximal torus T containing s. In particular, when vcd(k )< l ,  the strong 
real closures principle holds for eonjugacy classes of semisimple elements in (any 
inner form of) the classical groups GL(n), SL(n), U(n), SU(n) and Sp(n). 

The real closures principle does not hold for a general k with v c d ( k ) = l  and 
the non-connected orthogonal groups O(n), n_>2, hence neither for centralizers nor 
for conjugaey classes of semisimple y in O(n) (in fact, 

ker[Hl (k, O(q) ) --+ H Hl(k~, O(q) ) l 

consists of all quadratic forms q~ with the same dimension and signatures as the 
quadratic form q, but q~ may have a different determinant than q, so the kernel is 
in bijection with 

k ot os/(k ) = ker  U 1-I u l ( k r  , 

the quotient by the squares of the set of elements in k • which are positive for 
each ~). 

The centralizer Gy of any element y in GL(n, k) is a connected k-group ([SS], 
III.3.22). The same holds for any k-form of GL(n)/k, in particular for the unitary 
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group U ([SS], IV.2.26(i)). Hence the strong real closures principle holds for all 
centralizers G v, and all conjugacy classes, of y6G(k), when G is GL(n) or U(n), or 
any inner form over k thereof, provided vcd(k)_< 1. 

Suppose that  k has characteristic zero. Then any unipotent group R over k is 
an extension of affine lines, hence I3rl(k, R) is trivial. Let u be a unipotent element 
in G(k). Then its centralizer Z=G~=ZG(u) in G admits the Levi decomposition 
CR, where R is the unipotent radical of Z and C is reductive (not necessarily 
connected), both defined over k, and/~  is normal in Z ([H], Section 0.2). The exact 
sequence 1--+R-+Z-~C--+I yields a long exact sequence of cohomology whose 0th 
part is the short exact sequence 

1 >z(k) >1, 

as Z is the semidirect product of C and R. Then Hi(k, Z)=HI(k,C). Now the 
group C is a product of groups GL (if G is GL; [SS], Corollary IV.1.8) and also U 
if G is unitary ([SS], IV.2.25). If G is Sp or O, then C is a product of copies of 
groups of the form Sp and O ([SS], IV.2.25). Hence the real closures principle does 
not hold for unipotent conjugacy classes in the groups Sp or O, in general, even 
when vcd(k)< 1. 

For general conjugacy classes, note that  y in G(k) has the (Jordan) decom- 
position y:s~t:u8 into unique commuting semisimple and unipotent elements s 
and u in G(k). The centralizer Zc;(y)~ or Gv, of y in G, is equal to ZH(U), where 
H=ZG(s), by the uniqueness of the Jordan decomposition. 

When G is GL, U, Sp or 0 ,  the group H is a product of groups of the same type 
as G, and of GL(n), possibly over field extensions of k. For the real closures principle 
for these groups we then need to investigate centralizers of the form ZG(u), where 
u is a unipotent element in G(k). 

When k is a number field, it has vcd(k)=2,  and the real closures principle is 
classically known to hold for the semisimple simply connected groups G, where 
it coincides with the local global principle. (The local global principle holds also 
for the split groups O(n) (Kneser [Kn], p. 134, since any element of k which is a 
square in k~ for all v is a square in k; this is the weak Hasse Minkowski principle 
for quadratic forms). It does not hold for the orthogonal groups associated with 
quaternion division algebras ([Kn], p. 138)). Hence the local global principle holds 
for all centralizers Gy, yCG(k), and hence for conjugacy classes of such y, when k is 
a number field, and G is any inner form of GL(n) or U(n). It holds for semisimple 
conjugacy classes of the groups U(n), Sp('n) and non-quaternionic O(n). 

