PROBLEMS FOR PRACTICE

Problem 1. Prove or disprove: S_5 is a semidirect product of A_5 and $\mathbb{Z}/2\mathbb{Z}$. Recall: S_n is the group of permutations of $\{1, 2, ..., n\}$ and A_n is the kernel of the sign homomorphism $\varepsilon : S_n \to \{\pm 1\}$.

Problem 2. Determine whether the following statements are true or false.

- (1) If G is a cyclic group, then $Aut_{an}(G)$ is cyclic.
- (2) If G is a cyclic group, then $Aut_{qp}(G)$ is abelian.
- (3) Let N_1, N_2 be two subgroups of a group G. Assume that N_1 is normal in G and $N_2 \subset N_1$ is normal in N_1 . Then N_2 is normal in G.
- (4) Every group G admits at least one Jordan-Hölder series. Recall: a Jordan-Hölder series is a finite, strictly descending chain of normal subgroups which cannot be further refined. Equivalently, each graded piece must be simple.

Problem 3. Let H and N be two groups and $\alpha, \beta: H \to \operatorname{Aut}_{gp}(N)$ two group homomorphisms. Consider the semidirect products $A = N \rtimes_{\alpha} H$, and $B = N \rtimes_{\beta} H$.

- (1) Assume that there exists $T \in \operatorname{Aut}_{gp}(N)$ such that $\beta(h)(n) = T(\alpha(h)(T^{-1}(n)))$ for every $h \in H$ and $n \in N$. Write an isomorphism $F_T : A \to B$.
- (2) Assume that there exists $\psi \in \operatorname{Aut}_{gp}(H)$ such that $\alpha(h) = \beta(\psi(h))$, for every $h \in H$. Write an isomorphism $F_{\psi}: A \to B$.
- (3) Assume that there exists a group homomorphism $j: H \to N$ such that

$$\alpha(h)(n) = j(h) \cdot (\beta(h)(n)) \cdot (\beta(h)(j(h)^{-1})),$$

for every $h \in H$ and $n \in N$. Write an isomorphism $F_i : A \to B$.

Bonus. Given any isomorphism $F: A \to B$, is it true that we should be able to write F (up to certain trivial identifications) in terms of F_T, F_ψ, F_j as above?

Problem 4. Let G be a group and consider the group homomorphism $C: G \to \operatorname{Aut}_{gp}(G)$ given by $C(g)(x) = gxg^{-1}$, for every $g, x \in G$. Prove that $G \rtimes_C G$ is isomorphic to $G \times G$.

Problem 5. Let H be any group with 27 elements, and let $f: A_5 \to H$ be a group homomorphism. Prove that f(x) = e (unit of H) for every $x \in A_5$. Recall: A_5 is simple.

Problem 6. What does it mean for two composition series Σ_1 and Σ_2 of a group G to be equivalent? (Just write the definition.)

Problem 7. Prove or disprove: two groups with equivalent Jordan-Hölder series must be isomorphic.

Problem 8. What is the center of the group $G = GL_2(\mathbb{F}_p)$? Here \mathbb{F}_p is the field with p elements, where p is a prime.

Problem 9. Compute the commutator series, and the central series for the following group:

$$B = \left\{ \begin{pmatrix} d_1 & x & z \\ 0 & d_2 & y \\ 0 & 0 & d_3 \end{pmatrix} \text{ where } d_1, d_2, d_3 \in \mathbb{C} \setminus \{0\}, \text{ and } x, y, z \in \mathbb{C} \right\}$$

Recall: commutator series is defined inductively as: $G^{(0)} = G$ and $G^{(\ell+1)} = [G^{(\ell)}, G^{(\ell)}]$. Central series is defined inductively as $C^1(G) = G$ and $C^{\ell+1}(G) = [G, C^{\ell}(G)]$.

Problem 10. Write the Jordan-Hölder series for the dihedral group D_{12} with 12 elements.

