Solution.

1. \(\pm \mathbf{v}_1 \) (\(v=1,2,3 \)) the vertices of \(P \).

Since \(f \) swaps each long diagonal of \(P \) to itself, \(f(\pm \mathbf{v}_1) = \pm \mathbf{v}_1 \)

\(f(\pm \mathbf{v}_2) = \pm \mathbf{v}_2 \) and \(f(\pm \mathbf{v}_3) = \pm \mathbf{v}_3 \)

\(f \in \text{Sym}(P) \Rightarrow f \) preserves distances and angles.

Let \(f(\mathbf{v}_1) = \mathbf{v}_1 \Rightarrow f(\mathbf{v}_2) = \mathbf{v}_2 \) or \(-\mathbf{v}_3 \Rightarrow f(\mathbf{v}_3) = \mathbf{v}_3 \)

\(\Rightarrow f(\mathbf{v}_3) = \mathbf{v}_3 \) or \(\mathbf{v}_4 \Rightarrow f(\mathbf{v}_4) = \mathbf{v}_4 \)

\(f(-\mathbf{v}_1) = -\mathbf{v}_1 \) or \(\mathbf{v}_2 \Rightarrow f(\mathbf{v}_1) = -\mathbf{v}_1 \)
\[f(-v_2) = -v_2 \text{ or } v_3 \Rightarrow f(-v_2) = -v_2 \]

\[f(-v_3) = -v_3 \text{ or } -v_1 \Rightarrow f(v_3) = -v_3 \]

\[f = \mathbb{I}. \]

If \(f(v_1) = -v_1 \Rightarrow f(v_2) = -v_2 \text{ or } v_3 \Rightarrow f(v_2) = -v_2 \)

\[f(v_3) = -v_3 \text{ or } -v_1 \Rightarrow f(v_3) = -v_3 \]

\[f(-v_4) = v_4 \text{ or } -v_2 \Rightarrow f(v_4) = v_4 \]

\[f(-v_2) = v_2 \text{ or } -v_3 \Rightarrow f(-v_2) = v_2 \]

\[f(-v_3) = v_4 \text{ or } v_2 \Rightarrow f(-v_3) = v_3 \]

\[f = -\mathbb{I}. \]
2) $|X| = 4! = 24$

The group acting on X is the group of rotations of T. (Call it G.)

$G = \{ \text{id}, 8 \text{ rotations of } 120^\circ, 3 \text{ rotations of } 180^\circ \}$

- Rot's of 120° correspond to permutations with cycle structure $3,1,1$ of the vector.
- Rot's of 180° correspond to permutations with cycle structure $2,2,2$ of the vector.

Call $\text{id} = \text{id}eometry$

ϕ_i: rotation of 120° ($i=1, \ldots, 8$)

σ_i: rotation of 180° ($i=1, \ldots, 3$).
\(f(10) = 24 \)

\(f(6) = 0 \quad (c = 2, \ldots, 8) \)

\(f(62) = 0 \quad (c = 1, 2, 3) \)

Using orbit counting formula:

\[
\text{# orbits} = \frac{1}{12} \cdot (24) = 2.
\]
3) \(\mathbb{Q}[x] \) \(\cong \mathbb{E} \) \(\frac{(x^2-2)}{} \\

Every equivalence class in \(\mathbb{E} \) is represented by a linear polynomial \([x] \) with \(a, b \in \mathbb{Q} \).

We prove \([x] \cong [x^2] = [2] \).

\(\Rightarrow \forall [p(x)], [q(x)] \in \mathbb{Q}[x] \)

\(\text{with } p(x), q(x) \in \mathbb{Q}[x] \).

\([p(x)] \cdot [q(x)] = [x + \beta x] \cdot \mathbb{E} \) \(x + \beta x = \)

\(= [2\beta + (2\beta + \beta x) + \beta x] = \)

\(= [2\beta + (2 + \beta x)] \) \(x + \beta x = \)

\(\Rightarrow x^2 - 2 = 0 \quad \Leftrightarrow \quad x = \pm \sqrt{2} \)

\(\Rightarrow x^2 - 2 \text{ is irreducible in } \mathbb{Q}[x], \)

\(\Rightarrow (x^2-2) \text{ maximal ideal } \Rightarrow \mathbb{Q}[x] \big/ (x^2-2) \text{ field.} \)
\(i \times j \) is such that \(i \times j^2 = 2 \)

\(\Rightarrow i \times j \) is the square root of Two.
4) \(|G| = 12\) and \(G\) abelian group.

Choose \(g \in G\) with \(g \neq \text{id}\) (identity).

Consider \(<g>\) (subgroup generated by \(g\))

by Lagrange Theorem \(\Rightarrow\) \(|<g>| \mid |G| = 12\)

\(\Rightarrow\) if \(|<g>| < 12\) then \(<g>\) is a proper normal subgroup and \(G\) is not simple.

If \(|<g>| = 12\), take \(g^3\) \(\Rightarrow\) \(g^4\) has order 4 \(\Rightarrow\) \(|<g^4>| = 4\) and \(2 <g^4>\) is a proper normal subgroup of \(G\)

and \(G\) is not simple.
5) \(f : \mathbb{Z}_5 \to \mathbb{Z}_5 \), \(f(0) = 0^5 \)

Since field homomorphisms are injective, it is enough to check that \(f \) is a field homomorphism:

- \(f([0]) = [0]^5 = [0] \) on \(\mathbb{Z}_5 \)

- \(f([x]) = [x^5] = [x] \) on \(\mathbb{Z}_5 \)

- \(f([x^2 + xy]) = ([x] + [xy])^5 = [x^5 + 5xy + 10x^2y + 10xy^2 + 5x^4y + y^5] = [x^5] + [5xy + 10x^2y + 10xy^2 + 5x^4y + y^5] = [x^5] + [y^5] = [x^5] + [y^5] = [x^5 + y^5] \)

\(= f([x] + f([y]) \)

\(= f([x] + [y]) \)

- \(f([x + y]) = ([x] + [y])^5 = [x^5 + y^5] = f([x]) \cdot f([y]) \)