ON ZEROES OF THE TWISTED TENSOR L-FUNCTION
Yuval Z. Flicker

A. Notations, results, remarks. Let E/F be a separable quadratic extension
of global fields, A = Ap and Ag the associated rings of adeles, and A*, A% their
multiplicative groups of ideles. Signify by G the group scheme GL(n) over F, and
put G =G(F),G'=G(F),G=G(A), G =G(Ag),and Z(~ F*), Z'(~ E*), Z(~
AX), Z'(~ AX),Z/(~ A}) for their centers. Fix a unitary character ¢ of Z'/Z’, and
denote by 7 a cuspidal G'-module whose central character is €. Such a 7 is called
distinguished if there is a form ¢ in 7 such that fZG\Gqﬁ(x)dx # 0; clearly ¢ is
trivial on Z if 7 is distinguished.

If G’ = Resg ,rG is the group obtained from G by restriction of scalars from E

to F, then (G' = G'(F),G' = G'(A) and) its dual group Ql is [G(C) x G(C)] »
Gal(E/F), where the non-trivial element o of the Galois group Gal(E/F) acts by
permuting the two copies of G(C). As in [F1] the twisted tensor representation r

of Ql is defined on the n2-dimensional complex space C* ® C* by

(r(a,b))(z®y) =ar by and (r(o))(z®@y)=yRz (a,be G(C); x,y e C").

The irreducible admissible G'-module 7 factorizes as a local product ® 7, (v

ranges over all F-places) of G/-modules 7,. Here F, is the completion of F' at v
(we also write R, for its ring of integers, m = =, for a generator of its maximal ideal,
and g, for the cardinality of R, /(mx,), when v is non-archimedean), and G,, = G(F,),
Gi} = G(Ev)(: Q/(Fv))

For almost all F-places v the component m, of 7 is unramified. If v stays prime in
E, such 7, is determined by the semi-simple conjugacy class t(m,) = (2(my) x 1) x o

in Q; = [G(C) x G(O)] x Gal(FE,/F,), where z(m,) is the diagonal matrix whose
eigenvalues (z;(m,); 1 < i < n) are the Hecke eigenvalues of the unramified G-
module 7.

If v splits into v’ and v" in FE, then E, = F, ® F,, G|, = G, x G, and 7, =
Ty X Ty 18 determined by the semi-simple conjugacy class t(m,) = z(my) X 2(mwyn)

in Q; = G(C) x G(C), where z(m, ) is a diagonal matrix whose diagonal entries
zi(my ) (1 <4 < m) are the Hecke eigenvalues of m,s (same for 7, and z(m,)).

Correspondingly, as in [F1] we introduce the L-factors

L(s,r(m) @ wy) = det[I — q; "wy (z,)r(t(m))] ™,

where w = Qu, is a unitary character of Z/Z unramified at our v.

At a place which stays prime this L-factor is equal to

[ O-arw@)zm) ™ [T (1 -a>wim,)zm)a(z,)

1<i<n 1<j<k<n
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while at v which splits in F it is

[T (=g w(m)zim)z (me) ™ = Lis,wn ® m x 1),
1<i,j<n

Denote by V a set of F-places containing the archimedean places and those where
E, w or m ramify. The partial twisted tensor L-function is the infinite product

LY (s,r(m) @ w) = H L(s,7(my) ® wy),
vgV

which converges absolutely in some right half plane Re(s) >> 1.

The local L-factors L(s,r(m,) ® w,) can be introduced for non-archimedean v €
V too as nowhere vanishing functions of the form P(gq;%)~!, where P(X) is a
polynomial in X with P(0) = 1. The definition in the case of v which splits is
given as in [JPS], Theorem 2.7, where L(s, 1, X ma,) is defined. The definition and
properties of these factors for a non-split v are analogously proven in the Appendix
to this paper.

At the archimedean places the L-factors are the associated L-factors of the rep-
resentation of the Weil groups which parametrize m, (and so r(m,) ® w,). But the
local functional equation has been proven in [JS1], Theorem 5.1, only in the split
case, where F, = F, ® F,. It will be interesting to extend the work of [JS1] to
apply in the non-split case too.

We shall then assume that every archimedean place v of F' splits in £. Under
this assumption the complete L-function L(s,r(7) ®w) is defined to be the product
over all places of the local factors. We shall assume throughout this paper that if
w # 1 then w does not factorizes through z — v(z) = |z|, as this case can easily be
reduced to the case of w = 1. Indeed, if vg(z) = |2Z|/%(x € Af), then

L(s,r(m) @ wrt) = L(s + t,7(7) @ w) = L(s, r(r @ Vi{*) @ w).

For the same reason we may and will assume that the central character ¢ of 7 is
trivial on A*.

The work of [F1] then extends at once to show that L(s,r(m) ® w) has analytic
continuation to the entire complex s-plane with possible poles only at s = 0, 1.
This L-function satisfies a functional equation relating s and 1 — s. These poles
are at most simple, and occur precisely when r(7) ® w is of the form r(7’), with a
distinguished 7’. By r(7) ® w = r(7’) we mean that r(m,) ® w, = r(n]) for almost
all v. See the Remark at the end of this paper concerning such w and .

Let L(T) be a separable field extension of F' of degree n. Its multiplicative group
T is isomorphic over F' to the group of F-points of an elliptic torus T over F' of
G, thus T(F) = T. The torus T is uniquely determined up to conjugacy in G,
and its Lie algebra is isomorphic to L(T), over F. Denote by wr the character
x — w(detx) of AE(T) = T(A), and by L(s,wr) the Hecke L-function associated



3

with the character wp. Similarly we have L(s,w). The function L(s,w) has analytic
continuation to the entire complex s-plane, with at most simple poles at s = 0, 1.
These poles occur precisely when w = 1.

Note that by class field theory w can be identified with a character of the Weil
group W (F/F), where F is a separable algebraic closure of F' containing L(T'), and
wr with the restriction to the subgroup W (F/L(T)). The Hecke L-functions can
be viewed as Artin L-functions associated with these Galois representations. The
main result of this paper is the following.

1. Theorem. Let m be a distinguished cuspidal G'-module with a supercuspidal
component, and w a unitary character of Z/Z. Let so be a complex number such that
for every separable field extension L(T) of F of degree n, the L-function L(s,wr)
vanishes at s = sg to the order m. Then L(s,r(m) ® w) vanishes at s = sq to the
order m.

Note that if L(s,wr) vanishes at s = sg, then |Re sy — 3| < 3.

For n = 2 the assumption on the L(s,wr) can be replaced by a single assumption
about the vanishing of L(s,w) at s = sp, since for an abelian extension L(T")/F one
has the factorization L(s,wr) = [] L(s,{w), where ¢ runs through the characters of

¢

A% /FXNL(T)/FAZ(T), or equivalently, by class field theory, of Gal(L(T)/F). For
n > 2, and w = 1, it is known that L(s,w) divides L(s,wr) if L(T)/F is a normal
extension (see, e.g., [CF], p. 225), and also when the Galois group of the normal
closure of L(T) over F is solvable (see [W] for this and related results).

In general this divisibility follows from Artin’s conjecture. Indeed, denote by
IndEwr the representation of W (F/F) induced from the character wy of W (F/L(T)).
Then

L(s,wr) = L(s, Indk(wr)) = L(s,w)L(s, p),

since IndL (wr) contains the character w with multiplicity one (by Frobenius reci-
procity); p is the quotient of Indkwr by w. If w is of finite order, it can be viewed
as a character of Gal(L/F) for some Galois field extension L of F' containing L(T).
Then wy can be viewed as a character of the subgroup Gal(L/L(T)), and Indfwr
is a representation of the finite group Gal(L/F). Artin’s conjecture for the group
Gal(L/F) asserts that L(s,p) is entire unless wyr = 1 and w # 1, in which case
L(s, p) is holomorphic except at s = 0,1, where it has a simple pole. In particular,
when n = 3 or n = 4, and w = 1, since Artin’s conjecture is known for the sym-
metric groups S3 and Sy, the vanishing of the L-function L(s, 1) associated with
the trivial character 1 of A* /F* implies the vanishing of L(s, 1) (at s = s¢, to
the order m), for each extension L(T) of F' of degree 3 or 4, and the assumption of
the Theorem 1 on the L(s, 1) can be replaced by a single assumption on L(s, 1).

