ON THE SYMMETRIC SQUARE:
TWISTED TRACE FORMULA

YuvAL Z. FLICKER

ABSTRACT. A trace formula — for a smooth compactly supported function f on the adele group
PGL(3,A) — twisted by the outer automorphism ¢ — is computed. The resulting formula is
then compared with trace formulae for H = Hy = SL(2) and H; = PGL(2), and matching
functions fo and f; thereof. We obtain a trace formula identity which plays a key role in the
study of the symmetric square lifting from H(A) to G(A). The formulae are remarkably simple,
due to the introduction of a new concept of a regular function. This eliminates the singular
and weighted integrals in the trace formulae.

0. INTRODUCTION

The purpose of this part is to compute explicitly a trace formula for a test function
f=®f, on G(A), where G = PGL(3) and A is the ring of adeles of a number field F'. This
formula is twisted with respect to the outer twisting

0 1
olg) =TT, J=( -1 )

and plays a key role in the study of the symmetric square lifting. We also stabilize the
formula and compare it with the stable trace formula for a matching test function fo = ® fo,
on H(A),H = SL(2), and the trace formula for a matching test function f; = ®f1, on
Hy(A), Hy = PGL(2). The final result concerns a distribution J in f, fo, f1 of the form

J=1I+ %I’-i— %I"+ %I{ — [Io + % 0+ i[()’-i— %Il],
where each I is a sum of traces of convolution operators. The final result asserts:
(3.5(1))J = 0 if f has two discrete components;

(3.5(2))J is equal to a certain integral if f has (i) a discrete component and (ii) a component
which is sufficiently regular with respect to all other components.

The result (3.5(1)) is used in the study of the local symmetric square lifting in [IV]. The
result (3.5(2)) is used in [IV] to show that J = 0 and to establish the global symmetric
square lifting for automorphic forms with an elliptic component.

The vanishing of J for general matching functions is proven in [VI].

Typeset by ApS-TEX
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Our formulae here are essentially those of the unpublished manuscript [Fadj], where we
suggested, in the context of the (first non-trivial) symmetric square case, a truncation with
which the trace formula, twisted by an automorphism o, can be developed. This formula
was subsequently computed in [CLL| to which we refer for proofs of the general form of
the twisted trace formula. Our formulae here are considerably simpler than those of [Fadj].
This is due to the fact that we introduce here a new notion, of a regular function, and
compute only an asymptotic form of the formula for a test function with a component
which is sufficiently regular with respect to all other components. For such a function f
the truncation is trivial; in fact f vanishes on the G(A)-o-orbits of the rational elements
(in G(F')) which are not o-elliptic regular, and no weighted orbital integrals appear in our
formulae. In [IV] and [VI] we show that this simple, asymptotic form of the formula suffices
to establish the symmetric square lifting, unconditionally. Similar ideas are used in [Fgl2]
to give a simple proof of base change for GL(2), and in our work on base change for U(3)
(see [Fu]) and other lifting problems.

1. GEOMETRIC SIDE

1.1. Let F' be a number field, A its ring of adeles, G a reductive group over F' with an
anisotropic center, and L the space of complex valued square integrable functions ¢ on
G(F)\G(A). The group G(A) acts on L by right translation, thus (r(g)v)(h) = ¥ (hg), and
each irreducible constituent of the G(A)-module L is called an automorphic G-module (or
representation). Let o be an automorphism of G of finite order, and G’ = G x (o) the
semi-direct product of G and the group (o) generated by o. Extend r to a representation of
G'( A) on L by putting (r(o))(h) = ¢(c~1(h)). Fix a Haar measure dg = ®dg, on G(A).
Let f be any smooth complex valued compactly supported function on G(A). Let 7(f) be
the (convolution) operator on L which maps 1 to

/ f@y(hg)dg (g in G(A)).

Then r(f)r(o), which we also denote by r(f X o), is the operator on L which maps 1 to

B F (@)l (hg))dg = / K (h, g)¥(9)dg,
geG(A) geEG(F\G(A)
where
K(h,g)=Ks(h,g)= > f(h yo(g)). (1.1.1)
YEG(F)

The theory of Eisenstein series provides a direct sum decomposition of the G(A)-module
L as Ly & L., where Ly, the “discrete spectrum”, is a direct sum with finite multiplicities
of irreducibles, and L., the “continuous spectrum”, is a direct integral of such. This theory
also provides an alternative formula for the kernel. The Selberg trace formula is an identity
obtained on (essentially) integrating the two expressions for the kernel over the diagonal
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g = h. To get a useful formula one needs to change the order of summation and integration.
This is possible if G is anisotropic or if f has some special properties (see, e.g., [FK]). In
general one needs to truncate the two expressions for the kernel in order to be able to change
the order of summation and integration.

