HOMEWORK 1

Problem 1. Let $\sum_{k=0}^{\infty} a_{k} z^{k} \in \mathbb{C}[[z]]$ be a power series with radius of convergence 1. Let $\left\{y_{n}\right\}_{n \geq 0}$ be defined by:

$$
y_{0}=1, \quad \text { and } \quad y_{n}=\frac{1}{n} \sum_{j=0}^{n-1} a_{j} y_{n-1-j}, \forall n \geq 1
$$

Prove that the radius of convergence of $\sum_{k=0}^{\infty} y_{k} z^{k}$ is at least 1 .
Problem 2. Recall the definition of the hypergeometric series:

$$
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \frac{(a)_{n}(b)_{n}}{(c)_{n}}
$$

where we use the notation $(p)_{n}=p(p+1) \cdots(p+n-1)$ if $n \geq 1$, and $(p)_{0}=1$.
(i) Prove that $\frac{d}{d z} F(a, b ; c ; z)=\frac{a b}{c} F(a+1, b+1 ; c+1 ; z)$.
(ii) Prove that $F(a, b ; c ; z)$ is a solution of the following second order linear ODE (called the hypergeometric equation).

$$
z(1-z) u^{\prime \prime}+(c-(a+b+1) z) u^{\prime}-a b u=0 .
$$

(iii) Prove that $(1-z)^{c-a-b} F(c-a, c-b ; c ; z)$ also solves the hypergeometric equation, and takes value 1 at $z=0$. Use this to conclude that $F(a, b ; c ; z)=(1-z)^{c-a-b} F(c-a, c-b ; c ; z)$.
Problem 3. Verify the solution given in Lecture 2, $\S 3$, page 5 .
(Very Optional) Compute the matrix K relating the solutions near $z=0$ and $z=1$ (see Lecture 1, page 8) for the differential equation given in Lecture 2, $\S 3$.

Problem 4. Let $z^{-1} \mathbb{C}\left[\left[z^{-1}\right]\right]$ be the ring of formal series in z^{-1} with zero constant term. Consider the (formal) Borel transform: $z^{-1} \mathbb{C}\left[\left[z^{-1}\right]\right] \rightarrow \mathbb{C}[[p]]$ given by:

$$
\mathcal{B}: \sum_{n \geq 0} c_{n} z^{-n-1} \mapsto \sum_{n \geq 0} c_{n} \frac{p^{n}}{n!}
$$

which we will denote by $F(z) \mapsto \mathcal{B}(F)(p)$.
(1) Prove that $\mathcal{B}\left(-\partial_{z} F\right)(p)=p \mathcal{B}(F)(p)$.
(2) Let $c \in \mathbb{C}$ and $F(z) \in z^{-1} \mathbb{C}\left[\left[z^{-1}\right]\right]$. Consider the shift operator $\left(T_{c} F\right)(z):=$ $F(z-c)$. Prove that $\mathcal{B}\left(T_{c} F\right)(p)=e^{c p} \mathcal{B}(F)(p)$.
(3) Compute $\mathcal{B}(F)$ for the following $F(z)$:

$$
F(z)=\frac{1}{(z-c)^{\ell}}, \ell \in \mathbb{Z}_{\geq 1} ; \quad F(z)=\sum_{n=0}^{\infty} n!z^{-n-1}
$$

