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Abst rac t .  An identity of trace formulae which appears in the theory of base 
change for U(3) is proven for arbitrary matching functions, under no restriction 
on any component. The method requires no detailed analysis of weighted orbital 
integrals, or of orbital integrals of singular classes. 

Introduction 

Let E/Fbe  a quadratic extension of  global fields. Put G' for G(E) = GL(3, E). 
Denote by G = G(F) the quasi-split unitary group in three variables. It consists of  
all g in G' with trg = g ,  where we write ox = j t X - l j  for x in G ' : X  is (-r if 
x = (xij), the bar indicating the action of  the non-trivial element of the galois 
group GaI(E/F), and 

[i 1 J =  1 

0 

Similarly we can introduce 

H' = H(E)  = GL(2, E) and H = H(F) = {g in H ' ;  trg = g}. 

Here 

'] ~ X  = W t . ~ - I w  - I ,  W = 

0 
for x in H' .  

Then G = U(3), H = U(2). Our notations are the same as in [U5], where the 
following smooth complex-valued functions are introduced. 

(1) ' f  = ~ ' f~  and '~ = ~ '0v are compactly supported on H(A) (A -- AF indica- 
tes the ring of adeles of F). 
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(2) f - - ~ f ,  on G(A) transforms under the center Z(A) (~--A~: E-ideles of 
norm 1 in A~ ) of  G(A) by a fixed character to-1, where to is a character o fAk/E  ~ 
(as in [US], E ~ = {x ~ E ;  N~zFx = 1 }); f i s  compactly supported modulo Z(A). 

(3) 0 = ~ 0~ is a function on G'(A) = G(AE) which transforms under the center 
Z'(A) = Z(AE) (--~ A~ ) of  G'(A) by co'- ', where to'(x) = to(x/E), x in the group 
A x of ideles. 

The local components of  'f ,  f ,  0, '0 are taken to be matching, namely their 
orbital integrals are related in a certain way, specified in [U5]. 

Our purpose here is to prove the following: 

T h e o r e m .  Let ' f , f , 0, '0 be matching. Then we have the following identity oJ 
trace form ulae: 

1 ~ n(p)tr{p}('0) n m(H)tr FI(0 • a) - ~ to} 

1 
= E m ( n ) t r  n ( f )  --  ~ Y~ n(p)tr{p}('f). 

{p} 

Some applications of this identity are discussed in [U5]. They concern a 
definition and description of  packets of  admissible [BZ] and automorphic [Av], 
[BJ] representations of  G = U(3), and their relations with those o f H  = U(2) and 
G' = GL(3, E). This includes a proof of  multiplicity one and rigidity theorems 
for packets of  discrete series automorphic representations o fG = U(3). The work 
of [U5] is rather involved; it uses, for example, Arthur's explicit computations 
JAr] of the trace formula, Kottwitz's base-change lemma [I(o2], Kazhdan's 
pseudo-coefficients [K] (and so the Bernstein center [BD]), the rigidity theorem of  
Piatetski-Shapiro and Jacquet-Shalika [JS], the Casselman-Deligne character 
formula [CD], and so on. In the present paper we isolate a single technical but 
essential tool, namely the identity of  the Theorem, which is needed to establish 
the theory of  [US] in the greatest generality of  all automorphic representations. 
Of  course our work should be viewed in the context of  the "Langlands program" 
ILl/2] and is likely to have interesting applications in the study of  Shimura 
varieties [L2/3]. However, our method of proof is inspired by the use of the 
Iwahori algebra in [KL]; see also [W]. 

The present paper is a continuation, and completion of  the global aspects, of  
the project [U]. The notations in this paper, and in particular in the statement of 
the Theorem, are the same as in [U3-5]. The sum over II ranges over various 
automorphic a-invariant G'(A)-modules (of [U3]; p. 136, 1. - 2, - 3), and m (FI) 
is 1 if Fl is discrete-series, ~ if H = I(z) and ~, - ~ or - ~ if H = I(~/). The n are 
automorphic G(A)-modules which may be discrete-series or induced and the 
re(n) are integers,  89 or  88 The {p} are automorphic H(A)-packets, and the 
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n((p}) = n(p) are again rational numbers, explicitly described in [U3] and [U5]. 
In [U3] we proved the Theorem under the additional assumption that two local 
components of (each of) ,jr, f ,  (b, '~ are elliptic (= discrete). The proof which we 
give in IS; IV] (in the more difficult context of the symmetric square lifting) 
suffices to establish the Theorem under the assumption that (only) one compo- 
nent of 'f, f ,  O, '0 is elliptic, i.e. discrete. Our purpose here is to prove the 
Theorem unconditionally, and by a simple technique. 