The work in this paper was motivated by an observation of the introduction
to [F2]. Let r(p) be the (finite dimensional) representation of the Weil group

— ~/
W (F/F) obtained on composing with the twisted tensor representation r : G —
Aut(C*®C"), arepresentation p which parametrizes (conjecturally) a distinguished
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representation of G’ (p factorizes through a base change map b from the dual group
U= G(C) x W(F/F) of the unitary group U in n variables associated with E/F).
The formal observation in [F2] is that r(p) contains a copy of the trivial representa-
tion of W (F/F); the fixed vector is written out in [F2]. Theorem 1 is an L-function
reflection of the underlying representation theoretic fact.

The proof is based on integrating the kernel K, (z,y) of the usual convolution
operator 7(¢) on the space of cusp forms on G’, against an Eisenstein series in
x, over x and y in ZG\G. The integral is expanded geometrically and spectrally.
Theorem 1 is deduced from the resulting equality for a family of test functions. We
can work in the context of GL(n) with a general n > 2 since we use ideas which
were previously constructive in developing a simple form of the trace formula (see,
e.g., [FK] and [F3]), although we do not use the trace formula in this work.

For related results in the split case £ = F' & F and the adjoint representation
L-function L(s,w ® m x #)/L(s,w), see [Z], [JZ], in the context of GL(2), and [F4]
in the context of GL(n).

B. Core identity. We shall work with the space L(G") of complex valued functions
¢ on G'\G' which satisfy (1) ¢(zg) =e(2)p(g) (z € Z',9 € G'), (2) ¢ is absolutely
square integrable on Z'G'\G’. The group G’ acts on L(G’) by right translation:
(r(g)®)(h) = ¢(hg). The action is unitary since ¢ is.

Definition. The function ¢ € L(G") is called cuspidal if for each proper parabolic
subgroup P’ of GL(n) over E with unipotent radical N' we have [ ¢(ng)dg = 0
(ne N'\IV) for all g € G'.

Let ro be the restriction of r to the space Lo(G') of cusp forms in L(G’). The
space Lo(G') decomposes as a direct sum with finite multiplicities of invariant
irreducible unitary G’-modules called cuspidal G'-modules.

Denote by C°(GY, e t) the convolution algebra of complex valued functions ¢,
on G with ¢,(9) = €,(2)pu(29) (z € Z,,g € G')) which are compactly supported
modulo Z!, smooth if v is archimedean and locally constant if not. Implicit is a
choice of a Haar measure dg, on G /Z!. It is chosen to have that the product of
the volumes |K| /Z, N K, | over all F-places v converges. Here K/ is the standard
maximal compact subgroup of G/ ; when v is non-archimedean we have K, = G(R)),
where R is the ring of integers in E, (R] is R, x R, if v splits into v’, v" in
E, and R, is the ring of integers in F,). Denote by H, the convolution algebra of
K -biinvariant functions in C° (G, e, 1), and by ¢! its unit element.

Denote by C°(G', e~ 1) the linear span of the products ®¢,, @, € C(G!, e, 1)
for all v, and ¢, = 2 for almost all v. Put dg = ®dg,. The convolution operator

r(¢) = Jo Iz ©(g)r(g)dg is an integral operator on L(G) with the kernel K, (z,y) =
Yoty (v e G'/Z)).

Definition. (1) Denote by a bar the Galois action of Gal(E/F) on E. For g =
(9i5) € GL(n, E), put g = (g;;)-
(2) The element « of G’ is called r-elliptic (vesp. r-regular) if the element vy~ ! of
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G’ is elliptic (resp. regular). The analogous definition holds in the local case with
F,, E,, G, replacing F, E,G’.

(3) The function ¢ € C°(G',e71) is called r-discrete if for every x,y in G and ~
in G' we have p(xzyy) = 0 unless v is r-elliptic r-regular.

(4) The elements 7v,v" in G’ (resp. G!) are r-conjugate if there are x,y in G (resp.
G,) with v/ = xyy.

Here “r-” is an abbreviation for “relatively-”. Recall that § in G’ = GL(n, E)
(resp. G! = GL(n,E,)) is called regular if its centralizer in G’ (resp. G’) is an
F-torus T’ (thus T'(F) = T" is a torus in G') (resp. F,-torus T!). Such § is elliptic
if it lies in a torus G’ (resp T,) and T'/T'Z' has finite volume (resp. T, /Z, is
compact). Thus ¢ is elliptic regular if and only if it lies in no proper E-parabolic
subgroup of G’ (resp. E,-parabolic subgroup of G). The centralizer of an elliptic
regular v € G’ is the multiplicative group of a field extension of E of degree n.

Consider the set S = {x € G'; 2T = 1}. By [F2], Proposition 10, we have

2. Lemma. (1) The map G'/G — S, © — T, is a bijection. It bijects the
double coset GxG with the orbit Ad(G)(x7~') under the adjoint action of G. (2) If
x,y € S are conjugate by an element of G', then they are conjugate by an element

of G.

1 1 1

is defined over F' since zyy lz~! = 45~
We obtain the following description of the

Note that the centralizer of vy~
implies Z(yy~ ) ~'z ! = (y771)~h
r-regular r-conjugacy classes in G’.

2.1 Corollary. Let {T'} be a set of representatives for the G-conjugacy classes of
(maximal) F-tori in G, T' = T(FE) the group of E-points on T, and T'*"°® the
set of r-reqular elements in T'. Denote by W(T) = Ng(T)/T the Weyl group of
T in G, and write t' ~ t" for t',t" in G" if there are w € W(T) and t € T with
wt'w™t = tt”. Then a set of representatives for the set of r-conjugacy classes of
the r-regular elements in G’ is given by the union over {T} of the T""™8/ ~. A
set of representatives for the subset of r-conjugacy classes of the r-reqular r-elliptic
elements in G' is given by the union over the set {T}.y of the elliptic tori in {T'},
of the T "8/ ~.

The kernel K, (z,y) =Y p(z™ vy) (v € G'/Z") can now be expressed as

Z Z Z Z o(x101702y)

{T}er yET'*re8 /Z"' 51 EG/T 52 N(T)\G

(2.2) = > wort Y Yo D el eyday),

{T}eur YET'rre8 /TZ' §;€EG/T 62€G/Z
for an r-discrete function .

Definition. The function ¢, € C°(G, e, t) is called r-discrete if for every z,y in
G, and v € G, we have @, (zyy) = 0 unless ~ is r-elliptic r-regular.



It is clear that ¢ = ®¢,, is r-discrete if it has an r-discrete component. Indeed,
an element 6 € G’ is elliptic (resp. regular) if it is elliptic (resp. regular) in G, for
some v.

This kernel will be integrated against an Eisenstein series in z. Identify GL(n—1)
g (1) , and put Q@ = GL(n — 1)N, where
N is the unipotent upper triangular group. Let S(F}') be the space of smooth
and rapidly decreasing (if v is archimedean), or locally constant compactly sup-
ported (otherwise) complex valued functions on F*. Denote by ®Y the character-
istic function of R} in F)’ if v is non-archimedean. Let S(A™) be the linear span
of the functions ® = @®,, ®, € S(F") for all v,®, = ®? or almost all v. Put
e=(0,...,0,1) € A™. The integral in

with a subgroup of GL(n) via g —

(2.3) £(9,5) = w(det g)| det g|° / B (agg)|al™w"(a)d*a

AX

converges absolutely, uniformly in compact subsets of Re(s) > % The absolute
value is normalized as usual, and w is a unitary character of A* /F*.

It follows from Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein series

E(g,®,w,5) =Y f(vg,5) (v€ ZQ\G)

converges absolutely in Re(s) > 1. In [JS], (4.2), p. 545, and [JS2], (3.5), p. 7 (with
a slight modification due to the position of w here), it is shown that F(g, ®,w, s)
extends to a meromorphic function on Re(s) > 0, in fact to the entire complex
s-plane with a functional equation E(g, ®,w,s) = E(*g~!, ?{5, w=l 1 —s), where tg
is the transpose of g, and ® is the Fourier transform of the “Schwartz” function
® (with respect to some additive character ¢ # 1 of A/F). Moreover E(g, ®,w, s)
is slowly increasing (with respect to some Siegel domain) in ¢ € G\G, and is
holomorphic except possibly at s = 0,1, where the pole is at most simple. Note
that f(g) and E(g, s) are Z-invariant.

