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1. Intertwiners and fusion operator for simple Lie algebra g

We introduce the intertwiners, fusion operator and exchange operator in this
section. The main reference for this part is [3, Chapter 3,5]. 1

1.1. Notations. Let g be a simple Lie algebra over C. Let h ⊂ g be a Cartan
subalgebra and R ⊂ h∗ be the set of roots associated with the pair (g, h). Let
∆ = {αi : i ∈ I} be a base of R and let R± denote the set of positive/negative roots.

We have the triangular decomposition of g:

g = n− ⊕ h⊕ n+

Let b± := h⊕ n± be the Borel subalgebras.

Let 〈., .〉 be an invariant, non–degenerate, symmetric form on g which induces an
isomorphism ν : h∗ → h. Define di := (αi,αi)

2 and hi := d−1
i ν(αi). ∆∨ := {hi : i ∈

I} ⊂ h is the set of simple coroots. Let W be the Weyl group generated by simple
reflections si(i ∈ I). We will denote by θ ∈ R+ the longest root.

1based on the talk by Nate Bade
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1.2. Verma Modules. For λ ∈ h∗ let Mλ denote the Verma module of highest
weight λ, defined as:

Mλ := Indg
b+

C1λ = U(g)⊗U(b+) C1λ

where C1λ is one dimensional b+ module defined by:

n+1λ = 0 h1λ = λ(h)1λ

Alternately, Mλ can be defined as a quotient of U(g) by the left ideal generated
by {x ∈ n+, h− λ(h) : h ∈ h}.

1.3. Shapovalov form. There exists a unique bilinear form (., .) on Mλ satisfying:
(1) (1λ,1λ) = 1
(2) (eiv, w) = (v, fiw)
(3) (hiv, w) = (v, hiw)
(4) (fiv, w) = (v, eiw)

We record some properties of (., .) in the following:

Proposition. (1) For u ∈Mλ[µ] and v ∈Mλ[ν] such that µ 6= ν we have

(u, v) = 0

Thus (., .) decomposes as direct sum of its restriction to the weight spaces of
Mλ.

(2) Mλ is irreducible if, and only if (., .) is non–degenerate.

Proof. For the first part, note that by defining property (3) of the Shapovalov
form, we have:

(µ(h)u, v) = (u, ν(h)v)
for every h ∈ h. If µ 6= ν then there exists h ∈ h such that µ(h) − ν(h) 6= 0 and
hence (u, v) = 0.

For the second part, let us begin by assuming that (., .) is singular, i.e, there exists
u ∈ Rad(., .) and let us assume u is of maximal weight among vectors in Rad(., .).
Then for any v ∈Mλ we have

(eiu, v) = (u, fiv) = 0

which combined with the assumption on the weight of u implies that eiu = 0 for
each i. Thus the submodule generated by u is proper submodule of Mλ proving that
it is not irreducible.

Conversely if Mλ is not irreducible, then it contains a highest weight vector u ∈
Mλ[λ− β] for some β ∈ Q+ \ {0}. Thus we have

(u, fiv) = (eiu, v) = 0

and since every vector other than 1λ is of the form fiv we have (u, v) = 0 for every
v 6∈ Mλ[λ]. This combined with the fact that β 6= 0 proves that u belongs to the
radical of (., .). �
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Theorem. Mλ is irreducible for generic λ. More precisely Mλ is irreducible if, and

only if 〈λ+ ρ, α〉 6= n
〈α, α〉

2
for every α ∈ R+ and n ≥ 1.

Proof. For γ ∈ Q+ let Fγ(λ) be the determinant of (., .)|Mλ[λ−γ]. The proof of this
theorem is based on the following two claims:
Claim 1 Fγ(λ) is a product of linear polynomials of the form:

〈λ+ ρ, β〉 − 1
2
〈β, β〉

for β ∈ Q+ \ {0}.

Claim 2 If 〈λ+ρ, α〉 6= n
2 〈α, α〉 for all α ∈ R+ and positive integer n, then Fγ(λ) 6= 0

for every γ ∈ Q+.
Given these two claims, the proof of the theorem follows. Let us begin by proving

Claim 1.
Proof of Claim 1: Let us assume that Fγ(λ) = 0 for some γ ∈ Q+. Then by
previous proposition Mλ is reducible and hence contains a copy of Mλ−β for some
β ∈ Q+ \{0}. Using the fact that the Casimir operator C ∈ U(g) acts by 〈λ+2ρ, λ〉
on Mλ we get:

〈λ− β + 2ρ, λ− β〉 = 〈λ+ 2ρ, λ〉
which implies that 〈λ+ ρ, β〉 = 1

2〈β, β〉 and the claim follows.