Trace identity as in the Theorem, for general test functions f ,  ~ . . . .  on two (or 
more) groups G, G', . . . .  appears already in (Chapter 16 of) [JL]. But attention 
to the problem was drawn by Langlands' study [L4] of the first non-trivial case, 
namely the comparison needed for the completion of the cyclic base-change 
theory for GL(2), initiated by Saito [Sa] and Shintani [Sh]. Langlands proved 
the required identity for GL(2) on (1) computing the weighted orbital integrals 
and orbital integrals of singular classes which appear in the trace formulae, 
(2) analyzing the asymptotic behavior of the weighted integrals, (3) applying the 
Poisson summation formula, and so on. The correction argument which is 
introduced in [G2], w and [U1], simplifies the behavior of the weighted 
integrals, but not sufficiently to our liking; in [U2] we found it to be too long and 
complicated to be worth formalizing in our situation. 

The method presented in this paper is entirely different. The principle is that it 
suffices to check the identity of the Theorem only for a small class of convenient 
test functions, and then use the fact that we deal with characters of representa- 
tions to conclude that the identity holds in general. It is not necessary to deal with 
arbitrary f ,  ~ . . . .  at the initial stage. In fact, it is shown below that for a suitable 
choice of test functions (whose definitions we leave to the text itself), the 
weighted orbital integrals and the orbital integrals at the singular classes are zero. 
In particular they need not be further computed and transformed. The proof 
turns out to be rather simple, once the right track is found. This solves the 
problem raised in [U3], p. 121, l. 3-4, to "abstractly establish the unconditional 
comparison of trace formulae". 

It is clear that the present method applies also in the case considered in [L4] to 
yield a simple and short proof of the trace identity needed for the comparison of 
base-change for GL(2); applying our method in the context of the (easier) case 
considered in [L4] would be a constructive exercise for the interested reader. 

The observation underlying our approach is that the subgroup F x of rationals 
is discrete in the group A x of ideles. That this simple fact can actually be used to 
annihilate the undesirable terms in the trace formula was suggested byDrinfeld's 
use in [D] of spherical functions related to powers of the Frobenius, in the course 
of the work [FK2], [FK3] with D. Kazhdan, on the Ramanujan conjecture for 
automorphic forms with a supercuspidal component of GL(n) over a function 
field. 



42 YUVAL Z. FLICKER 

In the present paper admissible spherical functions are used to establish the 
Theorem in our simple approach. This technique is developed in [FK1] to 
establish the metaplectic and simple algebra correspondences in the context of  
cusp forms with a single supcrcuspidal component. Since this paper was written, 
we have developed a different variant of  the approach. This variant is based on 
the use of regular (or Iwahori) functions; cf. [KL], [W]. This different technique is 
applied in [G 1] to give a simple proof of  base change for GL(2), in [S; VI] to prove 
the absolute form of  the symmetric square lifting from SL(2) to PGL(3), and in 
[G3] to establish by simple means base change for cusp forms with a supercuspi- 
dal component on GL(n). 

To complete this introduction we now sketch the proof, which is given below. 
We deal with four trace formulae for test functions f ,  0, ' f ,  '0, on the groups 
G = U(3), G ' =  GL(3, E), H - - U ( 2 )  and again H. Put q for the quadruple 
(f, 0, 'f ,  '0). Each trace formula is an equality of distributions in the test function. 
These distributions are as follows. OI involves "good" orbital integrals, on the set 
of  rational regular elliptic elements. WI involves "bad" orbital integrals, on the 
set of  rational elements which are not regular elliptic; these "bad" integrals are 
mostly weighted and non-invariant as distributions in the test function. RD is a 
(discrete) sum of  traces of automorphic representations; these occur with coeffi- 
cients which may be negative when the representation is not cuspidal. RC is an 
integral (continuous sum) of traces of induced representations; these traces are 
often weighted, and the distributions which make up RC are mostly non- 
invariant. The trace formula takes the form I = R, where R -- RD + RC is the 
representation theoretic side, and I = OI + WI is the geometric side of  the 
formula. 