3. Proposition. For any character w of Z*/F*, Schwartz function ® in S(A™),
and r-discrete function ¢ on G', for each field extension L(T) of degree n of F
there is an entire holomorphic function A(®,w, ¢, L(T),s) in s in C such that

(3.1) // K, (z,y)E(x,®,w, s)dz dy
(ZG\G)?

= Z A(®,w, @, L(T), s)L(s,wr)
L(T)

on Res > 1. The sum over L(T) ranges over a finite set (of field extensions L(T')
of degree n of F', up to isomorphism over F') depending on (the support of) ¢.
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Proof. Since K, (x,y) is left G-invariant as a function in z (and in y), the first
expression (on the left) of (3.1),

[ Koo X semsizdy,

(ZG\G)? 1€ZQ\G

is equal, in the domain of convergence of the series defining the Eisenstein series,
to

/(/ Ky(z,y)dy) f(z, s)dz.

ZQ\G GZ\G

Substituting (2.2) this is equal to

[a [ S wort Y Y Y ela )

ZQ\T  ZG\G {T}eu NET!*re8 /71T §,€G/T §2€Z\G
=Yt Y [ [ ese sy
{T}eu V€T o8/ 2 Ty\G  Z\G

The last equality follows from the decomposition G = QT, QN T = {1}, and the
left @-invariance of f(x, s) as a function in z.

To justify the change of summations and integrations, note that given ¢ the sums
over T and « (in T"/TZ') are finite. Indeed, consider x =1y~ 'xz. Its characteristic
polynomial has rational coefficients (in F'), which lie in a compact depending on
the support of ¢ (the intersection of a discrete and a compact set if finite). Hence
the sum over T is finite, as asserted in the proposition. Moreover, the sum over
v € T8 /T 7' is finite. The T are elliptic since ¢ is r-discrete.

Now for any elliptic regular ¥y¥~1, if 27 1y7 1z lies in the compact supp ¢ in

G'/Z', then z(€ G) lies in a compact of T\G. Moreover, the function ®(etx) in
t € T, is compactly supported, uniformly in x in a compact of T\G. Hence x lies
in a compact of Z\G if p(z~1yy)f(z,s) # 0. But now x~lyy lies in the compact
supp ¢, ¢ lies in a compact, and ~ in a finite set. Hence y lies in a compact of
G/Z, our integrals are absolutely convergent, and the change of sums and integrals
is justified.

Substituting now the expression (2.3) for f(z,s), we obtain a sum over T" and ~y
of the product of [W(T)]~! and

[ et isdy= [do [ o)y wldets)| de s e en)

(Z\G)? G Z\G

= / /@(:E_lfyary)dy-/(I)(gta:)w(dettfcﬂdetta:|sdtda:.

T\G G/Z T
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The inner integral over T is a “Tate integral” which defines the L-function L(s,wr).
Note that the integral in z is taken over a compact in T\G, and the integral over
y ranges over a compact in Z\G. The proposition follows.

C. Spectral analysis. There is another expression for the kernel K, (z,y), which
we proceed to describe in the special case where ¢ is cuspidal.

Definition. The function ¢ on G’ is called cuspidal if for every z,y in G' and
every proper F-parabolic subgroup P’ of G', we have fN, e(zny)dn = 0, where
N = N'(A) is the unipotent radical of the parabolic subgroup P’ = P'(A) of G'.

For a cuspidal ¢, the convolution operator r(p) factorizes through the projection
on the space Lo(G’) of cusp forms. The kernel K,(z,y) has then the spectral
decomposition

zy) =Y KZ(x,y), where KZJ(z,y)=Y (r(9)¢™)()d (y)-

¢7r

The 7 range over all cuspidal G'-modules in Ly(G"). The ¢™ range over an orthonor-
mal basis consisting of K’ = [ K/ -finite vectors in 7 (K is the standard maximal

v
compact subgroup in G7). The ¢™ are rapidly decreasing functions, and the sum
over ¢ is finite for each ¢ (uniformly in x and y) since ¢ is K'-finite. The sum over
7 converges in L2, hence also in the space of rapidly decreasing functions. Hence
K,(z,y) is rapidly decreasing in = and y, and the product of K, (z,y) with the
slowly increasing function F(z,®,w, s) is integrable over (ZG\G)?. Consequently
(3.1) can be expressed in the form

ZZ/ r)E(z,®,w, s)dx - / & (y)dy.

T T La\G ZG\G

A cuspidal G'-module which contains a vector ¢™ whose integral over ZG\G is
non-zero is called distinguished. Hence the sum over 7w ranges over the distinguished
cuspidal G'-modules only.

To prove Theorem 1 let so be a complex number such that for every separable
field extension L(T') of F' degree n, the L-function L(s,wr) vanishes at s = sq to
the order m > 1. It is well-known that then |Re(so) — 1| < 3. It follows that (3.1)
vanishes at s = s to the order m, and thus for all (0 < j < m) we have

(3.2) ZZ / (2)EY) (x, ®,w, s0)d / P (
T T La\G ZG\G

Here EU)(x,50) = &’ E(%,5)|s=s,-

dsJ

The test function ¢ is an arbitrary cuspidal discrete function on G, and our aim
is to show the vanishing of a single summand in the last double sum over m and
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¢™. In fact, fix a cuspidal distinguished G'-module 7’ whose component at some
F-place vy is supercuspidal, for which Theorem 1 will be proven.

Let V be a finite set of F-primes, containing the archimedean primes and those
where 7', w or F/F ramify. Consider ¢ = ®¢, (product over all F-places v) with
0y € C°(G),et) for all v, and ¢, = ¥ (= the unit element in the Hecke algebra

H,) for almost all v. For all v ¢ V the component ¢, is taken to be spherical,
namely ¢, € H,. Each of the operators m,(¢,) (v € V) factorizes through the

L K . . .
projection on the subspace m, * of K-fixed vectors in m,. This subspace is zero

unless m, is unramified, in which case mf( v is one-dimensional. On this K -fixed
vector, the operator m,(p,) acts as the scalar oY (t(m,)), where ¢y denotes the
Satake transform of ¢,. Put ¢V (¢(r")) for the product over v ¢ V of @Y (t(m,)),

mv(py) = ® my(py), and 7V for the space of [[ K'-fixed vectors in «r. Then
veV vgV
(3.2) takes the form

(3.3) > @V (HEY))al(r v, B,w, s0) =0,
{m;nK" .V £0}

where

(3.41X7r,<pv,j,(1>,w,s)zz / (v (ov) ™) (@) EY) (5, @, w, s)da - / 8" (y)dy.

P 2G\G ZG\G

The sum over m ranges over the set of distinguished cuspidal G'-modules m =

®m, such that m, is unramified outside V. The sum over ¢™ ranges over those

elements in the orthonormal basis of m which appears in (3.2), which are K,-

invariant and eigenfunctions of 7,(¢,) (¢, € H,, necessarily with the eigenvalues

t(my)) as functions in x € G,, for any v ¢ V. In particular, such ¢™ factorizes

as ¢"(z) = ¢T(xv) [ #5v(xy); here ¢Iv is a right K| -invariant function on G,
vEV

whose value at 1 is vol (K| Z} /Z!)~! and which transforms under Z/ via e,, which is
an eigenfunction of the convolution operators r(p,) (¢, € H,) with the eigenvalue
t(my).-

A standard argument (see, e.g., Theorem 2 in [FK] in a more involved situation),
based on the absolute convergence of the sum over 7 in (3.3), standard estimates
on the Hecke parameters ¢(m,) of the unitary unramified m, (v ¢ V'), and the Stone-
Weierstrass theorem, implies the following.

4. Proposition. Let m be a cuspidal distinguished G'-module which has a super-
cuspidal component, w a unitary character of Z/Z, and sy a complex number as
in Theorem 1. Then for any j, ® and a function @y for which ¢ is cuspidal and
discrete with any choice of @y, (v € V'), the sum (3.4) is zero.

