1) Use the method of conditional proof to explain in words why the sentence
\[
\{(P \lor Q) \land [(P \implies R) \land (Q \implies S)]\} \implies (R \lor S)
\]
is a tautology. Be explicit about discharging assumptions.

2) Let \(f \) be a continuous function from \(\mathbb{R} \) to \(\mathbb{R} \) and let \(L \in \mathbb{R} \). To say that \(f(x) \) tends to \(L \) as \(x \) tends to \(\infty \) means that for each \(\epsilon > 0 \), there exists \(K \in \mathbb{R} \) such that for each \(x > K \), \(|f(x) - L| < \epsilon \). Use the generalized De Morgan’s laws to show that \(f(x) \) does not tend to \(L \) as \(x \) tends to \(\infty \) iff there exists \(\epsilon > 0 \) such that for each \(K \in \mathbb{R} \), there exists \(x > K \) such that \(|f(x) - L| \geq \epsilon \). Be careful not to skip any steps.

3) Show that for each real number \(x \), \(\pi + x \) is irrational or \(\pi - x \) is irrational.

4) Prove the following statement: let \(x \) be a rational number such that \(x^2 = c \), where \(c \) is a whole number. Then \(x \) is an integer.

5) Prove the following statement: Let \(x \) be a rational number. Then \(x^2 \neq 2 \).