We shall be interested in a linear combination of the four formulae. Put 

RD(q) = [RD(0) -  89 RD('0)] - [RD(f)  --  89 RD('f)] ,  

and introduce OI(q), RC(q) analogously. From now on we always choose the 
components of q to have matching orbital integrals. This choice implies the 
vanishing of  OI(q). Hence 

RD(q) -- WI(q) - RC(q). 

In these notations, the Theorem can be restated as follows. 

T h e o r e m .  For any quadruple q o f  matching functions we have RD(q) = 0. 

Fix a non-archimedean place u of F which splits in E.  Then 

G(F,) = GL(3, F~), G'(Fu) -- GL(3, Fu) • GL(3, F,), H(F~) = GL(2, F,,). 

Fix a quadruple qU __ (fu,  Ou, ,fu, ,0~) of the components outside u of  q. Put 
RC(qu) for RC(q~ | q"), where q~ = (f~, Ou, 'f~, 'q),,). As the first step in the proof 
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we explicitly construct for any f .  a quadruple q, = q(f~) which has the property 
that RC(q(f~)) depends only on the orbital integrals off~ (see w 

For the second step of  the proof(see w we say that a function f "  on G(F.) is 
no-admissible (for some no > 0) if  it is spherical and its orbital integrals on the 
split regular set vanish at a distance _-< no from the walls [namely, on the orbits 
with eigenvalues of valuations nl, n2, n3 such that I ni - nj J is at most no for some 
i ~ j  ( i , j  = 1, 2, 3)]. We prove: For any quadruple qU ofmatchingfU, ~,,, , f . ,  ,(~,, 
which vanish on the adeles-outside-u orbits of  the singular-rational elements, 
there exists an integer no -- no(q ~) such that WI(q0C')) -- 0 for every n0-admissible 
f ' .  Note that in this case alI of  the components o f q ( f ' )  are spherical. 

To prove this we show in the Proposition ofw 1 that, g iven f  u which vanishes on 
the G(A")-orbits of  the singular set in G(F), there exists no ---- n0(f") > 0, such that 
for every no-admissible f "  there exists a functionf~ with the same orbital integrals 
as f ' ,  with the property t h a t f "  @f~ is zero on the G(A)-orbits of  all "bad" rational 
elements. In particular WI0 c" @f~) = 0. The functionf~ is obtained by replacing 
f" by zero on a small neighborhood of  finitely many split orbits where the orbital 
integral off,', is zero. Choosing no sufficiently large, depending on q~, and noting 
that the construction of  q(f~) is such that its components are zero on the image of 
the split regular orbits wheref~ is zero, we conclude that for every no-admissible f "  
there is f~ with orbital integrals equal to those o f f "  such that WI(q(f~))= 0. 
Consequently WI(q(f,',)) = 0 for every n0-admissible f ' ,  since 

WI(q(f~)) -- RD(q(f~)) + RC(q(f~)) 

and RC(q(f~)) depends (by Step l) only on the orbital integrals o f f ,  (which are 
equal to those o f f ' ) .  

The third step asserts that since R D ( q ( f ' ) ) - - R C ( q ( f ~ ' ) )  for every 
n0-admissiblef~,, we have RD(q(f ' ) )  -- RC(q(f,',)) -- 0 for every sphericalf ' .  This 
follows from the final Proposition in [FK1 ], where this claim is stated and proven 
in the context of  an arbitrary p-adic group. 

Fix a non-archimedean place u'  o f F .  It follows from Step 3 that for any q,, 
whose components vanish on the singular set, we have RD(q"'t~ q.,) -- 0 for all 
q"'. The fourth step is to show that this holds for any spherical q.,. The proof is the 
same as in [US], w Hence it will not be-given in the text below, but we will 
recall the argument here. 

