PROBLEMS FOR PRACTICE

Problem 1. Prove or disprove: S_{5} is a semidirect product of A_{5} and $\mathbb{Z} / 2 \mathbb{Z}$. Recall: S_{n} is the group of permutations of $\{1,2, \ldots, n\}$ and A_{n} is the kernel of the sign homomorphism $\varepsilon: S_{n} \rightarrow\{ \pm 1\}$.

Problem 2. Determine whether the following statements are true or false.
(1) If G is a cyclic group, then $\mathrm{Aut}_{g p}(G)$ is cyclic.
(2) If G is a cyclic group, then $\operatorname{Aut}_{g p}(G)$ is abelian.
(3) Let N_{1}, N_{2} be two subgroups of a group G. Assume that N_{1} is normal in G and $N_{2} \subset N_{1}$ is normal in N_{1}. Then N_{2} is normal in G.
(4) Every group G admits at least one Jordan-Hölder series. Recall: a Jordan-Hölder series is a finite, strictly descending chain of normal subgroups which cannot be further refined. Equivalently, each graded piece must be simple.

Problem 3. Let H and N be two groups and $\alpha, \beta: H \rightarrow \operatorname{Aut}_{g p}(N)$ two group homomorphisms. Consider the semidirect products $A=N \rtimes_{\alpha} H$, and $B=N \rtimes_{\beta} H$.
(1) Assume that there exists $T \in \operatorname{Aut}_{g p}(N)$ such that $\beta(h)(n)=T\left(\alpha(h)\left(T^{-1}(n)\right)\right)$ for every $h \in H$ and $n \in N$. Write an isomorphism $F_{T}: A \rightarrow B$.
(2) Assume that there exists $\psi \in \operatorname{Aut}_{g p}(H)$ such that $\alpha(h)=\beta(\psi(h))$, for every $h \in H$. Write an isomorphism $F_{\psi}: A \rightarrow B$.
(3) Assume that there exists a group homomorphism $j: H \rightarrow N$ such that

$$
\alpha(h)(n)=j(h) \cdot(\beta(h)(n)) \cdot\left(\beta(h)\left(j(h)^{-1}\right)\right),
$$

for every $h \in H$ and $n \in N$. Write an isomorphism $F_{j}: A \rightarrow B$.

Bonus. Given any isomorphism $F: A \rightarrow B$, is it true that we should be able to write F (up to certain trivial identifications) in terms of F_{T}, F_{ψ}, F_{j} as above?

Problem 4. Let G be a group and consider the group homomorphism $C: G \rightarrow$ Aut $_{g p}(G)$ given by $C(g)(x)=g x g^{-1}$, for every $g, x \in G$. Prove that $G \rtimes_{C} G$ is isomorphic to $G \times G$.

Problem 5. Let H be any group with 27 elements, and let $f: A_{5} \rightarrow H$ be a group homomorphism. Prove that $f(x)=e($ unit of $H)$ for every $x \in A_{5}$. Recall: A_{5} is simple.

Problem 6. What does it mean for two composition series Σ_{1} and Σ_{2} of a group G to be equivalent? (Just write the definition.)

Problem 7. Prove or disprove: two groups with equivalent Jordan-Hölder series must be isomorphic.

Problem 8. What is the center of the group $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$? Here \mathbb{F}_{p} is the field with p elements, where p is a prime.

Problem 9. Compute the commutator series, and the central series for the following group:

$$
B=\left\{\left(\begin{array}{ccc}
d_{1} & x & z \\
0 & d_{2} & y \\
0 & 0 & d_{3}
\end{array}\right) \quad \text { where } d_{1}, d_{2}, d_{3} \in \mathbb{C} \backslash\{0\}, \text { and } x, y, z \in \mathbb{C}\right\}
$$

Recall: commutator series is defined inductively as: $G^{(0)}=G$ and $G^{(\ell+1)}=\left[G^{(\ell)}, G^{(\ell)}\right]$. Central series is defined inductively as $C^{1}(G)=G$ and $C^{\ell+1}(G)=\left[G, C^{\ell}(G)\right]$.

