HOMEWORK 4

Notations

Let $q \in \mathbb{C}$ be such that $|q|>1$. Recall our notations for q-numbers:

$$
[n]:=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \quad\left[\begin{array}{c}
m \\
n
\end{array}\right]:=\frac{[m][m-1] \cdots[m-n+1]}{[n]!}
$$

The problems below involve the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$. Its generators are $\left\{K^{ \pm 1}, E, F\right\}$ subject to the following list of relations:

$$
\begin{gathered}
K E=q^{2} E K \quad K F=q^{-2} F K \\
E F=F E+\frac{K-K^{-1}}{q-q^{-1}}
\end{gathered}
$$

The coproduct $\Delta: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right) \otimes U_{q}\left(\mathfrak{s l}_{2}\right)$ is given by: $\Delta(K)=K \otimes K$, and

$$
\begin{aligned}
& \Delta(E)=E \otimes 1+K \otimes E \\
& \Delta(F)=F \otimes K^{-1}+1 \otimes F
\end{aligned}
$$

For $\lambda \in \mathbb{C}$, let M_{λ} be the Verma module of $U_{q}\left(\mathfrak{s l}_{2}\right)$: it has basis $\left\{m_{\lambda}(r): r \geq 0\right\}$ with the action of $\{K, E, F\}$ given by: $K \cdot m_{\lambda}(r)=q^{\lambda-2 r} m_{\lambda}(r)$, and:

$$
E \cdot m_{\lambda}(r)=[\lambda-r+1] m_{\lambda}(r-1), \quad F \cdot m_{\lambda}(r)=[r+1] m_{\lambda}(r+1)
$$

For $n \in \mathbb{Z}_{\geq 0}$, let L_{n} be the $(n+1)$-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$. It has a basis $\left\{v_{k}^{(n)}: 0 \leq k \leq n\right\}$ with $U_{q}\left(\mathfrak{s l}_{2}\right)$ action given by the same formulae as above.

Problems

Problem 1. Let x, y be two non-commuting variables such that $x y=q^{2} y x$. Prove that, for every $n \geq 1$, we have:

$$
(x+y)^{n}=\sum_{\ell=0}^{n} q^{\ell(n-\ell)}\left[\begin{array}{c}
n \\
\ell
\end{array}\right] y^{\ell} x^{n-\ell}
$$

Problem 2. Recall that we defined q-exponential as:

$$
\exp _{q}(x):=\sum_{n \geq 0} q^{n(n-1) / 2} \frac{x^{n}}{[n]!}
$$

Prove that $\exp _{q}(x)^{-1}=\exp _{q^{-1}}(-x)$. (Hint: verify that both $\exp _{q}(x)$ and $\exp _{q^{-1}}(-x)^{-1}$ satisfy the same functional equation: $f(q x)-f\left(q^{-1} x\right)=\left(q-q^{-1}\right) x f(q x)$, with the normalization condition $f(0)=1$.)

Problem 3. Prove the following commutation relation in $U_{q}\left(\mathfrak{s l}_{2}\right)$, for every $n \geq 1$.
Recall our notation: $F^{(k)}=\frac{F^{k}}{[k]!}$.

$$
E F^{(n)}=F^{(n)} E+\frac{q^{n-1} K-q^{-n+1} K^{-1}}{q-q^{-1}} F^{(n-1)} .
$$

Problem 4. Let $\mu \in \mathbb{C}, n \in \mathbb{Z}_{\geq 0}$ and $0 \leq k \leq n$. Consider the following vector $\xi_{k}^{(n)}(\mu) \in M_{\mu} \otimes L_{n}$ of weight $\mu+n-2 k$:

$$
\xi_{k}^{(n)}(\mu):=\sum_{\ell \geq 0}(-1)^{\ell} q^{\ell(\mu-\ell+1)} \frac{\left[\begin{array}{c}
n-k+\ell \\
\ell
\end{array}\right]}{\left[\begin{array}{c}
\mu \\
\ell
\end{array}\right]} m_{\mu}(\ell) \otimes v_{k-\ell}^{(n)} .
$$

Verify that $E \cdot \xi_{k}^{(n)}(\mu)=0$.
Thus, for $\lambda \in \mathbb{C}, n \in \mathbb{Z}_{\geq 0}$ and $0 \leq k \leq n$, we have a unique intertwiner

$$
\varphi_{k}^{(n)}(\lambda): M_{\lambda} \rightarrow M_{\mu} \otimes L_{n}
$$

where $\mu=\lambda-n+2 k$, given by: $\varphi_{k}^{(n)}(\lambda): m_{\lambda}(0) \mapsto \xi_{k}^{(n)}(\mu)$.
Problem 5. Now let $\lambda \in \mathbb{C}, n_{1}, n_{2} \in \mathbb{Z}_{\geq 0}$ and $0 \leq k_{j} \leq n_{j}(j=1,2)$. Recall that, by definition, the fusion operator $J_{L_{n_{1}}, L_{n_{2}}}(\lambda)$ evaluated on $v_{k_{1}}^{\left(n_{1}\right)} \otimes v_{k_{2}}^{\left(n_{2}\right)}$, is obtained from the following composition: (here $\mu_{2}=\lambda-\left(n_{2}-2 k_{2}\right)$ and $\mu=\mu_{2}-\left(n_{1}-2 k_{1}\right)$):

$$
\psi:=\left(\varphi_{k_{1}}^{\left(n_{1}\right)}\left(\mu_{2}\right) \otimes \operatorname{Id}_{L_{n_{2}}}\right) \circ \varphi_{k_{2}}^{\left(n_{2}\right)}(\lambda): M_{\lambda} \rightarrow M_{\mu_{2}} \otimes L_{n_{2}} \rightarrow M_{\mu} \otimes L_{n_{1}} \otimes L_{n_{2}}
$$

That is:

$$
\psi\left(m_{\lambda}(0)\right)=m_{\mu}(0) \otimes\left(J_{L_{n_{1}}, L_{n_{2}}}(\lambda) \cdot\left(v_{k_{1}}^{\left(n_{1}\right)} \otimes v_{k_{2}}^{\left(n_{2}\right)}\right)\right)+\ldots
$$

Prove that:

$$
\begin{aligned}
& J_{L_{n_{1}}, L_{n_{2}}}(\lambda) \cdot\left(v_{k_{1}}^{\left(n_{1}\right)} \otimes v_{k_{2}}^{\left(n_{2}\right)}\right)= \\
& \\
& \sum_{\ell \geq 0}(-1)^{\ell} q^{\ell\left(\mu_{2}-\ell+1\right)} \frac{\left[\begin{array}{c}
n_{2}-k_{2}+\ell \\
\ell
\end{array}\right]\left[\begin{array}{c}
k_{1}+\ell \\
\ell
\end{array}\right]}{\left[\begin{array}{c}
\mu_{2} \\
\ell
\end{array}\right]} v_{k_{1}+\ell}^{\left(n_{1}\right)} \otimes v_{k_{2}-\ell}^{\left(n_{2}\right)}
\end{aligned}
$$

Problem 6. Using the last problem, show that the fusion operator has the following limit (once both sides are evaluated on $L_{n_{1}} \otimes L_{n_{2}}$):

$$
\lim _{q^{\lambda} \rightarrow \infty} J(\lambda)=\exp _{q^{-1}}\left(-\left(q-q^{-1}\right) F \otimes E\right)
$$

Note that the right-hand side here is the inverse of $\overline{\mathcal{R}}=\exp _{q}\left(\left(q-q^{-1}\right) F \otimes E\right)$ by Problem 2 above.