Write RD(q) as a sum Y'x RD(q, )C) over all infinitessimal characters )C, of  the 
partial sums RD(q, X) of  RD(q) taken only over those automorphic representa- 
tions whose infinitesimal character is X- Since the archimedean components of  q 
are arbitrary, a standard argument of"linear independence of  characters" implies 
that since RD(q) = 0, for every X we have RD(q, X) = 0 ifq~, ---- 0 on the singular 
set. Fix q~', and consider RD(q, )C) as a functional on the space of  Iwahori 
quadruples qu, (i.e., quadruples whose components are biinvariant under the 
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standard Iwahori subgroups). There are only finitely many automorphic repre- 
sentations with a fixed infinitesimal character, fixed ramification at each finite 
place ~ u', whose component at u '  has a non-zero vector fixed under the action of  
an Iwahori subgroup. Hence as a functional in the Iwahori quadruple q,,,, 
RD(q, Z) is a finite sum of characters. As it is zero on all q,, which vanish on the 
singular set, it is easy to see that it is identically zero. In particular RD(q, Z) 
vanishes on the spherical quadruples q~,, from which the Theorem easily follows. 
This completes our outline of  the proof of  the Theorem. 

w C o n j u g a c y  c l a s s e s  

Let v be a place of  F.  Denote by Fv the completion of  F at v, and put 
E~ = E ~F F~ If v stays prime in E, then EJF~ is a quadratic field extension. If  v 
splits into v', v ~ in E, then E~ -- E~ • E~, where E~ -~ E~ --~ F~. In this case 

G(E~) -- GL(3, F~) • GL(3, F.), 

and 

G(F~) --- {(g, ag); g in GL(3, F.)} "~ GL(3, F.). 

Here ag = J~g- I j ,  as GaI(E/F) maps g -- (g', g") in G(E~) to g -- (g", g'). Let u be 
a fixed non-archimedean place of  F which splits in E.  Put f u = | u f~, where at 
each place v § u of F we take the function ~ to be fixed. The component f~ is a 
locally constant function on G, = G(Fu) -- GL(3, Fu). We choose u such that the 
central character m has an unramified component m~ at u. Replacing m by its 
product with an unramified (global) character we may assume that o~,, = 1. Then 
fu(zg) = f~(g) for g in Gu, z in the center Z~ of G., andf~ is compactly supported 
on Z,, \ G~. Let F(g, f~) -- A(g)CP(g, f~) be the normalized orbital integral off~ in 
the notations of  [U5]. Let R,, be the ring of  integers in F,,. Put K. ---- G(Ru); it is a 
maximal compact subgroup of  Gu. A spherical function is a K,,-biinvariant 
function. The theory of  the Satake transform implies that a spherical f~ on Gu is 
determined by its orbital integral on the split set. Let I  9 I be the (normalized) 
valuation on F,,, put q ~ q~ for the cardinality of  the residue field of  F~, and val 
for the additive valuation, defined by [ a l - - q - ~ " )  for a in F~ x . Let n~- 
(nl, n2, n3) be a triple of  integers. Let f'~ he the spherical function on G~ for which 
F(g, f'.) is zero at the regular diagonal element g - - ( a ,  b, c), unless up to 
conjugation and modulo the center we have (val a, val b, val c) - n, in which 
case we require F(g, f~) to be equal to one. Embed Z in Z 3 diagonally. The 
symmetric group $3 on three letters acts on Z 3. Denote by Z3/$3 z the quotient 
space. Then f "  depends only on the image of  n in Z3/S3Z. We write f "  = f "  (n) to 
indicate the dependence o f f "  on n. 
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Definitions.  (1) The function f~ on Gu is called pseudo-spherical i f  there 
exists a spherical function f "  with F(g, f~)= F(g, f'~) for all g in Gu. We write 
f~(n) forf~ iff'~ -- f'~(n). 

(2) Let no be a non-negative integer. An element n = (nt, n2, n3) o f  Z3/S3Z is 
called no-admissible i f  I n~ - nil > no for all i r j; i , j  = 1, 2, 3. 

We also fix a place u '  o f  F which stays prime in E such that  Eu,/Fu, is 
unramified, and a positive integer n'. Let S = S(u', n') be the set o f g  in Gu, which 
are conjugate to some diagonal matrix (a, b, a -  t) with I a lu, -- q~; (and I b L, = 1); 
a and b are elements o f E  x .  We shall assume from now on that  the component  f~, 
is a (compactly supported, locally constant) function on G~, such that  F(g, f~,) is 
the characteristic function of  S. Since S is open and closed we may  and do takers, 
to be supported on S. 