Problem 10. Write the Jordan-Hölder series for the dihedral group D_{12} with 12 elements.
Problem 11. Assume that G is a (non-trivial) nilpotent group. Prove that $Z(G) \neq\{e\}$. Here $Z(G)$ is the center of G. Recall: G is nilpotent iff $C^{n}(G)=\{e\}$ for some $n \geq 0$; iff G admits a composition series $G=H_{0} \triangleright \ldots \triangleright H_{m}=\{e\}$ such that $\left[G, H_{\ell}\right] \subset H_{\ell+1}$ for every ℓ.

Problem 12. Prove that every p-group is nilpotent. Recall: a group G is nilpotent iff $G / Z(G)$ is nilpotent.

Problem 13. Give an example of a group G and a normal subgroup $N \triangleleft G$ such that both N and G / N are nilpotent, but G is not.

Problem 14. Compute Aut ${ }_{g p}(\mathbb{Z} / 2 Z \times \mathbb{Z} / 4 \mathbb{Z})$.
Problem 15. How many abelian groups of size 24 are there?
Problem 16. Compute Aut ${ }_{g p}(\mathbb{Z} / 48 \mathbb{Z})$.
Problem 17. Let G be a group and $N \triangleleft G$ be a normal subgroup. Prove that G / N is abelian if, and only if $[G, G] \subset N$.

Problem 18. True or false: center of a solvable group is always non-trivial. Recall: G is solvable iff $G^{(n)}=\{e\}$ for some $n \geq 0$; iff G admits a composition series $G=H_{0} \triangleright \ldots \triangleright H_{m}=\{e\}$ such that $H_{\ell} / H_{\ell+1}$ is abelian for every ℓ.

Problem 19. Let B and $N \leq B$ be the following groups:

$$
\begin{gathered}
B=\left\{\left(\begin{array}{cc}
d_{1} & x \\
0 & d_{2}
\end{array}\right) \text { where } d_{1}, d_{2} \neq 0 \text { and } x \text { is arbitrary }\right\} \\
N=\left\{\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \text { where } x \text { is arbitrary }\right\}
\end{gathered}
$$

Prove that N is normal in B. Prove that B is a semidirect product of N and H, where H is the subgroup of B consisting of diagonal matrices.

Problem 20. Prove or disprove: Aut $_{g p}\left(S_{5}\right) \cong S_{5}$.

Recall: every finite group admits a Jordan-Hölder series. Any two Jordan-Hölder series are equivalent.

Problem 21. For a finite group H, let $\ell(H)$ be the length of a Jordan-Hölder series of H. How do we know that this number does not depend on the choice of the Jordan-Hölder series?

Problem 22. Let G be a finite group and $N \triangleleft G$ be a normal subgroup. Prove that $\ell(G)=$ $\ell(N)+\ell(G / N)$.

Problem 23. Fix a finite simple group S. For a finite group G, choose a Jordan-Hölder series $\Sigma: G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n}=\{e\}$. Let $\operatorname{Mult}(S ; G)$ be defined as:

$$
\operatorname{Mult}(S ; G):=\#\left\{j: G_{j} / G_{j+1} \cong S\right\}
$$

Prove that the number $\operatorname{Mult}(S ; G)$ does not depend on the choice of the Jordan-Hölder series Σ.
Problem 24. Fix a finite simple group S. Let G be a finite group and $N \triangleleft G$ be a normal subgroup. Prove that $\operatorname{Mult}(S ; G)=\operatorname{Mult}(S ; N)+\operatorname{Mult}(S ; G / N)$.

Problem 25. (Bonus). Prove or disprove: $\operatorname{Mult}(S ; G)$ as defined above, can be computed as cardinality of the set of group homomorphisms $S \rightarrow G$ counted up to conjugation by elements of Aut $_{g p}(S)$ and Aut $g_{g p}(G)$. More precisely, is the following equation true?

$$
\operatorname{Mult}(S ; G)=\left|\operatorname{Aut}_{g p}(S) \backslash \operatorname{Hom}_{g p}(S, G) / \operatorname{Aut}_{g p}(G)\right|
$$

