ON THE SYMMETRIC SQUARE: DEFINITIONS AND LEMMAS

YuvAL Z. FLICKER

ABSTRACT. The symmetric square lifting for admissible and automorphic representations,
from the group H = Hp = SL(2), to the group G = PGL(3), is defined by means of Shintani
character relations. Its basic properties are derived: the lifting is proven for induced, trivial and
special representations, and both spherical functions and orthogonality relations of characters
are studied.

The definition is compatible with dual group homomorphisms

Xo = Sym? : HH = PGL(2,C) = SO(3,C) < G = SL(3,C)

and A1 : H; = SL(2,C) — G, where H; = PGL(2). Also it is compatible with the computation
of orbital integrals (stable and unstable) in [I].

0. INTRODUCTION

The purpose of this part is to define the symmetric square lifting in terms of character
relations, and derive basic properties of this lifting. This work is required for our study of
this lifting of automorphic forms of H(A) to G(A), where H = Hy = SL(2) and G = PGL(3),
by means of the trace formula.

The lifting is suggested by the symmetrlc square, or adjoint representation Ag: H-G
of the dual group H = PGL(2,C) of H in G = SL(3,C). Put

0 1
o(g) =TT, .7:( -1 )

Then H is a o-endoscopic group of G. But G has another o-endoscopic group, which is
H; = PGL(2). We write A;: H; = SL(2,C) < G, h — ( ) Via the Satake isomorphism,

the maps A; formally define the lifting 7 = A;(m;) of unramified H;(F)-modules 7; to
unramified G(F')-modules w. Moreover, we introduce in §1 the dual maps Af: H — Hj
from the Hecke algebra H of G(F') to the Hecke algebra H; of H;(F'). It follows from the
definitions that if f; = AX(f) then the spherical functions f and f; have matching orbital
integrals on the split torus.

In §2 we define lifting, denoted m; = A\;(7), of admissible representations m; of H;(F') to
such representations 7 of G(F'), by means of character relations. The definition is suggested
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by the study [I], §3, of orbital integrals. It generalizes the spherical case, and uses packets
rather than a single irreducible. Basic examples of the stable lifting Ay are given. These
concern induced, trivial, and special representations.

Section 3 concerns orthogonality relations for characters which are needed in the study
[IV] of the local lifting. The cases of supercuspidal G(F')-modules and Steinberg m are
standard but useful. We also record without proof the twisted orthogonality relation for
two tempered G(F)-modules which are not relevant. The proof follows closely that of
the nontwisted case by Kazhdan [K2]. It depends on the twisted analogue of the crucial
appendix of [K2]; this is proven in [Frig| for a general group, and in [IV], (1.8), in our case.

1. HECKE ALGEBRA

1.1. Dual-groups. Let F' be a global or local field of characteristic zero. Put G = PGL(3),
H = Hjy = SL(2), and H; = PGL(2) = SO(3). For any field K denote by G(K), H(K) and
H{(F) the group of K-rational points of G, H and H;. Fix a separable algebraic closure F'
of F.

Let G = SL(3,C) be the dual group of G (for any reductive group G the dual group G is
defined in [Bo2], where it is denoted by “G). Consider the semidirect product G' = G x (0);
(o) denotes the group generated by the automorphism o(g) = Jtg~'J, of G of order 2.

The dual group H of H is PGL(2,C) ~ S0(3,C); it is isomorphic to the centralizer
of 1 x ¢ in the connected component of 1 in G, and to the o-centralizer GU {g in
G, g lo(g)=1} of 1 in G. The isomorphism is given by

b 1 a? abv2 b2
(ad)—)—<ac 2ad+bcbd\/§> (:E:ad—bc).
¢ €T 2 cdv2 d?

This map will be denoted by A, or Ag: H — G.
The dual-group G; of Hy is SL(2,C), and the map

A\ ab a0b
1: cd — 010
c0d

embeds H 1 in G. The i image is the centralizer of e X o in G where e is the diagonal matrix
(—=1,1,1). Equivalently, it is the o-centralizer G" of e in G.