Proof of Claim 2: In view of claim 1, we can write

Fγ(λ) =
∏

β∈Sγ(λ)

(〈λ, β〉 − 〈ρ+ β/2, β〉)

where Sγ(λ) is some finite subset of Q+. We will show that Sγ(λ) ⊂ NR+. For this
it suffices to show that the leading term of Fγ(λ) is of the form

∏
〈λ, nα〉.

Let α(1), · · · , α(N) be an ordering onR+. For n ∈ NN define a(n) := fn1

α(1) · · · f
nN

α(N) .1λ ∈
Mλ. Further let a(n,m) = (a(n), a(m). Then

det(a(n,m)) =
∑

σ

(−1)σ
∏
n

a(n, σ(n))

and it is easy to see that the term corresponding to σ = 1 has the largest degree
and a(n,n) =

∏
〈λ, α(j)〉nj . �

1.4. Expectation value. Let V be a finite–dimensional g–module. For any λ, µ ∈
h∗ define:

〈•〉 : Homg(Mλ,Mµ ⊗ V ) → V [λ− µ]

by 〈Φ〉 = 〈1∗µ,Φ(1λ)〉.

Proposition. Let γ be a weight of V . Then the expectation value map

〈•〉 : Homg(Mλ,Mλ−γ ⊗ V ) → V [γ]



4 SACHIN GAUTAM

is an isomorphism for (a) generic λ (so that Mλ−γ is irreducible) or (b) dominant
integral λ which is sufficiently large (compared to γ).

Proof. It is clear that Homg(Mλ,Mλ−γ ⊗ V ) is isomorphic to the space of highest
weight vectors of highest weight λ in Mλ−γ ⊗ V , which identifies the expectation
value homomorphism with the projection to µ = 0 component: ⊕

µ∈Q+

µ+γ∈P (V )

Mλ−γ [λ− γ − µ]⊗ V [γ + µ]


n+

→ V [γ]

where P (V ) is the set of weights of V .

This projection map is an isomorphism precisely when Mλ−γ [λ− γ − µ] does not
contain singular vectors for µ ∈ Q+, µ 6= 0 such that µ + γ ∈ P (V ). Since V is
finite–dimensional , there are only finitely many of such µ and for either λ generic,
or λ sufficiently large, one can assume that this condition is true. �

Thus we have the following equation for Φ : Mλ →Mµ ⊗ V :

Φ(1λ) = 1µ ⊗ 〈Φ〉+
∑

ai ⊗ bi (1.1)

where wt(ai) < µ and wt(bi) > λ− µ.

For a weight vector v ∈ V let Φv
λ denote the intertwiner such that 〈Φv

λ〉 = v:

Φv
λ : Mλ →Mλ−wt(v) ⊗ V

1.5. Fusion operator. Let V,W be two finite–dimensional g–modules and v ∈ V ,
w ∈W be two weight vectors. Fix λ generic, or sufficiently large dominant integral
weight and consider the following homomorphism:

v ⊗ w 7→
〈
Φv

λ−wt(v) ⊗ 1W ◦ Φw
λ

〉
∈ (V ⊗W )[wt(v) + wt(w)]

which we denote by JV W (λ), called the fusion operator. The following properties of
the fusion operator are immediate from definitions and (1.1)

Proposition. (1) JV W (λ) is h–module homomorphism.
(2) JV W (λ) is lower triangular with 1’s on the diagonal.
(3) JV W (λ) is a rational function of λ.

Example. Let g = sl2 and Lm be the m + 1–dimensional g–module with basis
{v0, · · · , vm} and sl2 action given by:

evi = ivi−1 fvi = (m− i)vi+1 hvi = (m− 2i)vi

Let ξi(µ) ∈Mµ ⊗ Lm be given by:

ξi(µ) =
i∑

k=0

(−1)k

k!