D. Constant term expanded. We shall now proceed to recall from [F1] the
relation between the integral over z in (3.4) and the L-function L(s,r(m) @ w).
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First we need a lemma, and some notations. Let 1) # 1 be a character of A/F,
and ¢’ the character of Ag /(A + E) defined by ¢'(z) = ¢((z — T)/(xo — To)) on
x € Ag. Here 1z is a fixed element of E — F , and — as usual — bar signifies the
Galois action of Gal(E/F). Denote by 1/); the component at an F-place v.

Definition. A Gj-module 7, is called generic if Hompy: (7,,1;,) # {0}, where 1),

is the character n = (n;;) — ¥'( Y. mniit1) of the unipotent upper triangular
T 1<i<n
subgroup N, of GI.

By [GK], or Corollary 5.17 of [BZ], a generic m, embeds in the induced G-
module I'nd(vy); G, N!). Moreover, the dimension of Hom/(m,, Ind(¢))) is at most

one, equivalently the dimension of Homny: (7,,1;,) is at most one.

Definition. 1If 7, is generic, denote by W(m,) its realization in Ind(v)); W (m,) is
called the Whittaker model of w,.

Any component of a cuspidal G’-module is generic. Since 7, is admissible, each
Whittaker function in W(m,) is smooth (under right action of GJ). Denote by
W (r) the linear span of the functions W(x) = [[ W, (z,), where W,, € W (x,) for

all v, and W, is the normalized (by W?2(1) = 1) unramified (right-K-invariant)
vector W2 for all v outside V.

Given W in W (), the function ¢w(z) = >, Wi(pz) is a cuspidal function
PEN\Q'

in the space of 71 C Lo(G'), and the space of 7 is spanned by such ¢y . If 7 is

distinguished, namely there is ¢ € © with fZG\GqS(x)dx # 0, then ¢ = > ¢w, and

we conclude that 7 has a distinguished vector of the form ¢y .

Given a cusp form ¢ in 7, consider the Whittaker function Wy (z) = | NN ¢(n$)$(n)dn

in W(r). Here El(n) = ¢/(n™1). It is easy to see that if ¢ = ¢w, then W, is W.
The following simple fact is used in [F1]; a proof is included here, since it was not
given there.

5. Lemma. Given W =QW, in W(r) and ¢(x) = >, W{(pz), we have
PEN\Q’

¢(nx)dn = Z W (pz).

NN PEN\Q

Proof. Let ¢ be a cusp form. We first recall the proof of the expansion
pla)= Y Wylpa).
PEN;\Q;,
The index (n here) signifies the size of the matrix, and prime means entries in F

(rather than F'). Embed G, in G|, (m < n) via z — <?)7 (1)>, and denote by
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V! the unipotent radical of the parabolic subgroup of G/, of type (n — 1,1). For
v = (v55) in V,, put ¢’(v) = ¢'(vp_1,,), and consider

Fy(p) = /V,W, d(vp)y' (v)dv.

Since ¢ is cuspidal, only non-trivial characters of V;, /V,! need be considered here.
These make a single orbit under the action of GJ,_;. The stabilizer of v — ¢/ (v) is
Gl _,V'_,. Hence we have the Fourier expansion

Ble) = > Fy(pn-1)-

Pn_1€G, V! \G

n—1

Now Fy is a cusp form on G/,_;. Hence by induction on n we have

Fy(p) = Z Z W, (p1p2 - - Pn—2p)-

Pn—2€G, 3V, L\G), _, p1EG]

0
But Wg, (z) = Wy <0 1). Hence
Z Z ZWq& P1P2 " Pn—2Pn—1) = Z W¢(p)
Pn—1Pn-2 pEN:z\Q'n

as required.

To prove the lemma, using the same notations we consider
on, (x) :/ d(mx)dm.
N, \N

Since

¢Nn_1(v) = Z F¢Nn_1 (p:@—lv)v

Pp_1€G, 5V, \G,

n—1

/ én,_, (v)dv

Vo \V,

the integral

is equal to

/ Z ON,, _ pn 1v)dv = Z F¢N (pn—l)'

n\Vn p;l 1 Pn—1

The last sum ranges over p,_1 € Gy,_2V,,_1\Gp_1 since

/V W wl(P;z—lvpiz—l_l)dU #0
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implies that p!,_; € G!,_; must lie in G,,_;. Now

F¢Nn_1 (pn—l) = / PN, _, (Unpn—l)l/):z(vn)dvm
VoAV,
and by induction we have

ON, o (2) = > W, _, (Pn—2)-

Pn—2 ENann72\Gn72

The index of ¢/, indicates that it is a character on the group IN/,. Substituting we
obtain

/ Z Wepr  (Pn—20nDn—1)1y, (vn)dvn,.
Vi

\V," Pn—2

But given p,_o and v, there is v}, in V, with ¢/ (v,) = 9], (v),) and pp_sv, =
V). Pp—2. By definition of Wy, the last displayed expression can be expressed as

(Fon  (Pn=1) =) D> Wy pr (Pn—2pn—1)-

Pn—2

We conclude that

én, (e) = Z Z Wy (Pn—2Pn—1) = Z Wyt (P),

Pn—1Pn—2 pENn\Qn

as required.

E. L-functions emerge. We can now return to the integral over = in (3.4) and
the fundamental identity of [F1] which expresses it as an L-function. Thus we
take W = @W, in W () with W, = W2(e W(r,)) for all v ¢ V, such that the
cuspidal function ¢p(z) = >  W(px) in the space of 1 C Lo(G’) is distinguished
PEN\Q'
(its integral over the closed subspace ZG\G is non-zero). Substituting the series
definition of E(z, ®,w,s) = >, f(vyz,s), we obtain
ZQ\G

/QS(;U)E(Q:,CI),w,s)d:E: / (@) f (. 5)da

ZG\G ZQR\G
_ / () () (det 2)| det 2| dz = / B(ex)| det 2] w(det 7) / b(nz)dn do
Q\G QN\G N\N

= / @(gm)w(det$)|detm|s[z W¢(p;c)]da;:/(I>(§a:)|detx|sw(det$)W¢($)da:,
QN\G N\Q N\G
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using Lemma 5. Choosing ® € S(A™) to be factorizable, namely ®(z) =[] ®,(xy)
with @, € S(F") for all v (with ®, = @Y for v € V), since Wy(z) = »(z,) the

last integral is a product over v of the local integrals

(5.1) / By ()| dot 27w, (det )W, (x)da

N,\Gy

When W, = W2 and &, = ®% (and m,, w, and E,/F, are unramified), the
last local integral is shown in [F1], Proposition, p. 305, on using Schur function
computations, to be equal to L(s,r(m,) ® w,) (in [F1], w, is taken to be 1, but
the general case follows on adjusting the computations there). At the “bad” non-
archimedean places v € V, where ramification may occur, the following is shown in
the Appendix below, in analogy with the split case — where F is replaced by F'@ F
— which is studied in [JPS], Theorem 2.7, pp. 390-393, 395-398.

First, the integral (5.1) is a rational function in ¢, °. Second, there is a polyno-
mial P(x; m,,w,) with constant term 1 over C, such that the C-span of the integrals
(5.1), as ®, ranges over S(F") and W, over W(m,), is precisely the principal frac-
tional ideal L(s, r(m,)®w,)C|[qs, g, °] in the fraction field C(¢; ) of the ring Clg;, ¢, °]
of polynomials in ¢¢ and g, *. Here L(s,7(m,) ® w,) is P(q,%; my,wy,) 1, and ¢ is
referred to as the “greatest common denominator”, or “g.c.d.”, of all the integrals
(5.1). The quotient of (5.1) by L(s,r(m,) ® w,) satisfies a functional equation
s+ 1—s.

In the archimedean case, let p! be the representation of the Weil group which
parametrizes m,. Define L(s,r(m,) ® w,) to be the L-factor L(s,r(p,) ® w,) asso-
ciated with the representation r(p,) ® w, of the Weil group of F,(= R or C). The
local integral (5.1) and its quotient by L(s,r(p,) ® w,), and the local functional
equation, are studied in [JS1], Theorem 5.1, in the case when v splits in E.