1.2. Hecke algebra. Let F' be a p-adic field, R = {z in F; |z| < 1} its ring of integers,
K = G(R) the standard maximal compact subgroup of G(F'), H = Hg the convolution
algebra of complex-valued compactly supported K-bi-invariant functions f on G(F). Let
7 be an admissible irreducible representation of G(F') on a space V. Put 77(g) = w(og)
(9 in G(F)). Then °7 is an admissible irreducible representation of G(F) on V. We say
that 7 is o-invariant if 7 is equivalent to “w. In this case there is an invertible operator
A:V =V with n(og) = Ar(9)A™! (g in G(F)). Since 7 is irreducible and A? intertwines
7 with itself, A2 is a scalar which we normalize to be 1. We put m(c) = A, and define the
operator 7(f X o) = w(f)m(c) to be the map which assigns [ f(g)m(g)Avdg to v.
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If f is spherical (in Hg ) and 7(f x o) # 0, then the image of w(f x o) is one-dimensional
and 7(k) (k € K) is the identity on the image of m(f x ¢). Hence 7 is unramified, and it lies
in a representation I of G(F') induced from an unramified character n of the upper triangular
Borel subgroup B(F'), m being the unique unramified constituent in the composition series
of I. Fix v in V so that w = n(f x o)v is nonzero. It is clear that Aw is also a K-fixed
vector, and Aw # 0, since A(Aw) = w # 0. Hence, there is a constant ¢ with Aw = cw.
As A2 =1, cis 1 or —1. We replace A by cA to have Aw = w. This normalization is
compatible with the global normalization in terms of Whittaker models; see [IV], (1.1.1).

The character 7 is given by

n((a, b, ¢)) = p1(a)pa(b)ps(c)

on an element v = (a, b, ¢) in the diagonal torus T of G, where p; are characters of F'>* with
pipops = 1. Let m be a local uniformizer in F. Consider the element ¢ = (pq(m), pa(m),

ps(m)) in the diagonal torus T of G. Then the equivalence class of the unramified represen-

tation 7 is uniquely determined by the conjugacy class in G of t.
The normalized orbital integral

) [0 % (g e TB)\GW))

where
a—bb—ca-—c

A(y) = 5 o |’

depends only on the image of v = (a,b,c) in T(F)/T(R) ~ X.(T) when f is spherical,
and hence will be denoted by F¢(n), n being the image of v in X, (T) ~ {(n1,n2,n3); n; €
Z}/{(n,n,n); n € Z}. Implicit is a choice of Haar measures dg, dt on G(F') and T'(F'). For
t = (t1,to,t3) in T and n = (ny,na, ng) in X,(T), we put

n(t) = t7't5%t5°.
The Satake transform f of f is defined by

f() = IT(R) Y Fr(mn(t)  (me X*(T) = X.(T)),

where |T(R)| denotes the volume of T'(R) = T(F) N K with respect to dt. The map f — f
is an isomorphism from the algebra Hg to the algebra C[T]W of finite Laurent series in
¢ € T which are invariant under the action of the Weyl group W of TinG.

1.3. Lemma. Suppose that 7 is unramified and t = t(n) = t(x) is a corresponding element
inT. If °n =n, then for any f in Hg we have

trw(f x o) = f(t).

Proof. This is standard, hence omitted. O
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1.4. Definition. For § in G(F) put ®%(4) = fGU(F)\G(F) f(g700(g)) dg, where G§(F) is
s

the o-centralizer of § in G(F) (see [I], §3). Also put Ff () = Ag(N)@F(J), where N is

the norm of § in SL(2, F') (see [I], §1, and (1.8) below). Here Aq is the usual A-factor on

H(F). Finally, T*"°(F) = {to(t)" " t in T(F)}.

Lemma. We have

wilnfxo)= [ )+ @) ) s

Proof. This is also standard, hence omitted. U

1.5. Cases of H and H;. Considerations analogous to (1.2), (1.3) apply in the cases of the
groups H = Hy = SL(2) and H; = PGL(2) ~ SO(3), with respect to the maximal compact
subgroupsK; = H;(R). Unramified representations mg, m are associated with Io(u1, t2),
I (s, p~1) and classes represented by to = (21, 22), t1 = (2,2~ ') in Ho, Hy. Here z; = p; (),
z = p(m). For f; in the Hecke algebras H; of compactly supported K;-bi-invariant functions
on H;(F), the Satake transform is

fo((z1,22)) =|To(R |2Ff0 )(21/72)",
f:l((z’ |T1 |ZFf1

|T;(R)| denotes the volume of T;(R) = T;(¥) N K; with respect to da;. Fy,(n) denotes the
normalized orbital integral of f; at regular elements (a,b) in T;(F) (diagonal subgroup of
H;(F)) with valuations (n,—n), (¢ = 0) and (m1, m2), m1 —ms =n (i = 1). It depends on
the choice of Haar measures dh;, da; on H;(F), T;(F); but f; depends only on dh;.