When ¢ is trivial, the truncation introduced by Arthur involves a term for each standard
parabolic subgroup P of G. For o # 1 it was suggested in [Fadj] (in the context of the
symmetric square) to truncate only with the terms associated with o-invariant P, and to
use a certain normalization of a vector which is used in the definition of truncation. The
consequent, (non-trivial) computation of the resulting twisted (by o) trace formula is carried
out in [CLL] for general G and o. In (2.1) we record the expression, proven in [CLL], for
the analytic side of the trace formula, which involves Eisenstein series. In (2.2) and (2.3)
we write out the various terms in our case of the symmetric square.

In this section we compute and stabilize the “elliptic part” of the geometric side of the
twisted formula in our case. Namely we take G = PGL(3) and o(g9) = J%¢ 17, and
consider

flg™ts dg, 1.1.2
/G(F)\G(A) 5%(;) o00l9))] dg (12

where the sum ranges over the ¢ in G(F) whose norm v = N§ in H(F),H = SL(2), is
elliptic. Here we use freely the norm map N of [I], §1, and its properties.

In [Fadj] the integral of the truncated }_;cq(p) f (9710 (g)) was explicitly computed, and
the correction argument of [Fgl3] was applied to the hyperbolic weighted orbital integrals,
to show that their limits on the singular set equal the integrals obtained from the § with
unipotent NJ. These computations are not recorded here for the following reasons. We
need the trace formula only for a function f which has a regular component or two discrete
components (the definitions are given below). In the first case f(g~'do(g)) = 0 for every g
in G(A) and 0 in G(F') such that N¢ is not elliptic regular in H(F'); hence the geometric
side of the trace formula (twisted by o) is (1.1.2). In the second case the computations
of [CLL], which generalize those of [Fadj], suffice to show the vanishing of all terms in the
geometric side, other than those obtained from (1.1.2).

1.2. To compute and stabilize (1.1.2) let G = {g € G; g 160(g) = 6} be the o-centralizer
of §, and

D%(0) = -1 d
(5) /G R L

the o-orbital integral of f at ¢. Implicit is a choice of a Haar measure on G§(A), which is
chosen to be compatible with isomorphisms (of G§ with G,, or Hys, etc., cf. [L1, p. 82]).
Let {6} denote the set of o-conjugacy classes in G(F') of elements d such that N is elliptic
in H(F'). Then (1.1.2) is equal to

“Lo(g))dg = c(6)D5(), 1.2.1
> L oo 16 0700 > (0230 (121)
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where the volume

c(0) = |G§ (F)\G§ (A)]

is finite since N0 is elliptic in H(F'). It is equal to |Hy(F)\H,(A)| if v = N§ is elliptic
regular (in H(F)), to |H(F)\H(A)| if v = —1I, and to |H1(F)\H1(A)| if v = I, where
H, = PGL(2).

Recall from [I], §1, that D(§/F) denotes the set of o-conjugacy classes within the stable
o-conjugacy class of 6 in G(F), and D(J/F,) denotes the local analogue for any place v of
F. For any local or global field, D(§/F) is a pointed set, isomorphic to H*(F,G§), and we
put D(6/A) = ®D(6/F,) and H*(A,G) = ®H'(F,, G) (pointed direct sums). If y = N§
is —1, we have G{ = H = SL(2) and H*(F,G%) = H'(A,G9) is trivial. If y = N§ is I or
elliptic regular then H'(F,G¢) embeds in H'(A, G¢) and the quotient is a group of order
two. Denote by k the non-trivial character of this group.

Denote by ®% (J) the o-orbital integral at ¢ in G(F,) of a smooth compactly supported
complex valued function f, on G(F,). If F, is nonarchimedean, denote its ring of integers
by R,. Let fO be the unit element in the Hecke algebra H, of compactly supported K, =
G(R,)-biinvariant functions on G(F,). Consider f = ®f,, product over all places v of F,
where f, = fO for almost all v. Then, for every § in G(F) we have ®(0) = [, ®%,(9),
where the product is absolutely convergent. It is easy to see that the sum

> - > [a)

8'eD(5/F) 8'€S[D(5/F)—»D(5/N)] v

is finite for each f and §. If v = N¢ is elliptic regular or the identity and k, is the
component at v of the associated quadratic character k on D(§/A)/D(6/F), then the sum
can be written in the form

S| X @] +5I| X m@ene)|. 022

v |§'eD(5/F,) v | §'€D(5/F,)

Note that for a given f and d, for almost all v, the integral ® (&) vanishes unless §' and
d are equal o-conjugacy classes in G(Fy).