We shall assume that each archimedean place v of F' splits in . Then the total
L-function L(s,r(m) ® w) is defined as the product over all v of the local factors.
The product, as well as the integrals and sums in the fundamental identity leading
to (5.1) above, converge absolutely in some right half plane. Since E(z,®,w, s) is
holomorphic except at s = 0 and 1 (for a suitable ® and w; see [F1], Lemma, p.
301), the total L-function L(s,r(m) ®w) is entire except possibly for at most simple
poles at s =0 and 1 if (7)) ® w = r(x’), and 7’ is distinguished.

Proof of Theorem 1. Let w be a cuspidal distinguished G’-module with a supercus-

pidal component at vy, w a unitary character of Z/Z, and sy a complex number

such that (3.4) is 0 at s = sp for all j(0 < j < m), ® and py (with discrete

cuspidal ¢ = @y ® ( gv ©y)). In (3.4), V is a finite set of F-places containing
v

the archimedean places, and those where m, w or E/F ramify. Fix a distinguished
factorizable automorphic form ¢’ = ®¢! in the space of 1 C Lo(G), which is
K, -invariant for all v ¢ V.

The space of vectors ¢ in m C Lo(G") which are K -invariant for all v € V is
spanned by the factorizable, thus ¢(z) = [] ¢y(xy), such vectors. Given such a
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¢ = ®¢,, our aim is (in particular) to choose a function ¢, such that ¢ be cuspidal
and r-discrete, and 7 (py )¢’ = ¢.

At vy consider the matrix coefficient ¢}, (z) = (my, (1)), , pv,) of the super-
cuspidal G,,-module 7,,. Note that ¢,, and ¢;, are functions in C2° (G}, €,), and
(-,-) denotes the natural inner product. The function ¢ lies in C°(G,, e, '), and
it is a supercusp form ([ ¢}, (zny)dn = 0, n € N}, = unipotent radical of any
proper parabolic subgroup of Gj,). A function ¢ = ®¢p, whose component at a
place, say vy, is a supercusp form, is cuspidal. By the Schur orthogonality rela-
tions, the convolution operator ,, (¢}, ) maps the vector ¢;, to (a multiple of) ¢,,,
and any vector orthogonal to ¢;, is mapped to 0. Working with ¢ = ®¢, whose
component at vy is ¢;, we then have that ¢ is cuspidal, and that the component

of the my (v )¢™ which occurs in (3.4) at vg is ¢y, -

Put V" =V —{uy}, let vy be an F- place in V" say where m and w are unramified,
W, is W) and @, is @), and ¢, = ¢, = ¢) , and put V' = V" — {v1}. For each
v € V' there is a congruence subgroup K, of K| such that both ¢/ and ¢, are
right K!/-invariant. Namely both ¢ and ¢, are non-zero vectors in the finite

dimensional space mp * of K!-fixed vectors in m,. The Hecke algebra H(K]') of

K!-biinvariant functions in COO(G;, e, 1) generate the algebra of endomorphisms

of the finite dimensional space 74" . Consider ¢! € H(K]') such that 7, (¢} ) maps
¢l to ¢, and any vector orthogonal to ¢! (is mapped by m,(¢])) to 0. Choosing
© = ®p,, with ¢, = ¢, for all v € V', we conclude that any automorphic form ¢™
which may contribute a non-zero term to (3.4), has the component ¢! for all v # v;.

But ¢™ is automorphic, and G' = G’ [[ G , hence ¢™ is uniquely determined to
eV
be ¢’. The vector ( ® m,(¢)))¢" has the component ¢, for every v # v;. Since it
veV’

v1?

is automorphic, the same argument implies that my: (py/)¢' = ¢.

We still need to choose the component ¢,, of ¢ in such a way that ¢ be r-discrete.
Note that we choose v; to be a place where m,w and E/F are unramified, and the
components ¢, of ¢’ and ¢,, of ¢ are both equal to the (normalized) K, -fixed
vector ¢ in m,, .

Recall that the function ¢,, € C° (G, e, !) is called r-discrete if it is supported
on the r-regular r-elliptic set of G, . Also, a function ¢ = ®¢, whose component
at vy is r-discrete is necessarily r-discrete. It suffices to choose an r-discrete ¢,
whose support is contained in Z] K, and which is constant on the intersection of

its support with K. Suitably normalized we have that 7, (@,, )@, = ¢, for such
Qovl .

We conclude that the only non-zero summand in (3.4) is the one indexed by ¢'.
Since ¢ = 7wy (py)¢’ is arbitrary, and for a suitable such ¢ the integral over x in
(3.4) is equal to LU)(s,r(T) ® w), we conclude that (3.4) is a non-zero multiple
of LW (s,r(r) ® w) (for some choice of ¢y and ®). Here LU)(s) denotes the jth
derivatives of L(s). However, Proposition 4 asserts that (3.4) vanishes at s = s¢.
Hence L(s,r(m) ® w) vanishes at s = s¢ to the order m under the conditions of
Theorem 1, whose proof is now complete.
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Remark. By [F1] and the following Appendix, the L-function L(s,7(7) ® w) is
everywhere holomorphic except possibly at s = 0, 1, where it has a simple pole
if 7(mr) ® w = r(xn’) and 7’ is distinguished. But L(s,w) has a simple pole at
s = 0,1 when w = 1. Hence Theorem 1 implies (for a distinguished = and a
character w which satisfies its assumptions) that the “twisted adjoint” function
L(s,r(m)®w)/L(s,w) is holomorphic everywhere except possibly at s = 0, 1. There
it has a simple pole precisely when w # 1 and (7)) @ w = r(7’) with a distinguished
cuspidal 7’. The last identity is meant in the local sense, for almost all places.

Suppose that w and 7 are such that the poles do occur. Let €2 be a character
of A% /E* whose restriction to A% /F* is w. Then r(7) @ w = r(m ® ). Since
r(n') = r(r®Q), by [F1], Corollary on p. 310, 7®£2 is also distinguished. Then 7 is
distinguished and fZG\GqS(x)w(x)dx # 0 for some ¢ € 7; hence w has order n. Such
7 can be studied along lines suggested by the conjecture and techniques of [F2]. In
particular, when w is primitive of order n, it is associated by class field theory to a
cyclic extension T of F', and it is likely that the associated 7 are parametrized by
the non-trivial characters of T'* /T"*T*, where T' =T Qr E.

Put 7*(g) = 7(g). By [F2], Proposition 12, if 7 is distinguished then 7 ~ 7*. If
T ® (2 is also distinguished, then (7 ® Q)* ~ 7 ® Q. Altogether we have 7 ~ 7* ~
T®(Q/*) = 7®(QQ), and w|F* Ng,pAf is of order dividing n. If w|F* Ng,rAj
is primitive of order n, namely 7" = T ®p FE is a field, then by [K] the G’-module

7 is parametrized by a character 0 of T'* /T'*, and n(0)* = n(6 ), where the
last bar indicates the non-trivial automorphism of T” over T. Hence 6 is trivial on
T'* N /7T, but we suggest above that 7 is likely to be parametrized by the
on T"*/T"* which are trivial on T*.

Appendix: On the local twisted tensor L-function

Let E/F be a quadratic separable extension of global fields, 7 an irreducible
cuspidal representation of GL(n,Ag), and r the twisted tensor representation r :
[GL(n,C)xGL(n,C)|xGal(E/F) — Aut(C* ®C") of [F1]. Let V be a finite set of
places of F', containing the archimedean places and those where E/F or 7 ramify.
The partial twisted tensor L-function LY (s,r (7)) is defined to be the product over
all v € V of the local L-factors L(s,r(m,)). The product converges absolutely in
some half-plane Re(s) > ¢. When each archimedean place of F' splits in F, this
LY (s,7(m)) is shown in [F1] to be holomorphic on Re(s) > 1, except when 7 is
GL(n, A)-distinguished, in which case a simple pole occurs, on Re(s) =1 (at s =1
if the central character w, of m is trivial on A*).

At a place v which splits in E we have E, = F,®F, and GL(n, E,) = GL(n, F,) X
GL(n, F,), and the component m, of 7 is of the form my, X m2,. The local L-factor
L(s,r(m,)) is simply the tensor product L-function L(s, 71, X ma,). This last factor
was introduced by [JPS], Theorem 2.7, in the non-archimedean case and by [JS1],
Theorem 5.1, in the archimedean case, for all generic m;,, not necessarily unramified.

