PROBLEMS FOR PRACTICE - FINAL

1. Groups

List of examples to recall:

- $S_{n}=$ the symmetric group on n letters.
- $D_{2 n}=$ the dihedral group of size $2 n$.
- $C_{n}=$ cyclic group of size n, i.e, $C_{n}=\left\langle\sigma \mid \sigma^{n}=e\right\rangle \cong \mathbb{Z} / n \mathbb{Z}$.
(1) Consider the group S_{n}. Let $X=\{1,2, \cdots, n\}$ be the set with n elements, on which S_{n} acts naturally. Let P be the set of two-element subsets of X. Fix $p=\{1,2\} \in P$. Prove that $\operatorname{Stab}_{S_{n}}(p) \cong S_{2} \times S_{n-2}$. Prove that the action of S_{n} on P (extended naturally from the $S_{n^{-}}$ action on X) is transitive (meaning: there is only one orbit). Conclude that $|P|=\binom{n}{2}$.
(2) For $m, n \in \mathbb{Z}_{\geq 2}$ such that g.c.d. $(m, n)=1$, prove that we have an isomorphism of groups $C_{m n} \cong C_{m} \times C_{n}$. Prove or disprove: there is another isomorphism of groups: Aut ${ }_{\text {group }}\left(C_{m n}\right) \cong$ Aut $_{\text {group }}\left(C_{m}\right) \times \operatorname{Aut}_{\text {group }}\left(C_{n}\right)$.
(3) State the classification theorem of finite abelian groups.
(4) Let G be a simple group (meaning: it has no non-trivial, proper, normal subgroups). If G is abelian, then prove that there is some prime $p \in \mathbb{Z}_{\geq 2}$ such that $G \cong C_{p}$. If G is not abelian, prove that $[G ; G]=G$. Remember: we do not consider the trivial group $\{e\}$ as simple.
(5) Prove that there is no simple group with 126 elements.
(6) Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Give an example of a non-abelian group with p^{3} elements.
(7) Prove that $D_{2 n} \cong C_{n} \rtimes_{\text {Inv }} C_{2}$. Here Inv: $C_{2} \rightarrow$ Aut $_{\text {group }}\left(C_{n}\right)$ is the group homomorphism that sends the non-trivial element of C_{2} to $g \mapsto g^{-1}$ for every $g \in C_{n}$.
(8) Recall the presentation of the dihedral group:

$$
\left.D_{2 n}=\langle\sigma, \rho| \sigma^{2}=e=\rho^{n} \text { and } \sigma \rho \sigma=\rho^{-1}\right\rangle
$$

Let $X=\{1,2, \ldots, n\}$ and consider the following action of $D_{2 n}$ on X :

$$
\begin{gathered}
\rho(i)=i+1 \text { for } 1 \leq i \leq n-1 . \text { And } \rho(n)=1 \\
\sigma(k)=n-k+1 \text { for } 1 \leq k \leq n .
\end{gathered}
$$

Prove that $\operatorname{Stab}_{D_{2 n}}(1) \cong C_{2}$. Identify the non-trivial of this subgroup of $D_{2 n}$.
(9) Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Consider the group $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ of 2×2 invertible matrices with entries from \mathbb{F}_{p}. What is the size (or order) of G ? Give an example of a Sylow p-subgroup of G. Is your example a normal subgroup in G ?

2. Rivgs

All rings considered below are commutative and unital. All rings homomorphisms are assumed to preserve identities.
(1) Prove that $\mathbb{Z}[x]$ is not a PID, but is a UFD.
(2) Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
(3) Let K be a field and $f(x) \in K[x]$. Prove that $K[x] /(f)$ is a field if, and only if $f(x)$ is a non-zero irreducible polynomial.
(4) Assume that R is a ring such that $|R|<\infty$. Prove that every prime ideal in R is maximal.
(5) Compute the group of invertible elements (units) in $\mathbb{Q}[x] /\left(x^{6}\right)$.
(6) Let $n \in \mathbb{Z}_{\geq 2}$ and assume that $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ is the prime factorization of n. Prove that we have a ring isomorphism:

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / p_{1}^{a_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{r}^{a_{r}} \mathbb{Z}
$$

(7) Let $R=\mathbb{Z} / 125 \mathbb{Z}$. Prove that every element in R is either a unit or nilpotent. Recall the general statement and how we proved it: for a $\operatorname{ring} A$, a maximal ideal $M \subsetneq A$, and $n \in \mathbb{Z}_{\geq 1}$, every element of $R=A / M^{n}$ is either a unit or invertible.
(8) Let R be a domain and $P \subsetneq R$ be a prime ideal. Prove that we have an injective ring homomorphism: $R_{P} \rightarrow F(R)$. Recall that $R_{P}=(R \backslash P)^{-1}(R)$ and $F(R)=(R \backslash\{0\})^{-1}(R)$ are obtained by inverting elements of R which are not in P, and non-zero elements of R, respectively.
(9) Prove that $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain.
(10) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, by demonstrating that $(1+\sqrt{-3})(1-\sqrt{-3})=4=2 \times 2$ contradicts the uniqueness axiom of a unique factorization domain. Or, you can argue that 2 is an irreducible element, and yet (2) is not a prime ideal - a thing that is known to be true for UFD's. Recall $Z[\sqrt{-3}] \subsetneq \mathcal{O}(\sqrt{-3})=\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$, the latter is a Euclidean domain, with the norm borrowed from complex numbers!
(11) Prove that every Euclidean domain is a UFD.
(12) State the Eisenstein criterion for checking irreducibility of a polynomial in one variable, with coefficients from a UFD.
(13) Let $f(x) \in k[x]$, where k is a field. Assume that the degree of $f(x)$ is 2 or 3 . Prove that $f(x)$ is irreducible if, and only if $f(\alpha) \neq 0$ for every $\alpha \in k$. You may assume that $f(x)$ is monic, if you so wish.
(14) Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Consider the polynomial $f(x)=x^{p}-x \in \mathbb{F}_{p}[x]$. Prove that $f(x)=\prod_{\alpha \in \mathbb{F}_{p}}(x-\alpha)$.
(15) Prove that $f(x)=x^{3}+3 x^{2}+x+1 \in \mathbb{Z}[x]$ is irreducible. (Hint: a linear change $x \rightarrow x-a$ can get rid of $3 x^{2}$ term. Determine this $a \in \mathbb{Z}$ and rewrite the polynomial in this new variable.) Which result states that the irreducibility property is same for $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ (under certain
obvious condition)?
(16) Prove that $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible.
(17) Let k be a field and let $k(x)$ be the field of rational functions of x with coefficients from k.

$$
k(x)=\left\{\frac{p(x)}{q(x)} \text { such that } p(x), q(x) \in k[x] \text { and } q(x) \neq 0\right\}
$$

Consider the following subring of $k(x)$:

$$
R=\left\{\frac{p(x)}{q(x)} \in k(x) \text { such that } q(0) \neq 0\right\}
$$

Prove that R is a local ring, by explicitly writing its unique maximal ideal. This includes proving that the set that you have written, is indeed the uniqule maximal ideal. For extra credit: what is the set of prime ideals in R ?
(18) Give an example of an ideal $I \subsetneq R$ of a ring R such that $\operatorname{Rad}(I)=I$ but I is not a primary ideal. Hint: it will happen even for $R=\mathbb{Z}$.
(19) Let $R=\mathbb{Q}[x, y, z] /\left(z^{2}-x y\right)$ and let $P=(x, z) \subset R$. Prove that P is a prime ideal. Prove that P^{2} is not primary.