P r o p o s i t i o n .  There exists an integer no ~ 0 depending on f ~, such that for 
any no-admissible n there is a pseudo-spherical f~ -- f~(n) with the property that 
f = f~  @ f~ satisfies the following, l f  ~, lies in G(F), x in G(A), and f (x-~yx)  ~ O, 
then 7 is elliptic regular. 

Proof. I f f ~ x -  ~yx) ~ 0 then ~ lies in S, hence it is regular in G~,, and also in 
G. If  ~ is not elliptic, then we may  assume that  it is the diagonal element 
(a, b, a - t )  with a in E x and b in E I = {b in E x ; b6 = 1}. Modulo  the center we 
may assume that  b = 1. Also we have aa  ~ 1. At u we have a = (a, fl), with a, fl in 
F x . Hence ~, is (a, 1, fl - l) in G~. Since f ~  is fixed, there are Cv > 1 for all v # u, 
with C~ -- 1 for almost all v, such that  C7 ~ < l a Iv < Cv for all v # u i f f " ( x - ~ x )  
0 for some x in G(A). Here l a Iv = I NE/ra Iv. Since a lies in E • and Ne/ea in F • 
the product formula on F x implies that  l a,8 lu -- I Ne/Fa I,, = I a I~ lies between 
C~ = II~,~ C~ and C~ -~ . We take no with q~0 > C~. Consider an no-admissible n 
and the sphericalf~' = f,~(n). I f f ' , ( x -  lyx) ~ 0 for some x in G,,, then there is some 
C" > 1 such that I a lu and [fl I~ are bounded between C~ and C'~- ~, so that  a lies in 
the discrete set E • and in a compact  o f  A~,  hence in a finite set. Hence ~, lies in 
finitely many conjugacy classes modulo  the center; let y ~ , . . . ,  Yt be a set of  
representatives. Put  Yi = (a~, I, fli-i). By definition off'~, i fF(yi ,  f'~) ~ 0 then we 
have that I a~]l~ I or I a~fl~l - t is bigger than q~0, hence f (x  - ~'ix) = 0 for all x and i. 
We conclude that  F (~ ,  f~)  = 0 for all i. Let S~ be the characteristic function of  the 
complement of  a small open closed neighborhood of  the orbit of~,~ in G~. Then the 
function f~ = f "  II~ S~ on G,, has the required properties. 

Let L(G) denote the space o f  automorphic  functions on G(A); these are the 
slowly increasing functions on G(F) \  G(A) which t ransform on Z(A) by co and 
are right invariant by some compact  open subgroup; see [B J] and  [Av]. G(A) acts 
on L(G) by right translation: (r(g)u = u Then r is an integral operator 
with kernel K/(x, y) = X r f (x- ID') ,  where ), ranges over Z ( F ) \  G(F). In view of  



46 YUVAL Z. FLICKER 

the Proposition, the integral of Ki(x, y) on the diagonal x = y  in G(A)/Z(A) is 
precisely the sum (2.2.1) of [U3], which is stabilized and analyzed in [U3], w 
The remarkable phenomenon to be noted is that for fwi th  a component f~ as in 
the Proposition, the only conjugacy classes which contribute to the trace formula 
are elliptic regular. The weighted orbital integrals and the orbital integrals of the 
singular classes are zero, for our function f.  Moreover, the truncation which is 
usually used to obtain the trace formula is trivial, for our f .  

Each component r of  the function ~ = @~v on G'(A) = G(Ae) is taken to be 
matchingf~ in the terminology of [U3], w and [U5]. In particular we take ~, to be 
(f~, fo), where f o  is as in [G2], p. 47, l. - 3. Namely the pseudo-spherical f ,  is 
biinvariant under some tr-invariant compact open subgroup Iu of G,, where 
tr(g) = .Pg- ~J, a n d f  ~ is taken to be the characteristic function ofZ ,  Iu, divided by 
the volume of IuZ,/Z~. Then f~ = f o  . f u  = f ,  . f o .  An immediate twisted 
analogue of the proof of the Proposition establishes the following. 

Proposition. I f  n is no-admissible, ~ lies in G(E), x in G(Ae) and 
~ x -  ~&r(x)) ~ O, then NJ is elliptic regular in G(F). 