Let ¢ be a non-trivial character of F, (in C*), and t,(u) = ¢ ( <Z< Uiit1),
1<i<n
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where v = (u; ;) € N,, a character of the unipotent upper triangular subgroup
N, of G, = GL(n,F,). Denote by W(m;,,1,) the Whittaker 1,-model of ;,,
and for Wy, € W(myy, 1), Wa, € W(may, b, t) and @, € C°(F"), and with
e=(0,...,0,1) € F', put

U (s, Wry, Way, By) = / Wro (9)Wau(g)| det g|* @, (e9)dg.
N,\Gy

It is shown in [JPS], [JS1] that the quotient U(s, Wy, Way,, ®,,)/L(s, T1, X T2y)
satisfies a functional equation where, in particular, s, 7y, 72, are replaced by 1 —s,
and the contragredients 71,, 7o,.

The purpose of this appendix is to introduce the twisted tensor L-factor L(s, r(m,))
for any (possibly ramified) quadratic separable extension E, /F, of local non-archimedean
fields, and any generic representation m, of G! = GL(n, E,).

Let %J be a non-trivial character of E,, which is trivial on F,,. Note that F,/F, ~
F,. Any such character is of the form ﬁ)(x) = ¢ ((z —7)/(wo — To)), where
x € FE, and the action of Gal(E,/F,) on E, is denoted by a bar, for a fixed
xog € Ey—F,. Then a character ¢, of the unipotent upper triangular subgroup N, of
G! = GL(n, E,), which is trivial on N,, is defined as before. Denote by W (m,, 1. )
the 1, -Whittaker space of m,, and for W,, € W (m,,¢,) and ®, € C°(F}) consider
the integral

U(s, Wy, By) = / W, (g)| det g|*®, () dg.
NU\GU

When E, /F,,, and 7, are unramified, W, is the unit element W2 of W (r,,, 9!),
and @, is the characteristic function ®° of R”, R, being the ring of integers in F,,,
it is shown in [F1] that ¥ (s, W2, ®%) = L(s,r(7,)). In analogy with [JPS] we shall
introduce L(s,r(m,)) for a general 7, as a generator of some fractional ideal (gen-
erated by the ¥(s, W,, ®,)), and show that the quotient U(s, W,, ®,)/L(s,7(1y))
satisfies a functional equation, in which s and =, are replaced by 1 — s and the
contragredient 7.

Having defined the local L-factor for all non-archimedean places (it is defined
in [JS1] for the archimedean places which split in E), the complete L-function
L(s,r(m)) can be defined as the product over all places v of F' of the L(s,r(m,)),
for E/F in which each archimedean place of F' splits in E. The global functional
equation for the global integrals W (s, W, ®) of [F], together with the local functional
equations of [JPS] and [JS1] in the split cases, and the one of this note in the
non-split non-archimedean case, implies the existence of a monomial e(s, (7)) =
c(m)es(™s in s (e(r) in C, ¢(7) in C*), and the functional equation L(s,r (7)) =
e(s,r(m))L(1 — s,r(7)) for the twisted tensor L-function.

Moreover it is shown in [F1] that W(s, W, ®) is holomorphic in s € C except
possibly for a simple pole at s = 1 and s = 0 (when 7 is GL(n, A)-distinguished,
whose central character is trivial on A*). Since the local work shows that L(s, (7))
is a sum of ¥(s, W,,®,)’s, it follows that L(s,r (7)), which is initially defined in
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some right half plane, has analytic continuation to the entire complex s-plane with
at most two poles, at s = 0, 1, which are simple and occur precisely for distinguished
7. The work here also replaces the (complicated proof of the) Lemma on p. 306
of [F1]. It is this function L(s,r(m)) which is studied in the paper preceding this
appendix.

From now on we can use local notations, thus let E/F be a quadratic separable
extension of local non-archimedean fields, put G = GL(n, F), G' = GL(n, E), let
N, N’ be the corresponding unipotent upper-triangular subgroups, and ), ¢’ their
characters, 7 a generic irreducible G’-module with a unitary central character, and
W (m, ") its ¢p’-Whittaker model (for any irreducible G’-module there exists at most
one (non-zero) 1’-Whittaker model; 7 is called generic when it exists). Denote by
R the ring of integers in F', and by ¢ the cardinality of its residue field. The purpose
of this appendix is to prove the following.

Theorem. (i) For each W € W (m,¢') and ® € C°(F™), the integral V(s, W, ®)

is absolutely convergent for a large Re(s) to a rational function of X = q—*.

(ii) There exists a polynomial P(X) € C[X] with P(0) = 1 such that the integrals
(s, W, ®) span the fractional ideal L(s,r(m))C[X, X "] of the ring C[X, X 1],
where L(s,r(m)) = P(X)~1.
(iii) There exists an integer m(m,1)’) and a non-zero complex number c(m,1)"), such
that

\Ij(l -5 W7 EI\))/L(l -5 T(ﬁ-)) = ww(_l)n_lg(sv 7"(71'), lbl)‘I’(& W7 @)/L(& 1"(7‘(’))

for all W € W(rm,4), ® € CX(F™). Here w, is the central character of w, 7t the
contragredient of w, and we put

e(s,r(m), ¢') = c(m, ") X™™V) W (g) = W(Jlg™"), B(x) = / O(y)y) (trz-y)dy.

n

Here J € G is the matriz whose non-zero entries are 1, located on the anti-diagonal.

Proof. The proof of (i) and (ii) is similar to that of (i), (ii) in [JPS], Theorem 2.7.
Since W and ® are smooth, using the Iwasawa decomposition we obtain a finite
sum

U(s, W, D) ZZ/ Wi(a)®; (an)575" (a)| det al*d*a.
—Ja
Here A is the diagonal subgroup of G and B = AN, and W; € W(m,¢'), ®; €
C°(F). We put

a=diag(a1as...0n,02...Qpy ...\ Up_10p, Ay).

By [JPS1] there exists a finite set £ = Z(m,¢)") of finite functions £ on A’ (contin-
uous functions whose translates span a finite dimensional vector space), such that
for every W € W (m,¢’) there are ¢ € C°(E™~1) with

Wi(a) = qug(al,ag,...,an_l)f(a) (a € A).

(eE
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Hence

a)| < Z ¢g(a1,---,an—1)§(a)

¢es+

where now Z% is a finite set of finite functions on A’ which take non-negative real
values, and ¢g in C°(E™~1) are > 0. Each function qﬁg' is bounded by a finite sum
of positive-valued quasi-characters.

Then U(s, W, ®) is a finite sum of terms

/¢ a1, ran1, an)E(a)05 (a)| det al*d* a

with ¢ € C°(F™) and ¢ in a fixed finite set = of finite functions on A. Each
product (£65')(a) is a finite sum of products 7y (a1) - ..nn(an), where each 7 is a
finite function on F'* in a fixed finite set. We obtain a finite sum of the integrals

(+) H/ bilarymi(a)ai*d=a; (¢ € C2(F)).

1<i<n

Replacing the ¢; and n; by their absolute values it follows that (s, W, ®) is
absolutely convergent for large Re(s). Each factor in () is a sum of geometric
series in X which converge to Q;(X)(1 — a; X*)~!, where Q; € C[X] and «, k;
depend only on 7;. Hence ¥(s, W, ®) is a rational function of X as asserted in (i),
with a common denominator independent of W, ®.

The subspace of the field C(X) generated by these fractions is an ideal for the
ring C[X, X ~!]. Indeed, if W}, (g) = W(gh), ®n(x) = ®(zh), then (s, Wj,, @) is
the product of |det h|~° and U(s, W, ).

It is easy to see (as in [F1], Proposition, (ii) on p. 308, which is proven on the
middle of p. 309), that U(s, W, ®) is identically 1 for a suitable choice of W, ®.
Hence the ideal contains 1 and admits a unique generator of the form P(X)~!, with
P € C[X] and P(0) = 1, as asserted in (ii).

