Exercises for midterm 1

Math 4581 Autumn 2013

1) Let H be the plane in \mathbb{R}^3 whose equation is $2x + y - 3z = 0$.
 a) Verify that H is a vector subspace of \mathbb{R}^3.
 b) Give a basis B for H.
 c) Extend B to a basis B^* for \mathbb{R}^3.

2) Let H be the plane in \mathbb{R}^3 whose equation is $x = 0$.
 a) Verify that H is a vector subspace of \mathbb{R}^3.
 b) Give a basis B for H.
 c) Extend B to a basis B^* for \mathbb{R}^3.

3) Let H and K be the vector subspaces of \mathbb{R}^3 defined as follows:
 - $H = \{(x, y, z) \in \mathbb{R}^3 | x - y - z = 0\}$
 - $K = \{(x, y, z) \in \mathbb{R}^3 | x - y = z = 0\}$

 Is $H \cup K$ a vector subspace of \mathbb{R}^3? (Explain)

4) Let V be a vector space and $T : V \rightarrow V$ be a linear operator. Prove that $\text{Ker}(T)$ is a vector subspace of V.

5) Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear operator defined by the following matrix (with respect to the standard basis in \mathbb{R}^3):

$$
\begin{pmatrix}
0 & 5 & \frac{1}{2} \\
2 & 10 & 1 \\
1 & 15 & \frac{3}{2}
\end{pmatrix}
$$
Is T invertible? (Explain)

6) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Assume that T is surjective. Is T injective? (Explain)

7) Show that $SO(n)$ is a normal subgroup of $O(n)$.

8) Consider the following matrices:

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 4 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \sqrt{2} & -\sqrt{2} \\ 0 & -\sqrt{2} & -\sqrt{2} \end{pmatrix}, \quad D = \begin{pmatrix} \frac{1}{6} & 0 & 0 \\ 0 & \sqrt{3} & \sqrt{3} \\ 0 & -\sqrt{3} & \sqrt{3} \end{pmatrix}$$

Answer the following questions providing an explanation.

- Is A invertible?
- Is B invertible?
- What is the determinant of C?
- What is the determinant of D?
- Does C belong to $SO(n)$?
- Does D belong to $SO(n)$?
- Does C belong to $O(n)$?
- Does B belong to $O(n)$?
- Does A belong to P_n?
- Does C belong to P_n?
- Does C belong to $GL(n, \mathbb{R})$?
- Does A belong to $GL(n, \mathbb{R})$?
9) Prove: Let G be a finite group of permutations of the set X. Suppose that G acts transitively on X (i.e. X is a single G-orbit). Then X is a finite set, and $|X|$ divides $|G|$.

10) Consider the following permutation in S_9:

$$
\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3 & 2 & 7 & 8 & 9 & 4 & 5 & 6 \end{pmatrix}
$$

$$
\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 5 & 4 & 3 & 7 & 8 & 6 & 9 \end{pmatrix}
$$

$$
\sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 2 & 1 & 7 & 8 & 9 & 6 \end{pmatrix}
$$

$$
\sigma_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 2 & 6 & 5 & 4 & 8 & 9 & 3 & 1 \end{pmatrix}
$$

- Write the cycle decomposition of σ_1, σ_2, σ_3 and σ_4.
- Compute $\sigma_1 \circ \sigma_2$.
- Compute $\sigma_1 \circ \sigma_3$.
- Compute $\sigma_3 \circ \sigma_2$.
- Compute $\sigma_3 \circ \sigma_1$.
- Compute $\sigma_1 \circ \sigma_2 \circ \sigma_3$.
- Compute $\sigma_1 \circ \sigma_2 \circ \sigma_4$.
- Compute $\sigma_2 \circ \sigma_1 \circ \sigma_3$.
- Compute $\sigma_1 \circ \sigma_2 \circ \sigma_2$.
- Compute the order of σ_1, σ_2, σ_3 and σ_4.
- Are σ_1 and σ_2 conjugate? (Explain)
- Are σ_1 and σ_3 conjugate? (Explain)
- Are σ_2 and σ_3 conjugate? (Explain)
• Are \(\sigma_1 \) and \(\sigma_4 \) conjugate? (Explain)
• Are \(\sigma_2 \) and \(\sigma_4 \) conjugate? (Explain)
• Are \(\sigma_3 \) and \(\sigma_4 \) conjugate? (Explain)

11) Consider the following permutation \(\sigma \) in \(S_6 \):

\[
\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 5 & 6 & 3 & 4
\end{pmatrix}
\]

Show that

\[H = \{id, \sigma\} \]

is a subgroup of \(S_6 \).