The standard computation alluded to in (1.3) shows that for spherical f;, m;, we have

trmi(fi) = fi(ti) (i = ti(mi))-

1.6. Unramified lifting. Recall (1.1) that we have maps \;: H; — G and ((1.2), (1.5))
classes t;, t in H;, G for unramified representations m;, 7 of H;(F), H(F) (i = 0,1).

Definition. The unramified representation 7; lifts to m through \; if ¢ = X;(¢;). In this
case we write m = \;(m;).

The maps A*: H — H; dual to \; are defined by f; = X*(f) if fi(t;) = f(Xi(t;)) for all
t; in T;. Equivalently, f; = 5\* (f) if trm;(f) = trw(f) for all m; and m = A;(m;). Note that
7 = \i(m;) if and only if fi(t;) = f(t), where t; = t;(m;), t = t(x), for all f and f; = A*(f).

Note that Io(u) = Io(u, 1), I1 () = I (g, p=1) both lift (through Ao, A1) to I(u, 1, u~1).
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1.7. Integrals. There are several formal consequences concerning orbital integrals of
functions f, f; related by f; = Af(f), since these integrals are the coefficients of f and

fi.
If t; = (t,¢71) lies in Ty then
IT(R) Y Fpm)t™ ™ = f((h)) = filh) = [Tu(R ZFh
m:(ml,mz,mg)
Comparing coefficients of t” we obtain
Ty(R)|Fr, ()= Y |T(R)|Fy(m).
{m;m1—mz=n}
A standard change of variables shows that this is the product of |T?(R)|, where
T°(F)={teT(F);t=o0(t)},

and

=A 7)/]‘(9‘150(9))6@ (0= (a,b,0), v = (a/c,c/a), |a/c] = |x[").

It is clear that the integral on the right depends only on n, but not on the choice of §.

Remark. (1) Every f1 is so obtained from some f, hence the f; separate the m1. (2) we
normalize the measures so that |T;(R)| = |T°(R)|; the groups T; and T are isomorphic to
the multiplicative group G,,.

In the case of Hy = SL(2), taking a representative to = (¢,1) in T, we have

R)[ Y Fr(m)t™ =™ = f(Xo(to)) = fo(to) = [To(R \ZFfo(n

Hence F{?(n) = Fy,(n), and the fo separate the my. In conclusion, we have

Lemma. Ifé = (a,b,c), v = (a/c,c/a), and y1 = (a,c), then F{ () = Fy,(7) and F{(5) =
F(m).

1.8. Norm. To extend the study of lifting from the unramified case to any admissible
o-invariant representation, we shall use the description of the stable o-conjugacy classes
and norm map N from [I], §1. Here and in (1.9), F' is any local field. Recall that two
elements &, ' of G(F) are called (stably) o-conjugate if there is h in G(F) (resp. G(F))
with 0’ = héo(h™!'). The map § — 60(5) induces a bijection N from the set of stable
o-conjugacy classes in G(F') to the set of stable conjugacy classes in H(F'). The norm map
has a particularly simple description in the case where do(§) has distinct eigenvalues. Up
to a o-conjugacy such ¢ can be assumed to be of the form § = (ae); where

a0b
ab -10
o= (1) e=(30). w=(510).

cOe

Then v = N§ = (—1/ deta)a?
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1.9. Weyl integration formula. Let {7y} denote a set of representatives for the conju-
gacy classes of Cartan subgroups of H over F'. The Jacobian of the morphism Ty x To\H —
H, (t,g9) — g g, is

D(t) = |det(1 — Int t)‘Lie Ht\H|

(see [I], §2), and we have the Weyl integration formula

[ fteryag =Y Wy [

{To} To

R ol 1) L.
(F) To(FO\G(F)

where W (Tp) is the Weyl group of Tp, and |A(t)?| = |D(t)|.

