1) Find all values a so that the following linear system has:

i) no solutions;

ii) one solution;

iii) infinitely many solutions.

\[
\begin{align*}
 x + ay &= 0 \\
 x + y &= 3
\end{align*}
\]
2) Describe the set of all matrices that commute with the matrix

\[A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \]

I.e. find all the matrices \(B \) such that \(AB = BA \).
3) The general equation of a plane in \mathbb{R}^3 is

$$ax + by + cz + d = 0$$

Find a plane through the points $(1, 0, 1)$, $(1, 1, 0)$ and $(0, 3, 0)$. Is the plane unique?
4) Solve the equation

\[Ax = 0 \]

where

\[
A = \begin{pmatrix}
3 & 0 & 1 \\
2 & 1 & 0 \\
10 & 2 & 2
\end{pmatrix}
\]

Give your answer in vector form.
5) True or false.
(a) If A and B are symmetric matrices, then AB must also be symmetric.
(b) If A and B are nonsingular matrices, then $AB = BA$.
(c) If $v_1, v_2, ..., v_p$ are m-dimensional vectors, and if $p < m$, then the vectors
$\{v_1, v_2, ..., v_p\}$ are linearly independent.
(d) If M and N are square matrices such that M is nonsingular and $MN = 0$.
then $N = 0$.
(e) If $x_1, x_2, ..., x_n$ are m-dimensional vectors that are all solutions of the
equation $Ax = 0$, then every linear combination $a_1x_1 + a_2x_2 + ... + a_nx_n$ is
also a solution of the same equation.
(f) If the matrix product AB is well defined and square, then the matrix
product BA is also well defined and square.
(g) A homogeneous system of 10 equations in 9 variables might have one
solution.
(h) If v_1 and v_2 are linearly dependent vectors in \mathbb{R}^n, and A is an $(n \times n)$
matrix, then Av_1 and Av_2 are also linearly dependent.