Indeed, a semisimple group G of type 2An, B~, C.~ and D~ over k is defined 
by a simple algebra A and an involution ~-r of A, both defined over k; the center 
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of A is k and r fixes each element of/~ except in the case 2A,~, where the center of 
A is a quadratic field extension L of k, r acts on L and its set of fixed points is k. 
Then G(k)={xEA;xr(x)=]}. An element y of" G(k) is--by definition--semisimple 
regular, when its centralizer E=ZA(y) in A is a semisimple comnmtative algebra 
over k in A. Fix a semisimple regular y in G(k). The restriction of r to E is an 
involutiorl, clearly non-trivial; put P=E ~-. The centralizer 

T:Cy = ZG(y) = {x  9 Z;xT(x) = 1} 

of y in G(k) is the torus Resp /k (Res~p  Gin) (the superscript (1) indicates "norm 
one" elements). Since H l(k, T):_px/NE/pE • ' Gy satisfies the local-global princi- 
ple when k is a number field. Clearly the real closures principle is not satisfied over 
a general field k with vcd(k)=2.  

The local-global principle holds for SL(p), p prime, but fails even for semisimple 
conjugacy classes in SL(n), n not prime. Indeed, a counterexample is constructed 
in [Ba], p. 196, for the torus of SL(4, Q) which splits over L = Q ( ~ ,  x/J7) ,  as 
the norm principle fails for L/Q (thus there is a AEQ x which is a norm from 
Lp:L@QQp for every rational prime p, but it is not a norm from L). 

For general fields k with vcd(k)=2,  the real closures principle holds for all inner 
forms of GL(n),  SL(n), SU(n) and Sp(n), but not for U(n), SO(n) and O(n) ([BP]). 
It holds for conjugacy classes in GL(n, k). But it does not hold for M1 semisimple 
conjugacy classes in the unitary, symplectic or orthogonal groups, as noted in the 
discussion above in the case of number fields. It will be interesting to increase the 
set of orderings of such a k to include places (non-discrete valuations?) as those 
which a number field has, so that  a local-global principle would hold. 

P r o o f  o f  t h e  t h e o r e m  

If x and y in G(k) are conjugate in G(k~) then they are conjugate in G(k): 
there is gEG(k) with x=gyg -1, thus g-le(g)EGy(k) for every ~EGal(k /k) .  This 
g is uniquely determined by x and y up to right multiplication by tEGy(k), hence 
the l-cocycle {~+g- l~r (g)}  is uniquely determined up to l-coboundaries, and it 
defines a cohomology class in Hi(k, G~) which vanishes in Hi(k, G). This gives a 
bijection between the conjugacy classes of y in G(k) within its G(k)-conjugacy class 
and ker[Hl(k,  Gy)--~H l(k, G)]. Since the real closures principle is assumed to hold 
for G, it holds for Gy if and only if it holds for ker[Hl(k,Gy)--+Hl(k,G)], in other 
words, if and only if 

ker[Hl(k, Gv)--+ Hl(k,G)] > Hker[Hl(k~,Gy)--~ Hl(k~,G)] 
f- 
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is injective, where ~ ranges over (any dense subset of) Sper k, as required. 
As for the restatement of the real closures principle in terms of the variety 

Orb(y), note that  the conjugacy class morphism Int: G-+Orb(y) ,  9~-+gyg -1, is sur- 
jective with kernel Gy, and the induced bijective k-morphism G/Gy-+Orb(y) is 
an isomorphism since char k=0  ([Bo], Section III.9.1). The long exact sequence 
associated to 

1 > Gy > G > Orb(y) > 1, 

namely 

1 -----} Gy (/~) ~ G(/()  ~ Orb(y,/[s ) H 1([~, Gy) ----+ Hi ( / ( ,  G) 

([Se], Section 1.5.4, K is any field extension of k), identifies 

ker[H 1 (/~, Gy) > H 1 (ts G)] 

with the set of G(K)-orbi ts  in Orb(y, K).  