The analogue of this formula in the twisted case is based on the observation of (1.8)
that each elements in G(F) with regular norm is o-conjugate to an element § = (ae);
with a in GL(2, F). Note [I] that § = (ae); and §' = (a’e); are o-conjugate if and only if
a’ = (1/det b)b~1ab, so that we may take the a in NZ(K)\T(F), where T ranges over a
set of representatives for the conjugacy classes of Cartan subgroups of GL(2) over F, K is
the splitting field of T' over F, Z is the center of GL(2) and N is the norm form K to F.
The Jacobian of the morphism T x G{\G — G by (a,g) — g~ 'do(g) is | det[1 — Int & x
0]|Lie Gg\@ |, Which is equal to [2|A(y)?, where v = Nd = (—1/det a)a®. The twisted Weyl
integration formula is then

1 w
[toa=33 [ 218 ()% [ Flo™b0(9) 2.
7 INzENT(R) G5 (FN\G(F) ws

The Weyl group of T'(F') in GL(2, F') consists of two elements.

2. LocaAL LIFTING

2.1. Characters. Throughout this section, we let F' be a local (archimedean or not) field,
fi a compactly supported smooth function on H;(F), m; an admissible irreducible represen-
tation of H;(F), and m;(f;) the convolution operator [ f;(g)m;(g) dg; implicit is a choice of
a Haar measure. This operator has finite rank. A well-known result of Harish-Chandra (see
[HC2], Theorem 5, when F' is non-archimedean) asserts that there exists a locally-integrable
complex-valued conjugacy-class function x; = xr, on H;(F'), which is smooth on the regular
set and called the character of m, such that

tr m; (fi) :/fz’(9)Xi(9)dg

for all f;.

The twisted analogue of [HC2], Theorem 5, (see [Cl]), asserts that given a o-invariant
admissible irreducible representation 7 of G(F'), there exists a og-conjugacy class function
x on G(F) with the above properties, such that

tro(f x o) = /f(g)X(g) dg
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for all f. The trace class operator w(f X o) is defined in (1.2). Note that x is the twisted
character of m; it is not the character in the usual sense.

We need the character and its properties for the orthogonality relations of (3.3), as well
as for the study of the approximation in [IV], §1, and lifting in [IV], §2.

2.2. Packets. The local lifting is defined (in (2.3)) by means of character identities,
and we need to relate characters of packets, not individual characters. The packet of a
representation of G(F') or Hy(F) will consist of that representation alone. In the case of
H(F) =SL(2, F), packets are defined in [LL], and we repeat here the definition.

A representation 7 of H(F') is contained in the restriction of an irreducible representation
7 of GL(2, F) to H(F'). The set of irreducible constituents in the restriction of 7 to H(F)
is called the packet of w. This set depends on 7 alone, and is denoted by {7}. It consists of
a single element, unless ™ ® x ~ 7, where x is a nontrivial character of F'*, necessarily of
order 2. In the latter case {m} consists of two or four elements. Moreover, x determines a
quadratic extension K of F', and7 is associated to a two-dimensional representation of the
Weil group Wg of F induced from a character 6 of the Weil group Wk of K. This Wk is
of index two in Wr. Then 7 is denoted by 7(#); it is in the discrete series if § # 0, where
0(z) = 6(z) and the bar denotes the action of Gal(K/F). Now {r} consists of two elements
if 7 = 7(0) and z — 6(z/Z) is not of order (one or) two (z in K* ~ Wi/x = Wk /Wg),
and of four elements if 6(z/Z) is of order two.

The elements in the packet {w} are the orbit of 7 under the action 7 — 79 of (g in)
GL(2, F), where n9(h) = (g~ 'hg). We denote by X{,} the sum of x,, where 7' ranges
over {m}. Then v — x(7) is a class function, namely x. (g~ vg) = xx(7) for g in H(F).
The character xr} is a stable class function, namely x(.3(97'v9) = x{x}(7) for all g in
GL(2,F'), or x{x}(7) = x{x}(?') whenever «, v' are stably conjugate elements in H(F')
(7,7 have the same eigenvalues). Note that the character is defined only on the regular
set.

2.3. Lifting. We can now turn to the definition of local lifting.

Definition. The representation my of Hy(F') lifts to the representation w of G(F) if x(0) =
X{mo}(Y) whenever v = N§ is a regular element of H(F'). In this case we write m = Ao (o).

