PROBLEMS FOR PRACTICE - MID TERM 3

All rings considered below are commutative and unital. All rings homomorphisms are assumed to preserve identities.

Problem 1. Let R be a ring. Prove that the following are equivalent: (1) R is a field. (2) The zero ideal is a maximal ideal. (3) The set of ideals in R is $\{(0),(1)=R\}$.

Problem 2. Let $f: R \rightarrow S$ be a ring homomorphis. Prove or disprove:
(1) If R is a field, then f is injective.
(2) If S is a field, then f is injective.

Problem 3. Prove that $\mathbb{Q}[x]$ is a principal ideal domain.
Problem 4. Let R be a principal ideal domain. Prove that every non-zero prime ideal of R is maximal.

Problem 5. Let R be a principal ideal domain. Prove that the set of ideals in R is same as R / R^{\times}. Here R^{\times}is the group of units in R.

Problem 6. What are the prime ideals in $\mathbb{Q}[x] /\left(x^{3}\right)$?
Problem 7. Let R be a ring and $I, J \subset R$ be two ideals. Prove that $I J \subset I \cap J$. Give an example when this inclusion is proper.

Problem 8. Keep the set up of Problem 7 above. Further assume that I and J are coprime (that is, $I+J=R$). Prove that
(1) $I J=I \cap J$.
(2) The ring homomorphism $R \rightarrow R / I \times R / J$ is surjective.

Problem 9. Let R be a ring, $I, J \subset R$ two ideals and let P be a prime ideal such that $I \cap J \subset P$. Prove that either $I \subset P$ or $J \subset P$.

Problem 10. Prove that every finite integral domain is a field.
Problem 11. Prove that every maximal ideal is prime. Give an example of a prime ideal that is not maximal.

Problem 12. Prove that $\mathbb{Q}[x, y]$ is not a principal ideal domain.
Problem 13. Let R be a ring. Prove that R is a local ring if, and only if $R \backslash R^{\times}$is an ideal.
Problem 14. Compute the greatest common divisor $d(x)$ of the following two elements of $\mathbb{Q}[x]$:

$$
a(x)=x^{3}+4 x^{2}+x-6 \quad b(x)=x^{5}-6 x+5
$$

Write $d(x)=\alpha a(x)+\beta b(x)$ for $\alpha, \beta \in \mathbb{Q}[x]$.
Problem 15. Let $I \subset \mathbb{Z}[x]$ be a maximal ideal. Prove or disprove: $\mathbb{Z}[x] / I$ is finite.

Problem 16. Prove that $R=\mathbb{Z} / 36 \mathbb{Z}$ is a principal ideal ring. Compute each of the following in R : (1) Prime ideals in R. (2) Maximal ideals in R. (3) Units in R.

Problem 17. Let R be a ring. Define the characteristic of R. Let $n=$ Characteristic (R). Prove or disprove: the map $R \rightarrow R$ that sends $a \in R$ to $a^{n} \in R$ is a ring homomorphism.

Problem 18. Let $f: R \rightarrow S$ be a ring homomorphism. Recall that for an ideal $J \subset S$, we defined

$$
f^{*}(J):=\{a \in R \text { such that } f(a) \in J\}
$$

Prove, or provide a counterexample to each of the following statements.
(1) $f^{*}(J) \subset R$ is an ideal.
(2) If $J \subset S$ is a prime ideal, then $f^{*}(J) \subset R$ is also prime.
(3) If $J \subset S$ is a maximal ideal, then $f^{*}(J) \subset R$ is also maximal.

Problem 19. Let $R \subset \mathbb{Q}$ be the set consisting of all rational functions whose denominator is an odd number. Prove that R is a local ring. Describe its unique maximal ideal.

Problem 20. Let R be a ring. For $a \in R$, define the following subset of R.

$$
I(a):=\{r \in R \text { such that } r a=0\}
$$

(1) Prove that $I(a) \subset R$ is an ideal.
(2) Prove that $I(a) \subset I(a b)$ for every $a, b \in R$.
(3) Prove that $I(a)=R$ if, and only if $a=0$.

Problem 21. Let R be a ring and $S \subset R$ be a multiplicatively closed set. Recall that this means: $1 \in S, 0 \notin S$, and for every $a, b \in S$, we have $a b \in S$.
(1) What is the kernel of the ring homomorphism $j: R \rightarrow S^{-1} R$? Recall that $j(r)=\frac{r}{1}$ for every $r \in R$.
(2) Prove that every ideal in $S^{-1} R$ is of the following form:

$$
\left\{\frac{a}{s} \text { such that } a \in I, s \in S\right\}
$$

where $I \subset R$ is an ideal.
Problem 22. Let R be a ring. Consider the following subset (of nilpotent elements of R):

$$
\mathcal{N}(R)=\left\{r \in R \text { such that there exists } n \geq 1 \text { so that } r^{n}=0\right\}
$$

Prove that $\mathcal{N}(R)$ is a proper ideal of R. Let $P \subset R$ be a prime ideal. Prove that $\mathcal{N}(R) \subset P$.
Problem 23. Let R be a ring. Recall that for an ideal $I \subset R$, we defined $\operatorname{Rad}(I) \subset R$ as

$$
\operatorname{Rad}(I)=\left\{r \in R \text { such that } r^{n} \in I \text { for some } n \geq 1\right\}
$$

(1) Prove that $\mathcal{N}(R)=\operatorname{Rad}((0))$.
(2) Prove that $\operatorname{Rad}(I)=\pi^{*}(\mathcal{N}(R / I))$ where $\pi: R \rightarrow R / I$ is the natural surjective ring homomorphism to the quotient ring. (See problem 18 above for the notation π^{*}.)
(3) Prove that I is a proper ideal if, and only if $\operatorname{Rad}(I)$ is a proper ideal.
(4) For any two ideals $I, J \subset R$, prove that $\operatorname{Rad}(I \cap J)=\operatorname{Rad}(I) \cap \operatorname{Rad}(J)$.
(5) Let $P \subset R$ be a prime ideal. Prove that $\operatorname{Rad}(P)=P$.
(6) Let $I \subset P \subset R$, where I is an ideal and P is a prime ideal. Prove that $\operatorname{Rad}(I) \subset P$.
(7) Give an example of a proper ideal $I \subset R$ such that $\operatorname{Rad}(I)=I$ but I is not a prime ideal.

