PROBLEMS ABOUT RINGS AND IDEALS

Definitions. Let R be a commutative ring. For an ideal $I \subset R$, we defined

 $\operatorname{Rad}(I) := \{a \in R \text{ such that } a^n \in I \text{ for some } n \ge 1\}$

A proper ideal $Q \subsetneq R$ is called *primary* if $a, b \in Q$ and $a \notin Q$ implies that $b^n \in Q$ for some $n \ge 1$. Equivalently:

Q is primary $\iff \mathcal{N}(R/Q) = \{ \text{ zero divisors in } R/Q \}$

where $\mathcal{N}(R)$ is the ideal consisting of nilpotent elements of R, called the *nilradical* of R. In this perspective, the radical of a proper ideal $I \subsetneq R$ can be written as:

 $\operatorname{Rad}\left(I\right) = \pi^*(\mathcal{N}\left(R/I\right)) := \{a \in R : \pi(a) \text{ is nilpotent in } R/I\}$

where $\pi: R \to R/I$ is the natural projection homomorphism.

An ideal $I \subset R$ is called *irreducible* if it cannot be written as an intersection of two ideals properly containing it. That is, if $I_1, I_2 \subset R$ are two ideals such that $I = I_1 \cap I_2$, then $I = I_1$ or $I = I_2$.

- (1) Let R be a commutative ring and $I_1, I_2 \subset R$ be two ideals in R. Prove that $\operatorname{Rad}(I_1 \cap I_2) = \operatorname{Rad}(I_1) \cap \operatorname{Rad}(I_2)$.
- (2) Let $Q \subsetneq R$ be a primary ideal. Prove that $\operatorname{Rad}(Q) = P$ is a prime ideal.
- (3) Assume that R is Noetherian. For any ideal I, prove that there exists $N \ge 1$ such that $\operatorname{Rad}(I)^N \subset I$.
- (4) Let R be a commutative ring. Prove that $\mathcal{N}(R) = \text{Rad}(\{0\})$.
- (5) Let R be a commutative ring, $I \subsetneq R$ a proper ideal, and $P \subsetneq R$ a prime ideal such that $I \subset P$. Prove that Rad $(I) \subset P$.
- (6) Let R be a commutative ring and $P \subsetneq R$ be a prime ideal. Prove that $\operatorname{Rad}(P^n) = P$ for any $n \ge 1$.
- (7) Let K be a field, $R = K[x, y, z]/(z^2 xy)$ and $P = (x, z) \subset R$. Prove that P is a prime ideal, but P^2 is not a primary ideal (and hence also not irreducible, because for Noetherian rings, irreducible implies primary).
- (8) Prove the following equality is true in the ring K[x, y], where, K is again a field.

$$(x^2, y) \cap (x, y^2) = (x, y)^2$$

Prove that $(x, y)^2 \subset K[x, y]$ is a primary ideal. (Hence, primary does not imply irreducible.)

- (9) Prove that $(4,t) \subset \mathbb{Z}[t]$ is a primary ideal. Verify that $\operatorname{Rad}((4,t)) = (2,t)$ which is a maximal ideal in $\mathbb{Z}[t]$. Prove that $(2,t)^2 \subsetneq (4,t) \subsetneq (2,t)$. Hence, a primary ideal need not be power of a prime.
- (10) Let Q_1, \ldots, Q_ℓ be primary ideals in R such that $\operatorname{Rad}(Q_j) = P$ for every $1 \leq j \leq \ell$. Prove that $Q = Q_1 \cap \cdots \cap Q_\ell$ is again primary and $\operatorname{Rad}(Q) = P$.
- (11) Let R = K[x, y], $I = (x^2, xy) \subset R$. Take P = (x) and $Q_n = (x^2, xy, y^n)$ for each $n \ge 2$. Prove that (a) P is a prime ideal. Each Q_n is primary and $\operatorname{Rad}(Q_n) = (x, y)$. (b) $P \cap Q_n = I$.

Hence, we have infinitely many distinct primary decompositions. Notice that they all have the same set of primes $\{(x), (x, y)\}$.

- (12) Let R be a commutative ring. For an ideal $I \subset R$ and an element $x \in R$, define: $(I:x) := \{r \in R \text{ such that } rx \in I\}$
 - (a) Prove that (I:x) is an ideal.
 - (b) Let $I_1, I_2 \subset R$ be two ideals. Prove that $(I_1 \cap I_2 : x) = (I_1 : x) \cap (I_2 : x)$.
- (13) Again, let R be a commutative ring. Let Q ⊊ R be a primary ideal, and let P = Rad (Q) be its associated prime. For a given x ∈ R, prove the following:
 (a) If x ∈ Q, then (Q : x) = R.
 - (b) If $x \notin Q$, then (Q:x) is also primary and $\operatorname{Rad}((Q:x)) = P$.
 - (c) If $x \notin P$, then (Q:x) = Q.