Remark. This definition is based on the definition of the norm N in [I], which is recalled in
(1.8). The norm relates stable o-conjugacy classes in G(F') and stable conjugacy classes in
H(F). It was noted in (2.2) that x(,}(v) is a stable class function. To be a lift of my the
(twisted) character x, of 7 has to be a stable o-class function, namely x,(J) = x.(0') if §
and ¢’ are stably o-conjugate.

2.4. Lemma. © = \o(mg) if and only if trw(f x o) = tr{me}(fo) for all f, fo with
Jo=X5(f).

Remark. As in [I], §3, we write f; = Af(f) for functions with matching orbital integrals.

Proof. Suppose that trw(f x o) = tr{mo}(fo).- We use the Weyl integration formula of (1.9)
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to write trw(f x o) = [ f(g)x(g) dg as

235 [ A ((a€)2) 2 (a6)1 s

(T} Z(K)\T(F)

Fix a quadratic extension K of F. Denote by Tk (F') the element of {T'} (i.e. torus in
GL(2, F)) which splits over K. Take f so that its twisted orbital integral ®% is supported
on Tk (F), namely on the o-orbits of the § = (ae); with a in Tk (F). We claim that

12l

tro(f xo) = > Sy

A(Y)*xx(0)2F (O)ws (8 = (ae)),

where ®%(9) denotes the stable twisted orbital integral of f at 4, as in [I], §3. To show this,
note that the trace trm(f x o) depends only on the stable twisted orbital integral ®¢ of f,
since it is equal to tr{mo}(fo). If we take fo = 0, then for each a in Tk (F) we have

% ((uae)1) = —%((ae)1) (u € F — Ng/rK).

Since trw(f x o) vanishes for such f, we have

/ A(7)*[xx ((a€)1) = xXn((uae)1)]@F ((ae)1)ws = 0.
Z(F)\Tk (F)

Choosing f so that the support of ®%((ae)1) is small, we deduce that

X ((a€)1) = xx((uae)1)

depends only on the stable o-conjugacy class of (ae);. Hence the claim follows.
On the other hand,

tr{ma} () = [ Jo(@) X0 (9) d
=S W@ [ A0 (DB (e

{To} To(F)

1 S
=3 / A X o} (1) D% (7).
Tox (F)

The last equality follows from our assumption on fy that the stable orbital integral @j{) (y)
of fo at -y is supported on (the stable conjugacy class of) the torus Tox (F') in {Tp} which
splits over K. Since the map FX\K* — K! by z — 2/Z is a bijection and serves to
relate measures from Z(F)\Tk (F) to the torus Tox (F') of SL(2, F), and fo = A§(f) means
% (0) = ®% () for all §, v with N& = 1, it follows that 7 = Ao(mo). Note [I], Lemma 2.3.1
that the measures are related by 2ws = w,. O



ON THE SYMMETRIC SQUARE: DEFINITIONS AND LEMMAS 9

2.5. Remark. The opposite direction is proven by reversing the above steps.

2.6. Recall that the norm map N; of [I] bijects the stable o-conjugacy classes in G(F') with
the (stable) conjugacy classes in H; (F') = SO(3, F'). Recall that in each stable o-conjugacy
class of elements 0 such that do(§) has distinct eigenvalues, there are two o-conjugacy classes
(unless the eigenvalues of o (0) lie in F'* when there is a single o-conjugacy class), and they
differ by whether G, (F') is split or not for a representative 6. Here we put ¢’ = %((5 +Jt6J)
as in [I], §1, and note that the o-centralizer G§, of ¢’ depends only on the o-conjugacy class
of 4, up to conjugacy in G(F).

The twisted character . is a o-class function on the o-regular set, namely, x. (g~ do(g))
= X« (0) for all g in G(F'). By an unstable o-class function we mean a o-class function which
satisfies xx(8) = —xx(8) whenever 8, & are stably o-conjugate but not o-conjugate.

Note that if & , 0 are stably o-conjugate, but not conjugate, then up to o-conjugacy
6 = (ae); and & = (uae); with u in F* but not in Nk pK*, where K/F is a quadratic
separable extension determined by 4.

Definition. The representation m; of Hyi(F') lifts to the representation = of G(F) if x is
an unstable o-class function and

(L4 @ ") X (8) = X (11) (2.6.1)

for all v, in Hy(F) and ¢ in G(F) such that G§, (F) is split and N16 = 7, has distinct
eigenvalues as an element of Hy(F) = SO(3, F'). Here v/, 4" denote the eigenvalues of 7y,
distinct from 1. Note that x(d) = —xx(d') whenever §, ¢’ are stably o-conjugate but not
o-conjugate. We then write m = Ay (7).