Here N denotes the norm map from the set of stable a-conjugacy classes in 
G(E) (and G(Ae)) onto the set of stable conj ugacy classes in G (F) (and G (A)) (see 
[Kol ]). Again we can introduce the space L(G') of automorphic functions on 
G'(F) \ G'(A) which transform on Z'(A) by o9' and the right action r' of  G(AE) on 
L(G'). GaI(E/F) acts on L(G') by (r'(a)~)(g) = v(ag). The operator r'(~ X tr) is 
an integral operator with kernel K~(x,y)= ~,6~x-l&r(y)) (~ in Z(E)\G(E)) .  
The Proposition shows that the integral of K, along the diagonal x = y  in 
Z(Ae)\  G(Ae) is precisely the sum of [U3], p. 131, l. 6, which is stabilized and 
discussed in [U3], w 

The functions ' f  and '~ on H(A) are taken to be matching with f and ~, as 
defined in [U3], w167 Their components at u can be taken to be pseudo- 
spherical, and the Proposition and its applications hold fo r ' l and  '~ as well. There 
is no need to repeat the analogous discussion. It remains to consider the 
contribution to the trace formulae from the representation theoretic side. 

w Intertwining operators 

For brevity we denote by J the difference of the two sides in the equality of our 
theorem. Then J is the difference of the two sides in the equality of [U3], 
Proposition 4.4. The work of  [U3], w167 concerns the stabilization of  the orbital 
integrals on the elliptic regular conjugacy classes which appear in the trace formulae. 
It implies that for arbitrary matching functions 'f, f ,  ~, '~ the difference J can be 
expressed as a sum of integrals of logarithmic derivatives of certain intertwining 
operators, which we momentarily describe. In [U3], (4.4), we conclude from this 
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that J = 0 if the functions f ,  ~ . . . .  have two elliptic (=  discrete) components. To 
deal with the case of  arbitrary f ,  0 , . . .  we now record an expression for J,  as 
follows. The expression consists of  four terms, one for each of  ~, f ,  'f, '0. These 
are the terms involving integrals (over iR) in the trace formulae. They are 
analogous to the terms (vi), (vii), (viii) of  [JL], p. 517. We use the notations of  
[S; III], w which are the standard notations. 

The term J(O), from the twisted formula for G', is the sum of  three expressions, 
equal to each other. As the coefficient [ Wo~]/[ W0](det(1 - s • tr)[d,,/d) of  [S; III], 
(3.1) (and JAr], Thm 8.2, p. 1324) is ~ (here M --- M0 is the diagonal subgroup A; 
the Lie algebra ~r is one-dimensional), we obtain 

1 
J(r = 4 ~ f tr ig/(2,  O , -  2)Ipo,+(O., O, - 2); 0 X r 

iR 

The sum is over all connected components (with representatives 
r = (gl,/12,/~3)) of  characters ofA (Ae)/A (E), with az = z. More precisely, let v be 
the character v(x) = I xl  o fA x . Note that A ~- G~. The connected component of  
r consists of  ra = ~Lv z,/t2,/z3v-a), 2 in iR. The /t~ are unitary characters of  
A{ /E  • and/q/tzu3 = af .  We put Ie0:((2, 0, - 2)) for the G(Ae)-module norma- 
lizedly induced from ra; z~ is regarded as a character of  the upper triangular 
subgroup Po which is trivial on the unipotent radical of  Po. The action oftr  takes z 
to (~3 i, p2-1,/~-~), where ~(x) = #(X). Hence az = r implies z = ~ ,  to'B//~,/~-1), 
where p =/~,. 

The operator . / / i s  a logarithmic derivative of an operator M = m @~ R~, where 
R~ denotes a local normalized intertwining operator. The normalizing factor 
m = re(X)= re(X, z) is an easily specified (see [S; III], (3.2)) quotient of  L- 
functions, which has neither zeroes nor poles on the domain iR of  integration. 
Then the logarithmic derivative ~r 

d 
m'(2)/m(2) + (@R;-') -77. (@R,), 

el2 

and we obtain J(0) -- J'(0) + Zv Jr(O), where 

1 m'(;t) [ ~  tr L,(2; 0o 
J '(r  ~ : m(2) 

iR 

x a)] dX 

and 

1 : [trR,,(2)-~R~,(2)'L,(2; 0v• a)]  9 H 
w,~v 

iR 

tr L,(2; 0w X a)d2. 
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The abbreviated notations are standard. The sum over v is finite. It extends over 
the places v where ~ is not spherical, since when ~ is spherical the operator 
1,,(2; ~ • a) factors through the projection on the one-dimensional subspace (ifz~ 
is unramified) of K~ = GL(3, Ro)-fixed vectors, on which R,,(2) acts as the scalar 
one, so that R,,(2)' = 0. 

