HOMEWORK 2

Problem 1. Let $n \geq 2$ and consider the following system of PDE's:

$$
\frac{\partial f}{\partial z_{i}}=\sum_{\substack{1 \leq j \leq n \\ j \neq i}} \frac{t_{i j} \cdot f}{z_{i}-z_{j}}, \quad \text { for every } 1 \leq i \leq n
$$

where $f\left(z_{1}, \ldots, z_{n}\right)$ takes values in a finite-dimensional vector space F over \mathbb{C}, and $t_{i j}=t_{j i} \in \operatorname{End} F$.
(1) Prove that (using Kohno's lemma) this system is consistent if, and only if - For (i, j) and (k, l) distinct, we have $\left[t_{i j}, t_{k l}\right]=0$.

- For a triple (i, j, k) of distinct indices, we have $\left[t_{i j}, t_{j k}+t_{i k}\right]=0$.
(2) Assume that we have a representation of S_{n} (symmetric group) on F (that is, we are given a group homomorphism $\left.\rho: S_{n} \rightarrow \mathrm{GL}(F)\right)$. Verify the relations from the previous part, when we set, for $i \neq j, t_{i j}=\rho\left(s_{i j}\right)$. Here $s_{i j} \in S_{n}$ is the transposition $i \leftrightarrow j$.

Problem 2. Let $R \subset E^{*} \backslash\{0\}$ be a (finite) root system, and let W be its Weyl group. We assume that a fundamental chamber \mathcal{C}^{0} has been chosen. Prove that, for $w \in W$, we have: $\ell(w)=\#\left\{\alpha \in R_{+} \mid w(\alpha) \in R_{-}\right\}$.

Problem 3. Prove that W has a unique element of maximum length. What is it for $W=S_{n}$?

Problem 4. Let $\left\{\alpha_{i}\right\}_{i \in I}$ denote the set of simple roots (fundamental chamber is chosen). For $\alpha \in R_{+}$, define height of α as:

$$
\alpha=\sum_{i \in I} n_{i} \alpha_{i} \Rightarrow \operatorname{ht}(\alpha):=\sum_{i \in I} n_{i} .
$$

Prove that R_{+}has a unique element of maximum height. What is it for A_{n} ?
Problem 5. Define:
$\operatorname{Aut}(R):=\left\{f: E^{*} \rightarrow E^{*}\right.$ linear such that $(f(\alpha), f(\beta))=(\alpha, \beta)$ and $\left.f(R)=R\right\}$
Prove that W is a normal subgroup of $\operatorname{Aut}(R)$. Prove that the quotient $\operatorname{Aut}(R) / W$ is naturally identified with the symmetries of the Dynkin diagram of R.

