MID TERM 1. SAMPLE

Problem 1. Let G be a finite group, $N \triangleleft G$ a normal subgroup, and p be a prime. Prove or disprove: number of Sylow p-subgroups of N is equal to the number of Sylow p-subgroups of G.

Problem 2. Prove that there are no simple groups with 36 elements. (Recall: G is simple if it has only 2 normal subgroups: trivial and G.)

Problem 3. Consider the group $G=\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, acting on itself by conjugation: $g \bullet x=g x g^{-1}$. What is the order of the stabilizer of $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$?

Problem 4. Prove that the following subset of S_{4} is a normal subgroup.

$$
\{e,(12)(34),(13)(24),(14)(23)\}
$$

Problem 5. Assume that a finite group G acts on a finite set X transitively. Assume further that $|X| \geq 2$. Prove that there exists $g \in G$ such that $\left|X^{g}\right|=\emptyset$.

Problem 6. How many group homomorphisms are there from $\mathbb{Z} / 12 \mathbb{Z}$ to $\mathbb{Z} / 15 \mathbb{Z}$?
Problem 7. Let G be a finite abelian group, which we write additively. Let $H:=\{g \in G: 2 g=0\}$. Prove that

$$
\sum_{g \in G} g=\sum_{h \in H} h
$$

Further prove that the sum above is zero if $|H| \neq 2$.