For (iii), note first that if e(s,r(7), 1) exists, then it is necessarily a monomial.
Indeed, applying the asserted functional equation with (s, #,v’~1, W, ®) replacing
(1 —s,m, 9, W, ®), and noting that wzw, = 1, we obtain
11(57 W7 (I))/L(S7 T(ﬂ-)) = wﬂ(_l)n_lg(l Gk T'(ﬁ), 'wl—l)m(l Gk W? 5)/L(l Gk T(ﬁ))
Combining this with the equation of (iii), we conclude that the product of e(s, (), 1")
and e(1—s,7(7),¢'~1), both in C[X, X 1], is 1. Hence (s, r(r), ¢’) = c(m, ') X ™™,
as asserted.

From its integral representation (for large Re(s)), we obtain
U(s,m(g)W,p(g)®) = |det g|* U (s, W, D),
where p(g)®(x) = ®(xg). The identity
(p(9)®) = [detg|*p(*g )P
implies

V(L= s, (m(@)W) (p(g)®)) = |det g|~*¥(s, W, D).
Then (iii) follows at once from the following.
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Proposition. With the exception of finitely many values of X = q~*, the space of
bilinear forms B on W (m, ") x C°(F™) which satisfy

B(m(g)W, p(g)®) = | det g| " B(W, ®)
1s at most one dimensional.

As in [JPS], (iii) of Theorem 2.7, our proof relies heavily on results of [BZ] (and
[BZ1]). Denote by d¢ the modular function on an £-group G, thus 65" is the Ag
of [BZ], Prop. 1.19. Let H be a closed subgroup of G. Denote by ind(p; G, H)
the unnormalized induction with compact supports of [BZ], and by i(p;G, H) =
ind(péi{%él/z;G,H) the normalized induction with compact supports of [BZ1].
Denote by Ind(p; G, H) and I(p; G, H) the unnormalized and normalized induction
with arbitrary supports of [BZ] and [BZ1]. Then i(p)¥ = I(pV) by [BZ], Prop.
2.25(c). The space Bilg(my,m2) of bilinear forms B on 71 x g (m; are G-modules)
which satisfy B(m1(g)vi, m2(g)ve) = B(v1,v2) (v; € m,9 € G) is isomorphic to
Homg (71, 72). Frobenius reciprocity ([BZ], Theorem 2.28) asserts

Bilg(m,i(p)) = Homg(m, I1(p¥)) = Homp (m, p¥63/265""%) = Bilg (m, p5d > /5117).

Returning to our usual notations (G = GL(n, F), etc.), let P be the group of
g € G with gg = ¢ (a prime will always indicate the same group with F instead of
F, thus P’ is defined using G'). Then F™ — {0} = P\G. The space of ® € C°(F™)
with ®(0) = 0 is isomorphic to

C2(—{0)) = CE(P\G) = 5% 6,P). op (§ 1) = ldet] (9 € G

we write G, for GL(m, F). Define the character v : EX — C* by v(z) = |z7|*/2 .
Then U(s, W, ®) (W € W(m,¢'),® € C(F"),®(0) = 0) defines an element in

Bilg(r @ v*,i(6p** G, P)) = Bilp(r @ v*,0p") = Bilp(r @ v*~, 1),

where 1 denotes the trivial P-module on the space C, namely a P-invariant form on
7 ®v*~!. The main step in the proof of the proposition is to establish the following

Main Lemma. With the exception of finitely many values of X = q=%, the di-
mension of Bilp(r @ v*~1 1) is at most one.

For each j(0 < j < n), put H; = G;N', where G’; embeds in G' = Gj, via

g — <g ?) Then H; consists of (g z>, g € Gj, u e N, ;. Given a G-

module p and the character 1’ of N/

n—j°

space of p on which (g Z) acts by p(g)¢'(u). Corollary 5.13 of [BZ] asserts:

denote by p ® ¢’ the Hj-module on the

0
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Lemma 1. For every irreducible admissible G;—module p, the induced P'-module
ind(p@y'; P', Hy) is irreducible. Every irreducible admissible P'-module § is equiv-
alent to one of the form ind(p ® ¢'; P', H}), where p is an admissible irreducible
G';-module, uniquely determined (so is j) by €.

For any P'-module V, denote by V5, = Hompy/(V,9'~") = Biln:(V,4)') the
space of linear forms A : V' — C with A(7(u)v) = ¢’ (u)A(v) (v € N',v € V). Since
7 is generic and irreducible (as a G’-module), the uniqueness of the ¢'-Whittaker
model W = W (m,+)") implies that dimc W5, = 1. Also one has

Lemma 2. If ¢ is an irreducible admissible P'-module, then dimc §yr < 1, with
equality precisely when & ~ 7, where T = ind(y)’; P', N').

Proof. Indeed, &, = Biln:(§,9") = Bilp(§,ind(y'; P',N')) by Frobenius reci-
procity, and 7 is irreducible by Lemma 1.

Corollary 5.22 of [BZ] establishes the following.

Lemma 3. The restriction Respim of m to P’ has finite length (as a P’'-module).

Thus there exist a decomposition W (m, ") = |J W;, Wiy D W;, Wy = {0}, W;
0<i<I
is stable under P' and & = W1 /W; is an irreducible admissible P'-module.

Since the functor V' — V, is exact, by Lemma 2 there is a unique index ig
(0 <ig < 1) with &, ~ 7, and £, = {0} for i # do.

Our proof of the Main Lemma is tantamount to showing, for an irreducible
P! _,-module pq, that the dimension of the space of P-invariant forms on ind(p; ®
' Pl P _,), where P = P' and P/ _; = H] _,, is equal to the dimension of the
space of P, _j-invariant forms on p;. By induction this dimension is then equal
to the dimension of the space of G j-invariant forms on the irreducible G;-—rnodule
p attached to p; by Lemma 1. In fact we shall work directly with p, instead of
applying induction, although the reader can safely read our proofs assuming that
j =mn — 2. The twist by v* is introduced to guarantee that the only constituent &;
in Resp'm (see Lemma 3) which has a non-zero P-invariant form is the one indexed

Let K, H be two closed subgroups of an /-group G, and (p,V) a G-module.
Choose a set of representatives g for H\G/K, put H; = K N g~ '*Hg and denote
by 9p the representation 9p(g~*hg) = p(h) of H, on V. We shall use the following
well-known result (we do not include a proof for it, although this is in fact implicit
in the proof of the Main Lemma following Lemma 9 below; see also the functorial
Theorem 5.2 of [BZ1] in the case of parabolic subgroups, and [S], §7.3, Proposition
22, in the case of finite groups).

Lemma 4. The restriction to K ofind(p; G, H) has a composition series consisting
of ind(9p; K, Hy), where g ranges over a set of representatives for H\G /K .

This Lemma will be applied to each of the irreducible P’-modules & = &; of
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Lemma 3. By Lemma 1 we have
c@v ™t = @ind(p® ¢ P HY) = ind((p® v*~Y) ® ¢'; P', HY)

for some j(0 < j < n) and irreducible G-module p uniquely determined by &.
Applying Lemma 4 with G = P', H = H}, K = P, we conclude:

Lemma 5. The restriction to P of the induced P'-module ¢ ® v*~1 has a compo-
sition series consisting of ind(9[(p @ v*~1) @ ¥']; P, P N g_lH]’-g), where g ranges
over H{\P'/P.

The double coset space H;\P'/P is equal to N,,_; - G;\G,,_1/Gn—1. We have

Lemma 6. The group G' is the disjoint union of the double cosets B'nG over all
w in the Weyl group W(A',G') (= Normalizer (A')J/A" of A" in G') with w? = 1.
Here n = 1, € G' satisfies nij—* = w, where w is the representative whose entries
are 0 and 1. The double coset is independent of the choice of the representative 7).

Proof. As noted in [F2], Proposition 10(1), the map G'/G — S = {g € G'; 95 = 1},
by g — gg !, is a bijection. Indeed, it is clearly well defined and injective, and
the surjectivity follows at once from the triviality of H'(Gal(E/F),GL(n, E)) (if
gg = 1, a, = g defines a cocycle, which is then a coboundary, namely there is
r € G' with g =a, = 2771).