Denote by f3 the unit element of the Hecke algebra Hy, of H(F,) with respect to
Ko, = H(R,). Similarly introduce Ki,, Hy,, and fJ . Recall that the norm maps N, N;
from the set of o-stable conjugacy classes in G(F') to the set of stable conjugacy classes in
H(F), H,(F) are defined in [I], §1.

To rewrite (1.2.2) we recall the following

1.3. Proposition. (1) For each smooth compactly supported f, on G(F,) there exist
smooth compactly supported fo, on Ho(F,) and fi1, on Hy(F,) such that

of. (M= () (y=No) (1.3.1)
8'€D(8/Fy)
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and

Op, () =10+ +D)2 Y k(597,08 (v= M) (1.3.2)
8'eD(6/Fy)

for all 6 with regular v = N§. Here a, b denote the eigenvalues of NJ.
(2) Moreover, if § = I then

fooD) =Y ku(8)®5,(8") and  fr,(I) = _ @5 (5,

where the sums are taken over &' in D(6/F,). If No = —I then fo,(—I) = ®% (9).
(3) Finally, if f, = f2 and F, has odd residual characteristic, then fo, = fO has the

properties asserted by (1).
Proof. (1) and (2) are proven in [I], §3, and (3) in [V]. O

Definition. The functions f,, fo, (resp. fu, fiv) are called matching if they satisfy (1.3.1)
(resp. (1.3.2)) for all 6 such that vy = NJ is regular.

From now on we work with functions f = ® f, which satisfy the following

1.3A. Assumption. There exists a component f, of f such that f;, = 0 matches f,, or
f2, matches f2 for almost all v.

Remark. If f1, = 0 then the second term in (1.2.2) is zero for every ¢ in G(F). We work
with f which has a component f, which matches fi, = 0 in [IV]. In [V] we show that

Y fD, are matching for every local F, with odd residual characteristic, namely that the
assumption always holds. In [VI] we work with a general f to deduce the unrestricted
symmetric square lifting.

Corollary. Suppose that f = ®f, satisfies Assumption 1.3A. Put fo = ®fgy and f1 =

®f1v, where (fy, fov) and (fy, f10) are matching for all v, and fo, = fJ, and f1, = f7, for
almost all v (or fy =0). Then (1.1.2)=(1.2.1) is the sum of

o =IHP\HW)|[fo(T) + fo(~D)
+3 3 SITENTA Y B ) (1.33)

{T}st 'YET(F)

and % times

b= [IEN @AW + 5 SITENT®IY | ap). (134)

o) YET(F)

{T}st in (1.3.3) is the set of stable conjugacy classes of elliptic F-tori T in H. {T} in
(1.8.4) is the set of conjugacy classes of elliptic F-tori T in Hy = SO(3). The sum ' in
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(1.3.4) ranges over the vy in T(F) C SO(3, F) whose eigenvalues are distinct (not -1). The
sums are absolutely convergent.

Proof. (1.2.1) is a sum over o-stable conjugacy classes 6 which are equal to ¢(§) times (1.2.2)
if N¢ is I or elliptic regular. If N¢ is elliptic regular then the first term in (1.2.2) makes
a contribution in the sum of (1.3.3) by (1.3.1), and the second term in (1.2.2) contributes
to (1.3.4) by (1.3.2). If N§ = I then the order is reversed, by (2) in the proposition. The
single o-conjugacy class § in G(F') with N6 = —I makes the term of fo(—1I) in (1.3.3).
The coefficient of fo(I) in (1.3.3) is |H(F)\H(A)| since the Tamagawa number of SO(3) =
PGL(2) is twice that of SL(2). The first one-half which appears in (1.3.3) and (1.3.4) exists
since the number of regular v in T'(F) which share the same set of eigenvalues is two.
The sums in (1.3.3) and (1.3.4) are absolutely convergent since they are parts of the trace
formula for fo on H and f; on H;. U

