PROBLEMS ABOUT RINGS AND IDEALS

Definitions. Let R be a commutative ring. For an ideal $I \subset R$, we defined

$$
\operatorname{Rad}(I):=\left\{a \in R \text { such that } a^{n} \in I \text { for some } n \geq 1\right\}
$$

A proper ideal $Q \subsetneq R$ is called primary if $a, b \in Q$ and $a \notin Q$ implies that $b^{n} \in Q$ for some $n \geq 1$. Equivalently:

$$
Q \text { is primary } \Longleftrightarrow \mathcal{N}(R / Q)=\{\text { zero divisors in } R / Q\}
$$

where $\mathcal{N}(R)$ is the ideal consisting of nilpotent elements of R, called the nilradical of R. In this perspective, the radical of a proper ideal $I \subsetneq R$ can be written as:

$$
\operatorname{Rad}(I)=\pi^{*}(\mathcal{N}(R / I)):=\{a \in R: \pi(a) \text { is nilpotent in } R / I\}
$$

where $\pi: R \rightarrow R / I$ is the natural projection homomorphism.
An ideal $I \subset R$ is called irreducible if it cannot be written as an intersection of two ideals properly containing it. That is, if $I_{1}, I_{2} \subset R$ are two ideals such that $I=I_{1} \cap I_{2}$, then $I=I_{1}$ or $I=I_{2}$.
(1) Let R be a commutative ring and $I_{1}, I_{2} \subset R$ be two ideals in R. Prove that $\operatorname{Rad}\left(I_{1} \cap I_{2}\right)=$ $\operatorname{Rad}\left(I_{1}\right) \cap \operatorname{Rad}\left(I_{2}\right)$.
(2) Let $Q \subsetneq R$ be a primary ideal. Prove that $\operatorname{Rad}(Q)=P$ is a prime ideal.
(3) Assume that R is Noetherian. For any ideal I, prove that there exists $N \geq 1$ such that $\operatorname{Rad}(I)^{N} \subset I$.
(4) Let R be a commutative ring. Prove that $\mathcal{N}(R)=\operatorname{Rad}(\{0\})$.
(5) Let R be a commutative ring, $I \subsetneq R$ a proper ideal, and $P \subsetneq R$ a prime ideal such that $I \subset P$. Prove that $\operatorname{Rad}(I) \subset P$.
(6) Let R be a commutative ring and $P \subsetneq R$ be a prime ideal. Prove that $\operatorname{Rad}\left(P^{n}\right)=P$ for any $n \geq 1$.
(7) Let K be a field, $R=K[x, y, z] /\left(z^{2}-x y\right)$ and $P=(x, z) \subset R$. Prove that P is a prime ideal, but P^{2} is not a primary ideal (and hence also not irreducible, because for Noetherian rings, irreducible implies primary).
(8) Prove the following equality is true in the ring $K[x, y]$, where, K is again a field.

$$
\left(x^{2}, y\right) \cap\left(x, y^{2}\right)=(x, y)^{2}
$$

Prove that $(x, y)^{2} \subset K[x, y]$ is a primary ideal. (Hence, primary does not imply irreducible.)
(9) Prove that $(4, t) \subset \mathbb{Z}[t]$ is a primary ideal. Verify that $\operatorname{Rad}((4, t))=(2, t)$ which is a maximal ideal in $\mathbb{Z}[t]$. Prove that $(2, t)^{2} \subsetneq(4, t) \subsetneq(2, t)$. Hence, a primary ideal need not be power of a prime..
(10) Let Q_{1}, \ldots, Q_{ℓ} be primary ideals in R such that $\operatorname{Rad}\left(Q_{j}\right)=P$ for every $1 \leq j \leq \ell$. Prove that $Q=Q_{1} \cap \cdots \cap Q_{\ell}$ is again primary and $\operatorname{Rad}(Q)=P$.
(11) Let $R=K[x, y], I=\left(x^{2}, x y\right) \subset R$. Take $P=(x)$ and $Q_{n}=\left(x^{2}, x y, y^{n}\right)$ for each $n \geq 2$. Prove that (a) P is a prime ideal. Each Q_{n} is primary and $\operatorname{Rad}\left(Q_{n}\right)=(x, y)$.
(b) $P \cap Q_{n}=I$.

Hence, we have infinitely many distinct primary decompositions. Notice that they all have the same set of primes $\{(x),(x, y)\}$.
(12) Let R be a commutative ring. For an ideal $I \subset R$ and an element $x \in R$, define:

$$
(I: x):=\{r \in R \text { such that } r x \in I\}
$$

(a) Prove that $(I: x)$ is an ideal.
(b) Let $I_{1}, I_{2} \subset R$ be two ideals. Prove that $\left(I_{1} \cap I_{2}: x\right)=\left(I_{1}: x\right) \cap\left(I_{2}: x\right)$.
(13) Again, let R be a commutative ring. Let $Q \subsetneq R$ be a primary ideal, and let $P=\operatorname{Rad}(Q)$ be its associated prime. For a given $x \in R$, prove the following:
(a) If $x \in Q$, then $(Q: x)=R$.
(b) If $x \notin Q$, then $(Q: x)$ is also primary and $\operatorname{Rad}((Q: x))=P$.
(c) If $x \notin P$, then $(Q: x)=Q$.