S t a b l e  c o n j u g a c y  

The local-global principle for conjugacy classes is not the same as the weaker 
notion of local-global principle for stable conjugacy classes. Stable conjugacy is a 
notion which plays a key role in the stabilization of the trace formula in the theory of 
automorphic forms [L], [K], [KS]. The elements x and y in G(k) are said to be G(k)- 
conjugate if they are conjugate in G(k). They are stably conjugate over k (G being 
a connected reductive linear algebraic group over h) if they are conjugate in G(k), 
thus there is a gGG(k) such that  x=Int(g)y, and moreover g-lcr(g)cG~ for each 

E Gal(k/k) ,  where G O is the connected component of the identity in the centralizer 
G~ of the semisimple part s of y. (We always have that  g la(g)EGy, hence the 
second condition means that  g lcr(g) EGy=G~NG~ If the derived group G der of 
G is simply connected, then the centralizer of any semisimple element is connected: 
G~ and Gy is equal to Gy, hence x and y are stably conjugate if and only if they 
are conjugate in G(k). In general, given any z-extension a: H+G (H is connected 
reductive over k with H der simply connected, ker a is central in H and is isomorphic 
to a finite product of induced tori Resk,/k G~ ,  k'/k is a finite extension), x and 
y in G(k) are stably conjugate if and only if there exist x'  and y' in H(k), stably 
conjugate and such that  a ( x ' ) = z  and c~(y')=y ([K], Section 3). Thus if x and y 
in G(h) are stably conjugate in G(k~), x' and y' are conjugate in H(k~), hence 
in H(k), hence x and y are stably conjugate in G(k). This requires neither the 
local global principle for G, nor the local global principle for Gy. 



A remark on local-global principles for conjugacy classes 53 

R e f e r e n c e s  

[A] ASAI, T., The conjugacy classes in the unitary, symplectic and orthogonal groups 
over an algebraic number field, J. Math. Kyoto Univ. 16 (1976), 325 350. 

[Ba] BARTELS, H.-J., Zur Arithmetik von Konjugationsklassen in algebraischen Gruppen, 
J. Algebra 70 (1981), 179 199. 

[BP] BAYER-FLUCKIGER, E. and PARIMALA, R., Classical groups and the Hasse principle, 
Ann. of Math. 147 (1998), 651-693. 

[Bo] BOREL, A., Linear Algebraic Groups, 2nd enlarged ed., Grad. Texts in Math. 126, 
Springer-Verlag, New York, 1991. 

[C] CHERNOUSOV, V., An alternative proof of Scheiderer's theorem on the Hasse prin- 
ciple for principal homogeneous spaces, Doc. Math. 3 (1998), 135-148. 

[HI HUMPHREYS, J., Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys 
and Monographs 43, Amer. Math. Soc., Providence, R. I., 1995. 

[Kn] KNESER, M., Lectures on Galois Cohomology of Classical Groups, Tara Institute of 
~ndamental  Research, Bombay, 1969. 

[K] KOTTWITZ, R., Rational conjugacy classes in reductive groups, Duke Math. J. 49 
(1982), 78,5-806. 

[KS] KOTTWITZ, R. and SHELSTAD, D., Foundations of twisted endoscopy, Astdrisque 
255 (1999). 

[L] LANGLANDS, R., Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 
(1979), 700-725. 

[Sc] SCHARLAU, W., Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985. 
[Sch] SCHEIDERER, C., Hasse principles and approximation theorems for homogeneous 

spaces over fields of virtual cohomological dimension one, Invent. Math. 125 
(1996), 30~365. 

[Se] SERRE, J.-P., Cohomologie Galoisienne, 5th ed., Lecture Notes in Math. 5, Springer- 
Verlag, Berlin Heidelberg, 1994. 

[SS] SPRINGER, T. A. and STEINBERG, P~., Conjugacy classes, in Seminar on Algebraic 
Groups and Related Finite Groups (Princeton, N. J., 1968/5"9), (Borel, A., 
Carter, R., Curtis, C. W., Iwahori, N., Springer, T. A. and Steinberg, R.), 
Lecture Notes in Math. 131, Chapter E, Springer-Verlag, Berlin Heidelberg, 
1970. 

IS] STEINBERG, R., Endomorphisms of Linear Algebraic Groups, Mere. Amer. Math. 
Soe. 80 (1968). 

Received September 4, 2000 
in revised form October 10, 2000 

Yuval Z. Flicker 
Department of Mathematics 
Ohio State University 
Columbus, OH 43210-1174 
U.S.A. 
email: flicker~mat h.ohio-state.edu 