(
i
k

)
(
µ
k

)(fk1µ)⊗ vi−k
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Then eξi(µ) = 0. Hence for each λ we have the following explicit expression for the
intertwiner:

Φvi
λ : 1λ 7→ ξi(λ−m+ 2i)

Thus fusion operator JLm,Ln(λ) can be computed as:

JLm,Ln(λ)(vi ⊗ vj) =
min(j,m−i)∑

k=0

(−1)k

(
m− i
k

) (
j
k

)
(
λ− n+ 2j

k

)vi+k ⊗ vj−k

1.6. Dynamical twist equation. Let us introduce the dynamical notation. For a
function F : h∗ → End(V1 ⊗ · · · ⊗ Vn) we write F (λ+ hj) for the function:

F (λ+ hj)(v1 ⊗ · · · ⊗ vn) = F (λ+ wt(vj))(v1 ⊗ · · · ⊗ vn)

Proposition. Let V,W,U be three finite–dimensional g–modules. Then we have:

JV⊗W,U (λ)JV W (λ− h3) = JV,W⊗U (λ)JWU (λ)

Proof. For weight vectors v ∈ V,w ∈ W,u ∈ U we claim that both sides of the
equation on v ⊗ w ⊗ u are equal to:〈(

Φv
λ−wt(w)−wt(u) ⊗ 1⊗ 1

)
◦
(
Φw

λ−wt(u) ⊗ 1
)
◦ Φu

λ

〉
This assertion is proved by computing this expectation value in two different ways
and using the following equation, which follows directly from the definitions:

Φv
µ−wt(w) ⊗ 1 ◦ Φw

µ = ΦJV W (µ)(v⊗w)
µ

Using this we have:(
Φv

λ−wt(w)−wt(u) ⊗ 1⊗ 1
)
◦
(
Φw

λ−wt(u) ⊗ 1
)
◦ Φu

λ

=
(
ΦJV W (λ−wt(u))(v⊗w)

λ−wt(u) ⊗ 1
)
◦ Φu

λ = ΦL.H.S.
λ

Similarly, we have:(
Φv

λ−wt(w)−wt(u) ⊗ 1⊗ 1
)
◦
(
Φw

λ−wt(u) ⊗ 1
)
◦ Φu

λ

=
(
Φv

λ−wt(w)−wt(u) ⊗ 1⊗ 1
)
◦ ΦJW,U (λ)(w⊗u)

λ = ΦR.H.S.
λ

�

Let P : V ⊗W →W ⊗ V be the flip operator. Define:

J21
V W (λ) := P12JV W (λ)P12 ∈ End(W ⊗ V )

J13
V U (λ− h2) := P23J

12
V U (λ− h3)P23 ∈ End(V ⊗W ⊗ U)

J23
WU (λ− h1) := P12P23J

12
WU (λ− h3)P23P12 ∈ End(V ⊗W ⊗ U)

As a consequence of Proposition 1.6 we also have the following equations:

J13,2
V⊗U,W (λ)J13

V U (λ− h2) = J1,23
V,W⊗U (λ)J32

U,W (λ)

J32,1
W⊗U,V (λ)J23

WU (λ− h1) = J2,13
W,V⊗U (λ)J31

UV (λ)
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1.7. Exchange operator. Define RV W (λ) := JV W (λ)−1J21
WV (λ) : V ⊗W → V ⊗

W . The following theorem now follows from the results of the previous section:

Theorem. R(λ) satisfies the quantum dynamical Yang–Baxter equation:

R12(λ− h3)R13(λ)R23(λ− h1) = R23(λ)R13(λ− h2)R12(λ)

1.8. ABRR equation. For λ ∈ h∗ let us denote by λ ∈ h the element obtained via
the isomorphism h∗ → h. Define:

θ(λ) := λ+ ρ− 1
2

∑
i

x2
i ∈ U(h)

where {xi} is an orthonormal basis of h.

Theorem. Let V,W be two finite–dimensional representations of g. Choose e−α ∈
g−α such that 〈eα, e−α〉 = 1, e.g, e−α = dαfα. Then we have:

[JV W (λ), 1⊗ θ(λ)] =
∑

α∈R+

(e−α ⊗ eα)JV W (λ) (1.2)

Moreover JV W (λ) ∈ Endh(V ⊗W ) is the unique element satisfying (1.2) of the form
1 +

∑
β>0 φβ ⊗ ψβ where φβ ∈ End(V )[−β] and ψβ ∈ End(W )[β].