2.7. Lemma. We have trn(f x o) = trmy(f1) for all f, f1 with f1 = Xj(f) if and only if
™= )\1(71'1).

Remark. As in [I], §3, we write f; = A}(f) for functions fi, f on H,(F), H(F) with
matching orbital integrals, namely when

O, () = 1+ +A")22F ()

for 6, v1, 7', v" as in (2.6). Here ®%°(d) is the unstable twisted orbital integral of f at ¢
(see [I], (3.5)).

Proof. If trow(f x o) = trwy(f1) for f, f1 with fi = Aj(f), then tro(f X o) is equal to
| f1(9)xx: (g) dg, which by the integration formula of (1.9), is

Z ) /Tl(F) A1) xr, (1) @1, (1) dn

2
{11}
1

=35 [ AGDPm I+ )+ ) R
2
(1} ° /Tu(F)
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The sum is taken over a set of representatives for the conjugacy classes of Cartan subgroups
Ty of Hy over F. Recall that H; = SO(3) ~ PGL(2), and in H; a stable conjugacy class is
a conjugacy class. The element §, or rather its o-conjugacy class, is uniquely determined
by -1 and the requirement that G¢ be split over F. Moreover, (I>us(5) is —®y°(0) if 0, § are
stably o-conjugate but not a—conjugate.

Define x, by the equation (2.6.1) to be an unstable o-conjugacy class function. Then

our sum becomes )

2 —/ A(Y)?xx ()P (8w
2325 g 20X O O

The sum is over conjugacy classes of F-tori in GL(2, F), § = (ae)1, v = (=1/ det a)a?, and
a — 71 defines an isomorphism of Z(F)\T(F') and T;(F') for tori T, Ty which share their
splitting field. Note that when the eigenvalues of ae are u, v, then those of v are u/v, v/u,

we have
A(y) = [(1 = (w/v)*)(1 = (v/w)?)|"/?
and
Aln) = (1= u/v)(1 = o/u)|/2.
The sum is equal to

235 [ A (050

(T} NZ(K)\T(F)

/}@mam@

by the twisted Weyl formula (1.9). Hence m = A1(71) by the definition of x.. O

2.8. Induced. Asin (1.3) let m = I(n) denote the representation of G(F') (normalizedly)
induced from the character n(a,b,c) = p(a/c) of the Borel subgroup B(F'), where p is a

character of F*. Denote by g = Ip(p) and w1 = I (i) the representations of Hy(F), H(F)

induced from the characters (8 a91> — u(a), (8 g) — u(a/b) of the corresponding upper

This is

triangular Borel subgroups. Then the computation of (1.4) and the integration formulae of
(1.9) show that 7 = I(n) has a character x which vanishes at 0 unless ¢ is diagonal (up to
o-conjugacy), where

Xx(8) = A() T ((8) + () (6= J8).

Similar standard computations show that x,, are also supported on the (conjugacy classes
of) diagonal elements of H;(F'). They are given there by

Xro (1) = A (@) + a7, v = (5,5 )

and
Yo (1) = A0 (ua) + ™)), = (2°)).
It follows that if 7 = I(n), mo = lo(p), m1 = I;(u), then
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2.8.1. Lemma. 7 = \g(m) = A1(m1), namely Io(p) and I () both lift to I(n).

Proof. The character of m, m; are supported on the split tori, and the stable o-conjugacy
class of an element where x, does not vanish consists of a single o-conjugacy class. O

Remark. Here the field F is any (archimedean or not) local field.

