MATH 2174: Autumn 2014
Midterm 1 Practice

1) Find all values a so that the linear system has:
 i) no solutions;
 ii) one solution;
 iii) infinitely many solutions.

 \[
 \begin{align*}
 x + y &= 0 \\
 x - ay &= 3
 \end{align*}
 \]

2) Find all the values x that make the matrix A singular (without using the "determinant of the matrix A"):

\[
A = \begin{pmatrix}
2 & 4 & 1 \\
0 & 1 & 5 \\
2 & 4 & x
\end{pmatrix}
\]

3) Find the inverse A^{-1} of the given matrix A (without using the "determinant of the matrix A"):

\[
A = \begin{pmatrix}
1 & 1 \\
1 & 2
\end{pmatrix}
\]

4) Determine whether W is a subspace of \mathbb{R}^2. Give a geometric description of W.

a) $W = \{x : x_1 + 4x_2 = 1\}$

b) $W = \{x : x_1x_2 = 1\}$
5) Let $\mathcal{N}(A)$ be the null space of the matrix A. Find a basis for $\mathcal{N}(A)$, and calculate the dimension of $\mathcal{N}(A)$.

$$A = \begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
\end{pmatrix}$$

6) Let $W = \text{Sp}\{S\}$ be the subspace of \mathbb{R}^3 spanned by the set S.

i) Find a subset B of S that is a basis for W.

ii) Express the vectors in S that are not in B as a linear combination of the vectors in B.

$$S = \left\{ \begin{pmatrix}
1 \\
1 \\
0 \\
\end{pmatrix}, \begin{pmatrix}
1 \\
2 \\
0 \\
\end{pmatrix}, \begin{pmatrix}
2 \\
3 \\
4 \\
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
1 \\
\end{pmatrix}, \begin{pmatrix}
2 \\
1 \\
0 \\
\end{pmatrix} \right\}$$