Next we have to record the analogous term J ( f )  of the trace formula for G. 
Again we use the notations of  [S; III], (3.1), with a = 1; this rank one non-twisted 
case is well-known (see [JL], pp. 516-517). We take M --M0, and .~' -- ~r is 
one-dimensional. The element s of  the Weyl group is s -- id; it lies in W~(SCu). 
The Weyl group W0 has cardinality two, and [ W0 ~] -- 1, and ~r162 ---- {0}. Hence 
the coefficient of  J ( f )  is  89 and 

f tr./t(2)I(it @2; f)d3.. 
tR 

The sum ranges over all connected components  with representatives #, where 
It(a, b, a -1) = #(a/b)to(b). Here a lies in A~,  b in A~r, It is a character o f A ~ / E  x, 
and the connected component  of It consists of  It @A, where It is replaced by Itv ~, 
for 2 in iR. The induced G(A)-module I ~  |  lifts (see [U4], I_emma 1.4) to the 
induced G(Ae)-module I,(2), where r = ~ ,  to'B/It, Ft-1), and this relation defines 
a bijection It ,-, z between the sets over which the sums of  J(#) and J ( f )  are taken. 
Here .4/(2) is again a logarithmic derivative of an operator M = m | and 
J ( f )  is the sum of  J ' ( f )  and Z~ J~(f), where 

1 m'(2) tr I ( /~ |  2; fi)] J ' ( f ' = 2  ~ f m(2,  [ ~  d2 
iR 

and 

i f  J ~ . f ) = ~  ~ tr[R~(2)-~R~(2)'l~v~2;f~)]  9 ~§ trI(i t~|  
~a 

Note that here the normalizing factors m(2) depend on #, while those of J'(#) 
depend on z. It is clear (see [U4], Lemma 1.4) that for matching functionsf~ and 
#~ we have 

t r l~ |215  if z~ = (/t~, to~aJ#, # ;  ~). 

It can be shown directly that 2m'(2,  It)/m(2, #)  = m'(2, z)/m(2, z), and hence 
that J ' ( f ) =  J'(~), but we do not need this observation. The fundamental  
observation which we do require is the following. 

L e m m a .  For our choice of f~ and ~,, = (f~, fo) we have Ju(~)) = J,,(f). 
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Proof. This is precisely Lemma 16, p. 47, of[G2], in the case l -- 2. Note that 
the proof of this Lemma 16 is elementary and self-contained. To see that this 
Lemma 16 applies in our case, recall that we choose f o  to be the characteristic 
function (up to a scalar multiple) of  Z ju ,  where I,, is a tr-invariant open compact 
subgroup of G~. Then 

fO(ag ) =fO(g) ,  o o n , , ( f u ) = n ( f  ~ and f ~ = f u . ~ 1 7 6  ~ 

in the notations of [G2], (1.5.2), p. 42, 1.7. In fact this Lemma 16 of  [G2] asserts 
that 

tr R~(2)-  ~R~.(2)'&(2; ~ • a) -- l t rR. . (2)- 'R~.(2) ' I~u |  f~) 

in our notations, where I - 2. This is precisely the factor needed to match the ~ of  
Ju(~) with the  89 of  J,~(f). Our lemma follows. 

It remains to deal with the terms of  J( ' f )  and J('0). Since this case of  U(2) is 
well-known (see [U 1 ]) we do not write out the expressions here, but simply note 
the following. 

(1) We may assume that the place u is such that the component ~ of  the 
character r on A~/EXNA~ is unramified. 

(2) We may and do multiply x by an unramified (global) character to assume 
that Xu = 1. 

(3) If 'f~ and '0~ are matching functions on Hv in the notations of  [U3], and 
p~ -- 'I(/z~), p~' -- 'I(/4~) in the same notations, then tr p~('f~) = tr p~('O~) by Lemma 
1.4 in [U4]. 

(4) At the split place u we take the components 'f~ and ' ~  to be defined directly 
by the same formula ([U3], p. 130, 1. - 8) in terms off~; they are equal to each 
other. We conclude: 

L e m m a .  In the above notations, we have J~('f) = Ju('O). 