ANALYTIC SIDE

2.1. As suggested in (1.1) we shall now record the expression of [CLL] for the analytic
side, which involves traces of representations, in the twisted trace formula. Let Py be a
minimal o-invariant F-parabolic subgroup of G, with Levi subgroup M,. Let P be any
standard (containing Pp) F-parabolic subgroup of G; denote by M the Levi subgroup
which contains M, and by A the split component of the center of M. Then A C Ay =
A(My). Let X*(A) be the lattice of rational characters of A, Ay = Ap the vector space
W.(A) ® R = Hom(X*(A),R), and A* the space dual to A. Let Wy = W (A, G) be the
Weyl group of Ay in G. Both o and every s in Wy act on Ay. The truncation and the
general expression to be recorded depend on a vector T in Ay = Apg,. In the case of (2.2)
below this T' becomes a real number, the expression is linear in 7', and we record in (2.2)
only the value at T' = 0.

Proposition [CLL|. The analytic side of the trace formula is equal to a sum over

(1) the set of Levi subgroups M which contain My of F-parabolic subgroups of G;

(2) the set of subspaces A of Ay such that for some s in Wy we have sA = A§;, where
Sr is the space of o-invariant elements in the space Ay associated with a o-invariant

F'-parabolic subgroup P of G;

(3) the set WA(Apr) of distinct maps on Axr obtained as restrictions of the maps s X o (s

in Wy) on Ay whose space of fized vectors is precisely A; and

(4) the set of discrete series representations T of M(A) with (s X o)7 ~ 7. The terms in

the sum are equal to the product of

(W]
[Wol

(det(1— s X 0)| 4, /4) " (2.1.1)

and
/ tI'[Ma(P, )\)MP|U(P)(37 O)IP,T()\ﬂ [ X O-)HdA|
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Here [W{] is the cardinality of the Weyl group W4 = W (Ag, M) of Ag in M; P is an
F-parabolic subgroup of G with Levi component M; M, ,p) is an intertwining operator;
ML (P, X) is a logarithmic derivative of intertwining operators, and Ip . ()) is the G(A)-
module normalizedly induced from the M(A)-module m +— 7(m)e$ (™) (in standard
notations).

Remark. The sum of the terms corresponding to M = G in (1) is equal to the sum I =
Y trw(f x o) over all discrete series representations m of G(A).

2.2. We shall now describe, in our case of G = PGL(3) and o(g) = J'g~1J, the terms
corresponding to M # G in (1) of Proposition 2.1. There are three such terms. Let My = Ao
be the diagonal subgroup of G.

(a) For the three Levi subgroups M D Ay of maximal parabolic subgroups P of G we
have A = {0}. The corresponding contribution is

ZZ —trM (s,0)Ip.(0,f x 0)

=3 ZtrM(a2a1,O)Ip1(7',f X 0). (2.2.1)

Here P; denotes the upper triangular parabolic subgroup of G of type (2,1). We write
ay = (12), a2 = (23), J = (13) for the transpositions in the Weyl group Wj,.
(b) The contribution corresponding to M = My and A = {0} is

3t M(T,0) I (7, ] x 0)

+ é Z:trM(Ou, 0)Ip, (T, f X o) + éZ:trM(a2, 0)Ip, (1, f x o). (2.2.2)

(c) Corresponding to M = My and A # {0} we obtain three terms, with A = {(\,0, —\}
and s = 1, with A = {()\ —X,0)} and s = asa1, and with A = {(0,\, —A\)} and s = ajas.
The value of (2.1.1) is s>. It is easy to see that the three terms are equal and that their
sum is

—Z/ tr[M(A, 0, =A) IRy, ((A, 0, =A); f x o)]|dAl. (2.2.3)

The operator M is a logarithmic derivative of an operator M = m ®, R,. Here R, denotes
a normalized local intertwining operator. It is normalized as follows. If I(7,) is unramified,
its space of K,-fixed vectors is one-dimensional, and R, acts trivially on this space. In
particular R/ (A)I., (A, f, X o) is zero if f, is spherical, where R’ () is the derivative of
R, (\) with respect to A.
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The 7 in (2.2.3) are unitary characters (p1, pe,pus) of My(A)/My(F'), which are o-
invariant; thus pus = 1 and pq,ps3 = 1. According to [Shah], where the R, are studied,
the normalizing factor m = m(\) is the quotient

L(1 =2, p3/p1) /L(L 4 2A, pa / pi3)

of L-functions. In this case the logarithmic derivative M has the form

m'(\)/m()\) + (®R;1)%(®RU).