2.9. Special representation. Let v denote the valuation character of F*, thus v(z) =
|z|. The composition series of the induced representation Iy = Iy(v) of H(F') consists
of the one-dimensional representation my of H(F) and the special representation sp of
H(F). Note that sp is irreducible if F' # R. But by (2.8.1)I lifts to the representa-
tion m = I(n) of G(F), induced from the character n = (v,1,v~!) of the upper triangular
Borel subgroup of G(F'). The composition series of 7 consists of the trivial representa-
tion m(n), the irreducible representation mp, (sp(v, 1), v~!) normalizedly induced from the
representation sp(v,1) x v~! of the maximal parabolic subgroup P; of type (2,1), and
the reducible representation Ip,(v,sp(1,v7!)) induced from the maximal parabolic P, of
type (1,2). This last representation has composition series consisting of the irreducible
7p,(v,sp(1,v~ 1)) and the Steinberg representation St. This result is due to Bernstein-
Zelevinsky [BZ2] when F is nonarchimedean. Now Ip,(v,sp(1,v~1)) is not o-invariant,
but St, being the unique square-integrable irreducible constituent of I(n) ~ °I(n), is o-
invariant. Hence, mp,(v,sp(1,v71)), as well as 7p, (sp(v,1),v~1) (for the same reason), is
not o-invariant. The one-dimensional representation 7(n) of G(F) is clearly o-invariant.
Hence, tr I(n)(f x o) = trSt(f x o) + trw(n)(f x o).

2.9.1. Lemma. The trivial (resp. special) representation of H(F') lifts to the trivial (resp.
Steinberg) representation of G(F).

Proof. As the characters of both my and 7 (n) are identically one, and the packets of the
trivial and of the special representations of H(F') consists of a single element each, the
lemma follows at once from the definition (2.3) of the lifting. O

Remark. The only o-invariant one-dimensional representation = of G(F) is the trivial one.
Indeed, 7 is given by a character 3 of FX (namely, w(g) = B(det g)) of order 3, thus 33 = 1.
But 7 is o-invariant only if 3 = 8~!. Hence 8 =1 and 7 is trivial, as asserted.

3. ORTHOGONALITY

3.1. Orthogonality relations. The packets of irreducible admissible representations of
H(F) are described in (2.2). Their characters satisfy the orthogonality relations which we
now recall.

For any stable conjugacy class functions y, x’ on H(F') put

(X)e= 3 SDENLET [ XX MA .

{To} To (F)

The sum is taken over a set of representatives Tj for the stable conjugacy classes of elliptic
tori of H over F. [D(T})] is the number of conjugacy classes within the stable conjugacy
class of Ty; it is 2 if Ty is elliptic, 1 if Tp is split. As usual, |To(F)| denotes the volume of
To(F).
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3.2. Lemma. Let m and ' be admissible irreducible tempered representations of H(F),
at least one of which is square-integrable. Then (X{x},X{x'})e 5 0 unless the packets {m},
{n'} are equal, when it is equal to the number of irreducible constituents in {r}.

Proof. This follows from the orthonormality relations for characters of square-integrable
H(F)-modules (see [K2], Theorem K, for a general p-adic group). O

3.3. Twisted orthogonality. Let m be a o-invariant supercuspidal representation of
G(F). Such m do not exist unless the residual characteristic of F' is 2. (This is well known,
and proven in [IV] using the trace formula.) As in (1.2) there is an intertwining operator A
from the space of 7 to itself such that “w(g) = w(o(g)) = An(g)A~L. Since 7 is irreducible
and A? intertwines 7 with itself it is a scalar, which we may normalize to be 1. Extend 7
to a representation 7’ of G'(F) = G(F') x (o) by setting 7(c) = A. As noted in (2.1), the
character x, of 7’ exists as a locally integrable function on G'(F') which is smooth on the
subset of G(F') x o which consists of § x ¢ with regular v = N¢. If G§ ~ H, is a compact
torus of H = SL(2) over F then the proof of [JL]|, Lemma 7.4.1, shows that

X (6 0) =d(s) | E x0T 0% 0 g x i)

+(m'((gx o)™t x 0+ g x0o)u,)wg

—2d(r)|G5(F)] | (x'(9 ™ 50(g) x oJu, ) 2.
GF (F)\G(F) ws

Here d(7") denotes the formal degree of 7’; u, 4 are vectors in the space of ' and the
contragredient of ', with (u,u) = 1.
The orthogonality relations for characters imply the following.

3.3.1. Lemma. Let my be a unitary o-invariant irreducible admissible representation of
G(F) and 7 a o-invariant supercuspidal representation of G(F). Suppose that the function
6 — X' (0 X o) is a stable o-conjugacy class function on G(F). Define (Xx', Xx1)e to be

1 -1
> o lzEneeE) [

(T} Z(F)\T(F)

It is equal to 0 unless ™ and my are equivalent when it is equal to 1.