If g € G maps to s € S, then bg bsh . By the Bruhat decomposition
G' = B'W B’ applied to S, varying ¢ in its double coset B’gG we may assume
that g — wb € S, where w € W and b € B’. Since wb lies in S, 1 = wbwb. Hence
w~! = bwb, and the uniqueness of the Bruhat decomposition implies that w=! = w.
Write now b = an with a € A’, n € N'. Since 1 = wbwb, we have 1 = wawa. Define
an action o of Gal(E/F) on A’ by o(a’) = wa'w~!. Since ac(a) = 1, {0 — a}
defines an element of H!(Gal(E/F), A’). This last group is trivial, hence there
exists some ¢ € A’ with a = we"twe. Since cwanc™! = wenc™!, replacing g by ¢g
we may assume that g — wn. Again wn € S implies 1 = wnwn, so if we define
a Galois action ¢ on N’ N wN'w by o(n') = wi'’w, the map {o — n} defines an
element of H'(Gal(E/F), N'NwN'w). Since this last group is trivial, there exists
anm € N'(NwN'w) with n = wm~twm. Hence mwnm ™' = w, and replacing g by
mg we may assume that g — gg~' = w. Since G’/G ~ S the existence of g, and
the independence of B'n,,G of the choice of n,,, are clear. The lemma follows.

A set of representatives for N;,_; -G;\G},_1/Gp—1 is then given by g = g(n,a) =
na, where 1 = n,, satisfies g~ ! = w, w? = 1, w € W(A’, Gr_1)/W(A',G}), thus w
is a product over i of disjoint transpositions (k;, m;), 1 < k; < m; < n and m; > j,
and a ranges over A'/{a = waw~! € A’} G;NA". When j =n —2, the only w # 1
is represented by w = (k,m) = (n —2,n — 1).

By Frobenius reciprocity ([BZ], Prop. 2.29), we have
Bilp(ind(*[(p@v°~') @ ¢'l; P,PNg "Hjg),1)
= BilPﬂg_lH}g(g[(p ® Vs_l) ® w/]5p/6pl"|g—1HJ’.ga ]]-)
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Lemma 7. If g = g(ny,a) and w # 1, then the last space is zero.

Proof. Denote by (k, m) the transposition in w # 1 with maximal m. Let u be the
unipotent upper triangular matrix in H J’ whose only non-zero entries outside the
diagonal are z(€ E) at the place (row, column)= (m,m + 1), and y at (k,m + 1).
We choose y to be y = Ta11mak/@mi1Gm if a = diag(ay,...,a,_1). Then a=tua
has the entry =’ = zai1m/am at (mym + 1) and T = yamy1/ax = Ta14m/Cm at
(k,m + 1), hence g~'ug = n~ta"luan lies in g_lH]’-g N P. This g~ 'ug acts on
I((p@v =) ®') by multiplication by p(I)¢’(u) = ¢'(z), and trivially on 1. Since
x is arbitrary in F, and y # 1, the lemma follows.

Lemma 8. With the exception of at most finitely many values of X = q—*%, the
conclusion of Lemma 7 holds when j > 1.

Proof. We may assume (by Lemma 7) that w = 1, and take 7, = 1. The element
h = diag(z,...,2,1,...,1) of H} (with z € F'* and det h = z7) commutes with any
ain A’, and it lies in P. Tt acts on (p®@v*~1)®1 by multiplication by w,(2)|z[7¢~1),
where w, is the central character of p, and trivially on 1. Hence if j # 0, with the
exception of at most finitely many values of X = ¢~ our space is {0}.

We clearly have

Lemma 9. In the remaining case of j = 0, w = 1 (and n, = 1), we have
H; = N', g = a ranges over A'/A, and Pﬂg‘lH]’-g = N. Then Hompy(*Y', 1) is
zero if g = a € A, for then %' (u) = ' (aua™?') is non-trivial on uw € N. If g = a
lies in A we may take a =1, and then Hompy (¢, 1) = C since ' is trivial on N.

Proof of Main Lemma. Note that by Lemma 6 the homogeneous space X' =
HJ’.\P’ = G;N’\P’ is the disjoint union of the cosets G}N’\G;N’A’ann_l, where
w ranges over the set of w in W(A',G},_,) with w® = 1, taken modulo W (A’, G).
Put X] for the union over all such w with w # 1. It is an open subset of X’'. The
space of ind((p® v*~") @ ¢'; P', HY) consists of functions on X'. Lemma 7 implies
that any P-invariant linear form on ind((p@v®*~")®@4'; P!, Hj) - equivalently a form
in Bilp(ind((p @ v*~1) @ ¢'; P', H}), 1), viewed as a function of its first variable -
must vanish on the functions which are supported on X{. Consequently its value
depends only on the restriction of the functions in ind((p ® v*~*) @ ¢'; P', H}) to
the closed subset X' — X{ = NG;\A'G,,_1 of X’. Lemma 8 shows that any such

bilinear form is zero if j # 0, except for at most finitely many values of X = ¢~°.

When j = 0, denote by A} an open subset of A’ which does not contain A.
Lemma 9 implies that the P-invariant linear form must vanish on the functions
which are supported on the open subset N\ A|G,,_1 of N\A'G,,_;. Hence its value
at a function depends only on the restriction of the function to the closed subset
N\(A" — A})G,, 1. In particular we may choose A to be the complement in A" of
the closed subset A of A'.

In conclusion Bilp(& ®@v#~1, 1) is zero for each &; of Lemma 3, except for i = g
when &;, = 7(= ind(¢'; P', N')), where Bilp(t ® v*~1,1) = Bilp(r,1) = C. The
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Main Lemma follows from this by virtue of Lemma 3.

Proof of Proposition. Put S = C°(F™) and Sy = C°(F™ — {0}). We conclude
that any
H € Homp(n @ v*~ 1 1) = Bilg(r ® v*, Sp)

restricts to zero on W;, (in the notations of Lemma 3), and it is uniquely determined
by its restriction to W, 41, and its quotient 7 = &;, = Wj,11/W,,. In other words,
given non-zero H, H' in Bilg(m®v?®, Sy) there is a scalar ¢ such that Hy = H'—cH is
zero (in Homp(W;, 11 ®v5~1 1), hence also in Homp(r®v*~1, 1)). Consequently,
given non-zero H, H' in Bilg(m®v*,S), there is a scalar ¢ such that the restriction
of Hy = H' —cH to W(r®v*,1)') x Sy is zero. Note that W (nr@v*, ') ~ W (mw, ")
viaW v« W, (Wev®)(g) =W(g)v(detg)® for g € G'.

The map ® — ®(0) is an isomorphism of S/Sy with C. Hence the G-invariant
bilinear form Hy on W (r ®@v*,¢") x S is of the form Hy(W, ®) = h(W)®(0), where
h is a G-invariant linear form on 7 ® v°. If h # 0 then w;(2)|z|™ = 1 for all
z € F*, where w, is the central character of 7. Hence Hy = H' — cH vanishes,
except possibly for a finite number of values of X = ¢=°. With the exception of
these values of s, we then have that Bilg(m ® v*,S) is at most one dimensional,
and the proposition follows, as does ((iii) of) the Theorem.

Remark. Suppose that @ = I(my,...,7y) is a G'-module normalizedly induced
from the following P’-module, where P’ = M'N" is the standard parabolic subgroup
of type (n1,...,ny). This representation is trivial on the unipotent radical N, and
is given by the generic irreducible GL(n;, F)-modules m; on the ith factor of the
Levi factor M'. By [Ze], Theorem 9.7(b) in the non-archimedean case, and [V]
in the archimedean case, every generic irreducible G’-module is of this form, with
square- integrable ;.

It is likely that one has

(%) L(s,r(m)) = [ [ L(s,r(m)) [] L(s, w5 x 7).

% i<k
and that the analogous relation holds for the e-factors too. These relations are to be
expected in analogy with standard properties of L and e-functions of representations
of Weil groups, and they are established in the split case where F = F @& F in [JPS]
for non-archimedean F', and in [JS] for archimedean F.

In fact the relation (*) is the basis of the proof of the analogue of our Theorem in
the split archimedean case in [JS]. For this reason it will be worthwhile (but we do
not plan on doing this, at least soon) to establish (*) in our non-split case, especially
for E/F = C/R (where the n; are 1 or 2), for then an archimedean analogue of
our Theorem is likely to follow, and the global results of [F1] and our paper above
would extend to all separable quadratic extensions E/F, not only those where each
real place of F' splits in F.
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