Hence (2.2.3) is equal to (S + S’), where

s=% [ 2 Tt gy x o)A (22.4)
and
§=3"% /R[tr Re,(N)""Re, (V' (A, fo X 0]

] tr I, (A, fo x o) - |dA]- (2.2.5)
wHv

In view of the normalization of the R, = R, (A), the inner sum in S’ extends only over the
places v where f, is not spherical.

The terms (2.2.1) and (2.2.2) contain arithmetic information which is crucial for the
study of the symmetric square. They are analyzed in (2.3) and (2.4) below.

2.3. We shall now study the representations 7 which occur in (2.2.1). Such a 7 is a discrete
series representation of the Levi component M (A) of a maximal parabolic subgroup of
G(A). Hence it has the form (7, x), where 7 is a discrete series representation of GL(2, A)
and y is a (unitary) character of A* /F*. The central character of 7 is x ™! since G is the
projective group PGL(3). The representation (7,%) is o-invariant. Hence x = x~!, and 7
is equivalent to its contragredient 7V which is 7 ® x . If x = 1, then 7 is a representation
7w of PGL(2,A). If x # 1 then x is quadratic, and it determines a quadratic extension K
of F by class field theory. Since & ~ & ® x, we have (by [LL]) that 7 is of the form 7 (6’),
associated to the two-dimensional representation Ind(0’; Wx, W) of the Weil group Wg of
F induced from the character 6’ of Wi ; 6’ can also be viewed as a character of the ideéle class
group Ak /K*. The central character of 7(6') is x - 6'|sx ; this has to be equal to x. Hence
6’ =1 on A*, and so #’ factors through the map z — z/z of A%, namely 0'(z) = 6(z/z) for
some character 6 of A% . Here the bar indicated the non-trivial automorphism of K over F.
Hence 7 = 7(0/0) if x # 1, and (2.2.1) is equal to 3(I{ + I'), where

I => trlp((m,1); f x 0) (2.3.1)
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and

I' = > tr Ip, (((0/8), x); f x o). (2.3.2)
{x,0;x#1,(6/6)#1}

The sum of I] ranges over the discrete spectrum of Hy. The sum of I’ ranges over all
quadratic characters x of AX/F*, and characters z — 60(z/Z) of A /K>, where K is
determined by x. We require that (z/z) # 0(Z/z) to have a discrete series w(6/6), which
is necessarily cuspidal. The intertwining operator M (s, ) of (2.1.1) is equal to m(7) ®,
R(s,m,). Here m(w) = L(1,7)/L(1, ), and each R(s,m,) is equal to the identity, by [Shah].
Note that m = m; or 7(0/0 is self-contragredient, and L(s,) is analytic at s = 1 since 7

is cuspidal or one-dimensional. Hence m(7) = 1, and M (s, 0) is the identity everywhere in
(2.2.1).

2.4. The representations 7 which appear in (2.2.2) are (unitary) characters n = (u1, p2, t43),
pi being a character of AX /F* and pipaps = 1. In the first sum appear all  with p? = 1,
but in the other two sums appear only the n with (s x o)n = 7, namely n = (1,1, 1). Since
all representations which appear here are irreducible, the intertwining operators M (s,n) are
scalars. They can be seen to be equal to —1, as in the case of GL(2), unless y; are all distinct,
where they are equal to 1. It remains to note that in the first sum each representation ()
with u; # 1(¢ = 1,2,3) occurs six times, three times if y; = 1 for a single 4, and once if
p; =1 for all 4. Then (2.2.2) takes the form 71" — 2I* — 11**, where

I"= Y trlI(n,fxo0) (2.4.1)
n={x,ux,n}
and
I"=trI(1, f x o), I = Z trI(n, f X o) (2.4.2)
n=(p,1p)

The x and u are characters of A* /F* of order exactly two. The symbol {x, px, 1} means
an unordered triple of distinct characters.

3. FORMULAE

3.1. We shall next state the twisted trace formula. This can be done for a general test
function f on using the computations of [Fadj] (or [CLL]) of the weighted orbital integrals
on the non-elliptic o-orbits. However, we shall use the formula only for f with a regular
component or two discrete components (definitions soon to follow). For such f the formula
simplifies considerably, and we consequently state the formula only in this case.