AG)2xm (6% 0) 3 Xy (87 X )
5/

Remark. The sum over T ranges over a set of representatives for the conjugacy classes of
elliptic tori in GL(2) over F. The sum over ¢’ ranges over a set of representatives for the o-
conjugacy classes within the stable o-conjugacy class of §. For a in T'(F') we have § = (ae)1,
and there are two 0’ in our case of § with compact G§(F') ~ H,(F), v = NGé.

Proof. First suppose that my is equivalent to 7. Put 7} = w* ® 7’ (i = 0,1), where w is
the character of G'(F) which attains the value 1 on G(F') and the value —1 at 0. The
representations (), w1 are inequivalent. Put

Bo) = d) @), W@ = [ o)
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By the Schur orthogonality relations for the square-integrable representations m; we have

trmo(¢) =1,  trmi(4) =0.

Then

1 =trmy(¢) — trmi(¢) =2 d(g X 0)xXa' (g X 0)wa-
G(F)

By the Weyl integration formula (1.9) this is equal to

2 _ w
5. 121 / A(Y)*Xa (8 X a)wa/ b9~ too(g)) 2
T Nz (KNT(P) G5 (F)\G(F) Ws
2] / -1
_,. 12 A(y) s (6% 0V / Bl 9o(9)2.
2 {ZT; 20T () 2 Jog e “

Harish-Chandra’s “Selberg principle” [HC1], Theorem 29 implies the vanishing of the inner
integral if G§ ~ H., is a torus of H which splits over F'. Otherwise the comment preceding
the lemma implies that we obtain

1 o -1 2 / _ ,
§Z|G5 (F)]| /HW(F)A(’Y) Xx (0 XO’)ZXW/((S X O)Wey-

{T} 5

We used the isomorphism Z(F)\T(F) ~ G§(F) ~ H,(F'), and the relation 2w; = w., of
measures on the groups G§, H,, from [I], Lemma 2.3.1.

It remains to deal with the case where m and 75 are inequivalent. But then (w'®7})(4) =
0 for both ¢, and the lemma follows using the same argument. O

3.4. Reformulation. In the notations of (3.3), if x, is a stable o-class function, we may
define a stable class function x on H(F') by x(v) = xa(0 X 0), where v = Nd. Lemma
3.3.1 implies that

Y [me) D) / A ()P

{To}s To(F)

is equal to 1, where the sum is taken over the stable conjugacy classes of elliptic tori of H
over F, and [D(Tp)] (see 3.1) is equal to 2.

3.5. Lemma. In the notations of (3.4), we have that (xx, Xx')e @5 1 if ™ is the o-invariant
Steinberg representation.

Proof. This follows from (3.1) and (2.9.1). Note that the packet of the special representation
of H(F) consists of a single element, and the orthogonality relation (3.1) for it follows from
the orthogonality relation for the trivial representation of the group of elements of reduced
norm 1 in the quaternion division algebra, and the correspondence of [JL]. O
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3.6. Finally we record a special case of a twisted analogue of [K2], Theorem G. The proof
in the twisted case, for arbitrary reductive not necessarily connected p-adic group, follows
closely that of [K2], and will not be given here. Thus, let m, ©’ be o-invariant, tempered
representations with characters x, x’. Each of 7, n’ defines a unique (up to association)
parabolic subgroup and a square-integrable representation p, p’ of its Levi factor. Then ,
«' are called relatives if p is equivalent to p’. Recall that we have the inner product

(xX)e= S ITE) T [ 3 Ax(®AX6) do.
T [

The first sum ranges over a set of representatives for the stable conjugacy classes of elliptic
tori in H(F'). The integral is over «y in T'(F'). The inner sum is over a set of representatives
for the o-conjugacy classes with No = +.

3.7. Lemma [K2|. If w, ©’ are not relatives then (x, x')e = 0.

The same result holds also when F' is the field of real numbers.
In our case of G = PGL(3), a G-module normalizedly induced from a tempered one is
irreducible, and we need only the following special case of the lemma.

Corollary. If m, ' are inequivalent o-invariant tempered G-modules, then (x,x')e = 0.

The methods of [K2] do not afford computing the value (x, x)e. But in the case of any
(o-stable) supercuspidal m, we have (x, x)e = 1 by (3.3.1). In the local lifting theorem of
[IV] we list all o-stable elliptic 7, and compute (x, X); it is equal to the cardinality of the
packet which lifts to .
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