HOMEWORK 3

Problem 1. Let \mathfrak{g} be the simple Lie algebra associated to the root system B_{2}. Recall that the Cartan matrix of B_{2} is $\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)$. Express the root vectors $\left\{e_{\alpha}\right\}_{\alpha \in R_{+}}$as commutators of $\left\{e_{1}, e_{2}\right\}$.

Problem 2. (We continue with the root system of type B_{2}). Let F be a finitedimensional vector space over \mathbb{C} and let $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\} \subset \operatorname{End}(F)$ be such that $t_{1}+t_{2}+t_{3}+t_{4}$ is a scalar matrix (hence commutes with each t_{j}). Consider the following connection:

$$
\nabla=d-\left(\frac{d \alpha_{1}}{\alpha_{1}} t_{1}+\frac{d \alpha_{2}}{\alpha_{2}} t_{2}+\frac{d\left(\alpha_{1}+\alpha_{2}\right)}{\alpha_{1}+\alpha_{2}} t_{3}+\frac{d\left(2 \alpha_{1}+\alpha_{2}\right)}{2 \alpha_{1}+\alpha_{2}} t_{4}\right) .
$$

There are two maximal nested sets: $\mathcal{F}=\left\{\left\{\alpha_{1}\right\}, R_{+}\right\}$and $\mathcal{G}=\left\{\left\{\alpha_{2}\right\}, R_{+}\right\}$. Verify that the De Concini-Procesi associator $\Phi_{\mathcal{G}, \mathcal{F}}$ is same as the associator relating fundamental solutions near 0 and 1 of the following ODE (see Lecture $12 \S 3$, page $3)$:

$$
\frac{d f}{d u}=\left(\frac{t_{1}}{u}+\frac{t_{2}}{u-1}+\frac{t_{3}}{u+1}\right) f .
$$

Problem 3. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ and let L_{n} be the $n+1$-dimensional, irreducible representation, with basis denoted by $\left\{v_{i}^{(n)}\right\}_{0 \leq i \leq n}$ (see Lecture $14 \S 0$, page 1). Consider the representation $V=L_{m} \otimes L_{n}$, where $m, n \in \mathbb{Z}_{\geq 0}$ and we assume $m \geq n$.
(1) What is the dimension of the weight space $V[m+n-2 r]$, where $0 \leq r \leq$ $m+n$?
(2) Let $0 \leq r \leq n$, and consider the following vector in $V[m+n-2 r]$: $\xi(r)=\sum_{j=0}^{r} c_{j} v_{j}^{(m)} \otimes v_{r-j}^{(n)}$. Assuming $c_{0}=1$, compute $c_{j}(1 \leq j \leq r)$ such that $e \cdot \xi(r)=0$.
(3) Use the previous parts to prove that

$$
L_{m} \otimes L_{n} \cong L_{m+n} \oplus L_{m+n-2} \oplus \cdots \oplus L_{m-n} .
$$