Definition. The function f = ®f, on G(A) is of type E if for every ¢ in G(F) and ¢ in
G(A) we have f(g7'd0(g)) = 0 unless N9 is elliptic regular in H(F).
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Example. If f has a component f, which is supported on the set of g in G(F,,) such that
Ny is elliptic regular in H(F,), then f is of type E.

If f is of type E then K(g,g) of (1.1.1) is equal to the integrand of (1.1.2), and the
truncation which is applied to K(g,¢) in [CLL] (or [Fadj]) is trivial (it does not change
K(g,9)). Hence the computations of Sections 1 and 2 imply the following form of the
twisted trace formula. Put

I=) tr(f x0), (3.1.1)

where 7 ranges over all discrete series (cuspidal or one-dimensional) G-modules which are
o-invariant: = is called o-invariant if 7 ~ 77, where “7(g) = w(0o(g)).

Proposition. Suppose that f is a function of type E which satisfies Assumption (1.34).
Then we have
~ 1~ 1 1 1 3 1 1 1
In+-Ii=I+_-I]+=I'+-1"— _I* — —I"™ + - i
0+21 +21—I—2 —|-4 g 3 +4S+4S
Iy is defined in (1.3.3), I in (1.3.4), I in (3.1.1), I in (2.3.1), I' in (2.3.2), I" in (2.4.1),
I* and I** in (2.4.2), S in (2.2.4), and S" in (2.2.5). These are distributions in f.

3.2. We shall next introduce a class of functions f of type E which suffices to establish in
[IV] and [VI] the symmetric square lifting. Fix a non-archimedean place u of F'. Denote by
ord, the normalized additive valuation on F,; thus ord,(m,) = 1 for a uniformizer m, in
R,. Put g, for the cardinality of the residue field R, /(7). Given an element ¢ of G(Fy),
denote by a,a~! the eigenvalues of N§ and put

F(5, fu) = la —a ™ }/? 8%, (6);

u

here | - |, is the normalized valuation on F,.

Definition. Let n be a positive integer. The function f, on G(F,) is called n-regular if it
is (compactly) supported on the set of § with |ord,(a)| = n, and F(4, f,,) = 1 for such 6.

3.2.1. Proposition. For every f* = ®f, (product over v # u) there exists n' > 0, such
that f = f, @ f* is of type E if f, is n-reqular with n > n'.

Proof. Given f* there exists C, > 1 for each v # u, with C, = 1 for almost all v (C,
depends only on the support of f,) with the following property. Let A* be the ring of
adeles of F' without component at u. If § is an element of G(F') such that the eigenvalues
a,a=! of N§ lie in F*, then C;! < |aly, < Cy(v # u). Put C, = [1,44 Cv- The product
formula [], |a[, = 1 on F* implies that C;' < |al, < C,. The least integer n’ with
qLL’ > (), clearly has the property asserted by the proposition. O

Let p, be a o-invariant character of the diagonal subgroup A(F,). Then there is a
character po, of F, with uy((a,b,c)) = pou(a/c). Denote by I(u,), as in [IT], the G(F,)-
module normalizedly induced from the associated character u, of the upper triangular
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subgroup, and by Iy(uo,) the H(F,)-module normalizedly induced from ( @ b ) — oy (a).

0a?

A standard computation [II], §1, implies that if f,, fo, are matching then
tr I (fhoy, fu X 0) = tr Io(thou, fou)- (3.2.2)

If f, is n-regular, then fy, is n-regular: it is supported on the orbits of v = (a 0 ) with

0a~?
|ord,(a)| = n, and F(v, fou) = 1 there. If now (3.2.1) is non-zero, then g, and u, are
unramified. Put z = gy, (7). We conclude

3.2.3. Lemma. If f, is n-regqular then (3.2.2) is zero unless p.,, is unramified, in which
case we have trI(p,, fu X o) = 2" + 27"

Definition. The function f, on G(F,) is called discrete if g (0) is zero for every ¢ such
that the eigenvalues a,a=! of N§ are distinct and lie in F,X.

Example. If f, is supported on the g-elliptic regular set then it is discrete.