Proof. This follows from (3) and (4). Note that the sets of  g parametrizing 
the sums which appear in J( ' f )  and J('O) are isomorphic. The isomorphism 
('l~)-*'I(lzX)) is defined by the dual group diagram of  [U4], (1.3), and [U4], 
Lemma 1.4, which is recorded also in [U5]. 

Remark. J ' ( ' f )  and J'('0) are given by precisely the same formulae, hence 
they are equal to each other by (3). We do not use this remark below. 

w Approximation 

We conclude that for f f f u  |  with fixed f u  and f ~ - f ~ ( n )  where n is 
n0-admissible for some no -- n0(f~), we have the identity 
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(3.1) J = J'(O) - J ' ( f )  + J ' ( ' f )  - J'('(~) + • [J~(~) - Jr(f)  + J~('f) - J~('0)]. 
V 

The sum over v is finite and ranges over v ~ u. On the left J represents a sum 
with complex coetticients (depending on f "  but not on f~) of  traces of the form 
tr n,(f~), tr 1-I.(~ • or), tr{p~ }('f,) or tr{pu }('r This is an invariant distribution 
inf , ;  it depends only on the orbital integrals off , .  On the right we have a sum over 
the connected components (represented by #~) of  the manifold of characters 
mentioned in w of integrals over iR. The integrands are of the form 
c(;t)tr l(u~ r 2;f~). The right side of (3.1) is therefore also an invariant distribu- 
tion in f , ,  depending only on the orbital integrals off~. We conclude 

L e m m a .  The identity (3.1) holds with f~ = f~(n) replaced by the spherical 
f'~ = f "  (n). 

P r o o f .  By definition f ,  (n) and f, '  (n) have equal orbital integrals. 

From now on we denote by f~ a spherical function of the form f,',(n) with 
n0-admissible n. The identity (3.1) holds for our f - -  f "  @f~. Since f~ is spherical, 
tr nu(f~)§ 0 only when n, is unramified. The theory of  the Satake transform 
establishes an isomorphism from the set of  unramified irreducible G.-modules 
nu, to the variety C• The unordered triple z = (21, z2, z3) of  non-zero complex 
numbers corresponds to the unramified subquotient ft, (z) of  the Gu-module Ix (z) 
normalizedly induced from the unramified character ( a0 )~  l-I~ z val(aa) of  the upper 
triangular subgroup. The central character of  n,(z) is trivial if and only if 
zlz2z3 = 1. For z in C x and z in C x3 we write zZ for (z~z, 22, z3z-  1), We conclude 
that there are t~ in Cx3/$3 (i >= 0) and z~ in C x3 (i >= 0) with tg~t~2t~3 = 1, z,z~:~3 = 1 
and I zo I = 1; further there are complex numbers ci, and integrable functions 
ci(z) on Izl = 1, such that (3.1) takes the form 

(3.2) Y~ ci t r (n,( t~))(f , )=~ f c~(z)tr(n.(z:))( f , )dXz.  
i i J 

l z i - 1  

The Satake transform f~ ~ f ~ ,  defined by f ~  (z) = tr(rt,(z))(f.), is an isomor- 
phism from the convolution algebra of  spherical functionsf~ on G, to the algebra 
of  Laurent series f ~  o f z  in C• with z~z2z3 = 1. Then (3.2) can be put in the 
f O r m  

(3.3) Y. c f 2  (ti) = Y~ f c i ( z ) f :  ( z : ) d X z .  
i i 

Izl ~1 

Our aim is to show that c~ -- 0 for all i _>- 0. For that we note that all sums and 
products in the trace formula are absolutely convergent for any f , ,  in particular 
for the function wi th f~  = 1. Hence Xtlci I is finite, and Zi S Ici(z) l f dz [ is finite. 
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Moreover, let X be the set of  z in Cx3/$3 with z l z 2 z 3  = 1, 2 -1 - -  z, and q-I _<- 
I z~ I --< q for each entry z~ of  z. Since all representations which contribute to the 
trace formula are unitary, the t~ and z~z lie in X. But then the case where n = 3 of  
the final Proposition in [FK1], where the analogous problem is rephrased and 
solved for an arbitrary reductive group, implies that all ci in (3.3) are zero, and the 
theorem follows. 
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