Problem 11. Assume that G is a (non-trivial) nilpotent group. Prove that $Z(G) \neq \{e\}$. Here Z(G) is the center of G. Recall: G is nilpotent iff $C^n(G) = \{e\}$ for some $n \geq 0$; iff G admits a composition series $G = H_0 \triangleright ... \triangleright H_m = \{e\}$ such that $[G, H_\ell] \subset H_{\ell+1}$ for every ℓ .

Problem 12. Prove that every p-group is nilpotent. Recall: a group G is nilpotent iff G/Z(G) is nilpotent.

Problem 13. Give an example of a group G and a normal subgroup $N \triangleleft G$ such that both N and G/N are nilpotent, but G is not.

Problem 14. Compute $\operatorname{Aut}_{gp}(\mathbb{Z}/2Z \times \mathbb{Z}/4\mathbb{Z})$.

Problem 15. How many abelian groups of size 24 are there?

Problem 16. Compute $\operatorname{Aut}_{gp}(\mathbb{Z}/48\mathbb{Z})$.

Problem 17. Let G be a group and $N \triangleleft G$ be a normal subgroup. Prove that G/N is abelian if, and only if $[G,G] \subset N$.

Problem 18. True or false: center of a solvable group is always non-trivial. Recall: G is solvable iff $G^{(n)} = \{e\}$ for some $n \geq 0$; iff G admits a composition series $G = H_0 \triangleright ... \triangleright H_m = \{e\}$ such that $H_\ell/H_{\ell+1}$ is abelian for every ℓ .

Problem 19. Let B and $N \leq B$ be the following groups:

$$B = \left\{ \begin{pmatrix} d_1 & x \\ 0 & d_2 \end{pmatrix} \text{ where } d_1, d_2 \neq 0 \text{ and } x \text{ is arbitrary} \right\}$$

$$N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \text{ where } x \text{ is arbitrary} \right\}$$

Prove that N is normal in B. Prove that B is a semidirect product of N and H, where H is the subgroup of B consisting of diagonal matrices.

Problem 20. Prove or disprove: $\operatorname{Aut}_{qp}(S_5) \cong S_5$.

Recall: every finite group admits a Jordan-Hölder series. Any two Jordan-Hölder series are equivalent.

Problem 21. For a finite group H, let $\ell(H)$ be the length of a Jordan-Hölder series of H. How do we know that this number does not depend on the choice of the Jordan-Hölder series?

Problem 22. Let G be a finite group and $N \triangleleft G$ be a normal subgroup. Prove that $\ell(G) = \ell(N) + \ell(G/N)$.

Problem 23. Fix a finite simple group S. For a finite group G, choose a Jordan-Hölder series $\Sigma: G = G_0 \triangleright G_1 \triangleright ... \triangleright G_n = \{e\}$. Let $\mathrm{Mult}(S; G)$ be defined as:

$$Mult(S; G) := \#\{j : G_j/G_{j+1} \cong S\}$$

Prove that the number $\operatorname{Mult}(S;G)$ does not depend on the choice of the Jordan-Hölder series Σ .

Problem 24. Fix a finite simple group S. Let G be a finite group and $N \triangleleft G$ be a normal subgroup. Prove that $\operatorname{Mult}(S;G) = \operatorname{Mult}(S;N) + \operatorname{Mult}(S;G/N)$.

Problem 25. (Bonus). Prove or disprove: $\operatorname{Mult}(S;G)$ as defined above, can be computed as cardinality of the set of group homomorphisms $S \to G$ counted up to conjugation by elements of $\operatorname{Aut}_{gp}(S)$ and $\operatorname{Aut}_{gp}(G)$. More precisely, is the following equation true?

$$\operatorname{Mult}(S;G) = \left| \operatorname{Aut}_{gp}(S) \setminus \operatorname{Hom}_{gp}(S,G) / \operatorname{Aut}_{gp}(G) \right|$$