3.2.4. Corollary. Fiz a finite place u of F'. For every f* = ®yxyfo, which has a discrete
component (at v’ # u) and satisfies Assumption (1.3A), there exists a bounded integrable
function d(z) on the unit circle in the complex plane with the following property. For every
n = n/(f*) and n-regular f,, we have

~ 1~ 1 1 1
Totifi=r+ir+imslp +/ () (2" + =) |d” 2.
2 2" T1 T3 et

Proof. Recall that the I are linear functionals in f = f, ® f*. Since f*, hence also f, has a
discrete component, it is clear (from (3.2.2)) that I* = I** = S = 0, and that the sum over
v in (2.2.5) (where S’ is defined) ranges over v = ' only. The sum over 7 in (2.2.5) ranges
over a set of representatives for the connected components of the one-dimensional complex
manifold of o-invariant characters of A(A)/A(F) whose component 7, at u is unramified.
We may choose 7 with 7, = 1. Put z = ¢ for X in iR. Then tr I, (A, fy X 0) = 2" +2"" by
Lemma (3.2.3). Of course, z depends on A only modulo 27iZ/logg,. Since the sum over
T, the integral over iR, and product over w # u,u’ in (2.2.5) are absolutely convergent, the
function
d(z) =Y D [tr Ry A+ k) 'Rey A+ K, fur x 7))

T k€A
i H tr Ly, A+ &, fu X 0),

wH#u,u’
where k' = k2mi/logq,, has the required properties. O

This corollary plays a key role in the proof of [IV] of the symmetric square lifting for
automorphic forms with an elliptic component. For the local work in [IV] we use also a
simpler form of the formula, as follows.
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3.2.5. Proposition. If f = ®f, has two discrete components and it satisfies Assump-
tion(1.3A), then
Totihi=T+irsimilp
R 2l
Proof. The terms in the geometric side of the twisted trace formula which are associated
with non-elliptic o-conjugacy classes are computed explicitly in [Fadj] and also in [CLL].
They are similar to those obtained in the trace formulae of groups of rank one. In particular,
they vanish if f has two discrete components. As noted in (3.2.4) we have [* = [** =S5 =0
if f has a single discrete component. It is clear that S’ = 0 if f has two discrete components,
and the proposition follows. O

Remark. If f has a discrete component and a component as in Example (3.2.3) then f is
of type E and Proposition 3.2.5 follows at once from Proposition 3.1.

3.3. The twisted trace formulae for f on G of (3.2.4) and (3.2.5) will be compared with
the stable trace formula for fo = ® fo, on H = SL(2) from [LL] and the trace formula for
f1 = ®f1v» on Hy = PGL(2). To recall the formula for H, we introduce:

Definition. The packet {my,} of the irreducible H(F,)-module my, is the set of irreducible
H(F,)-modules 73, (9 in GL(2, F,)). Here ©,(h) = mo, (9 Lhg).

Remark. (1) An alternative definition of {mg,} is given as follows. Let 7y, be an irre-
ducible GL(2, F}))-module whose restriction to H(F,) contains mg,. Then {my,} is the set
of irreducibles in the restriction of 7y, to H(Fy). It is independent of the choice of 7g,.
(2) Denote by my(6,) the packet associated with the two-dimensional representation
Ind(0,; Wg,, Wk,) of the (local) Weil group Wg, of F, induced from the character 6,
of Wk, equivalently of K, where K, is a quadratic extension of F,,. Denote by a bar
the non-trivial element in Gal(K,/F,), and put ,(2) = 6,(%). Then {mg,} consists of one

2

o, and of four if

element unless {mg,} = m9(6,). Then it consists of two elements if 512, # 0
9. = 02 but 9, # 0.
Definition. Let Py, be a packet for each v, such that Py, contains an unramified H(F,)-

module 7, for almost all v. The associated global packet P is the set of all H(A)-modules
Ry Toy With mg, in Py, for all v and mg, =~ 7r8v for almost all v.

Proposition. (1) For every fi' = ®fov(v # u) there isn’ > 0 such that for every n-regular
fou with n > n' we have

~ 1 1 1 1 1
Iy=Iy+ I+ -1 — ~I* + = ~S).
0 0+20+40 4 +25()+2SO
(2) If in addition f§ has a discrete component fo, then there is a function do(z), bounded
and integrable on |z| = 1, depending only on f§, such that

~ 1 1
To=To+ 21+ 217 +/ do(2) (2" + 2~ [d* 2
2 4 |2|=1
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for every n-reqular fo, with n >n'.

(3) If fo = ®fou has two elliptic components then Io=1Iy+ %I(’) + iI(’)’.

Proof. We have to explain the notations. I is defined in (1.3.3) and I* = trI(1, fo) in
(2.4.2). In standard notations,

/ Z ’j} tr To(, fo)|dA

and

s= . 32 S el ) o) T o)} L o o)

wH#v

Put tr{mo}(fo) for [[, tr{moy}(fov) if {mo} is the packet determined by the local packets
{mov}. Then

Ip =Y _ m({mo}) tr{mo}(fo)-
{mo}
The sum ranges over the set of packets {my} of H(A)-modules which contain a cuspidal
or one-dimensional H-module which is not of the form 7y(f). Each element in {m} is
cuspidal or one-dimensional, and occurs in the discrete spectrum of L2(H (F)\H(A)) with
multiplicity m({mo}) which depends only on the packet. Next, we have

Io=2 Y tr{m()}(fo)
k0

The K ranges over the set of quadratic extensions of F. The 6 ranges over the set of

characters of Ak /K> such that 9 # 62

The last term Ijj ranges over the set of packets mo(f) where z — 0(z/Z) is a character
of order precisely two of A% /K* for some quadratic extension K of F. Let x be the non-
trivial character of A* /K* Ny pAj . Since /6 = 0/6 # 1 there is a character p of A* /F*
of order two with 0(z/Z) = u(2%z) for all z in A%, and p # x. Note that if E denotes the

quadratic extension of F' determined by p and class field theory, and v is a character of
A% /E* with v(z/Z) = x(2z) (z in A}), then {mo(v)} = {m0(0)}. In conclusion we have

=3 tw{r0)}(fo),

{wx-px}

where the sum ranges over the unordered triples of distinct characters of A* /F* of order
two. O

3.4. We also need the trace formula for a test function f; = ®f1, on H; = PGL(2). It
suffices to consider f; analogous to the fo of (3.3). We first state the formula and then
explain the notations.
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Proposition. (1) For every f{* = ®yxyf1v there is n’ > 0 such that for every n-regular
f1u with n > n' we have

1 1 1

“I 4 =S+ = S1.

§0 Tttt

(2) If in addition f{* has a discrete component fi,, then there is a function di(z),

bounded and integrable on |z| =1, depending only on f}*, such that

~ 1
Il:Il_ZI*_

L =1 +/ di(2) (=" + 2~")|d* 2
|z]=1

for every n-reqular fi, withn >n'. N
(3) If f1 = ®f1, has two elliptic components then I; = I.

Proof. Here I =Y trmi(f1), where the sum ranges over all cuspidal and one-dimensional
H;-modules. I* and I** are defined in (2.4.2). Their sum is

I* + I** = Z tI‘Il(’f], fl),

wn="

for a character 7 of the diagonal subgroup of H;(A) we put wn((a, b)) = n((b,a)). As usual,

_ [ om)
Sl = /iR m(n) t I1(777 f1)|d)‘|

and
S = / SN Ry () Ro ) T, £10)) - [] tr L (s fr) - 1.
iR n v wF#v
O

3.5. Finally we compare the formulae of (3.2), (3.3), (3.4) for functions f = ®f, on
G(A), fo = ®foy on H(A), and fi = ®f1, on Hi(A), such that fo, matches f, for all
v, and either f has a component f, such that f;, = 0 matches f, and f;1 = 0, or fq,
matches f, for all v. Define J to be the difference

1 1 1 1

1 1
J=T+-I'4+=-I"+ I —[Iy+ =I'+ -I" + ~I,].
Tl g o [°+2°+4°+21]

It is an invariant distribution in f, depending only on the orbital integrals of f.

Proposition. (1) If f has two discrete components then J = 0.

(2) Suppose that f* = Qx4 fy has a discrete component. Then there exists an integer
n' > 1 and a bounded integrable function d(z) on |z| = 1, depending only on f*, f§, fi,
such that for all n-reqular functions f., fiu, and fo, we have

J= /|z|=1 d(2)(2" + 7™ d* 2.

Proof. This follows at once from (3.2.4), (3.2.5), (3.3), and (3.4). O
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Concluding Remarks. (1) is used in the local study of [IV]. (2) is used in [IV] to show
that J = 0 for any f as in (2), and to establish the symmetric square lifting for automorphic
forms with an elliptic component. Pursing the techniques of [IV] and studying the properties
of regular functions, we show in [VI] that J = 0 for all matching f, fo, f1, and so reduce by
virtue of the global work of [IV] the symmetric square lifting for all 7 to the local transfer
of orbital integrals, which is proven in [V].
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