Proof. Let us begin by proving the uniqueness of a solution of (1.2). Namely we
are looking for a solution of the form 1 +N(λ) where N(λ) ∈

∑
β>0 End(V )[−β]⊗

End(W )[β]. Rewriting (1.2) for J(λ) = 1 +N(λ) we get:

(1⊗ ad(θ(λ)))N(λ) = −

 ∑
α∈R+

(e−α ⊗ eα)

 (1 +N(λ))

We claim that for generic λ, the operator ad(θ(λ)) : End(W )[γ] → End(W )[γ] is
invertible for each γ > 0. Assuming this we can rewrite the equation above:

N(λ) = −(1⊗ ad(θ(λ))−1)

 ∑
α∈R+

(e−α ⊗ eα)

 (1 +N(λ))

Thus we are reduced to proving that the operator A:

A(X) := −(1⊗ ad(θ(λ))−1)

 ∑
α∈R+

(e−α ⊗ eα)

 (1 +X)

has a unique fixed point in ⊕γ>0 End(V )[−γ] ⊗ End(W )[γ]. But this is clear by
nilpotence of multiplication by

∑
fα ⊗ eα because of the finite–dimensionality of V

and W .

Thus it remains to prove that ad(θ(λ)) is invertible. An easy computation shows
that:

ad(θ(λ))|Hom(W [γ1],W [γ2]) =
(
〈λ+ ρ, γ2 − γ1〉+

1
2

(〈γ1, γ1〉 − 〈γ2, γ2〉)
)
.1
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which implies the claim since End(W )[β] = ⊕γ Hom(W [γ],W [γ + β]).

Next we give a sketch of the proof that J(λ) satisfies (1.2). The trick is to
introduce a new operator

F (λ)(v ⊗ w) :=
〈
Φv

λ−wt(w) ⊗ 1 ◦ (C ⊗ 1) ◦ Φw
λ

〉
where C ∈ Ug is the Casimir element. Clearly we have:

F (λ)(v ⊗ w) = 〈λ− wt(w), λ− wt(w) + 2ρ〉 JV W (λ)(v ⊗ w)

However computing F (λ)(v⊗w) using the definition of C =
∑
fαeα + eαfα +

∑
x2

i
one obtains:

F (λ)(v ⊗ w) =

−2

 ∑
α∈R+

e−α ⊗ eα

+ 〈λ, λ+ 2ρ〉

−2(1⊗ (λ+ ρ)) +

(
1⊗

∑
i

x2
i

))
JV W (λ)(v ⊗ w)

Comparing the two calculations, we gets the desired equation. �

Definition. The universal fusion operator J(λ) is the unique solution of (1.2) of
the form:

1 +
∑
β>0

U(n−)−β ⊗ U(b+)β

in a completion of (U(n−)⊗U(b+))h. Define the universal exchange operatorR(λ) :=
J(λ)−1J21(λ).

1.9. The case of quantum groups. Let Uqg be the Drinfeld–Jimbo quantum
group and let R be its R–matrix. Define:

R0 := Rq−
P

xi⊗xi

One can similarly construct the intertwiners, fusion operators in this setting. The
exchange operator is defined by:

R(λ) := Jq(λ)−1R21J21
q (λ)

which is a trigonometric solution (rational function of qλ) of the quantum dynamical
Yang–Baxter equation.

The ABRR equation takes the following form:

Theorem. Jq(λ) is the unique solution (unipotent of weight zero) of the following
equation:

Jq(λ)(1⊗ q2θ(λ)) = R21
0 (1⊗ q2θ(λ))Jq(λ) (1.3)

The proof follows along the same lines of that of Theorem 1.8, with the exception
that the role of Casimir element is played by the quantum Casimir element defined
as uq−2ρ where u = S(bi)ai is the Drinfeld element (if R = ai ⊗ bi).
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Remark. Let us write Jq(λ) = J(λ) + O(~). Using the fact that R0 = 1 +
~
∑

α>0 eα ⊗ e−α +O(~2) one obtains (1.2) from (1.3) by taking coefficient of ~.

1.10. Limits of the fusion operator. One can use the ABRR equations (1.2) and
(1.3) to compute the limits of J(λ) as λ→ ±∞ in a suitable sense.

Theorem. (1) For q = 1 (the classical case) we have the following:

lim
λ→±∞

J(λ) = 1

where the limit λ→ ±∞ signifies that |λ(hi)| → ∞ for each i ∈ I.
(2) For the quantum case we take the limits qλ →∞ and qλ → 0 respectively.

lim
qλ→∞

Jq(λ) = 1

lim
qλ→0

Jq(λ) = R21
0

Proof. We prove (2) only. The proof of (1) is same in spirit and in fact easier. Let
us write J =

∑
β≥0 J

(β) and
(
R21

0

)−1 =
∑

β≥0 S
(β). Here

J (β)(λ), S(β) ∈ (Uqn−) [−β]⊗ (Uqb+) [β]

Using (1.3) we have:

lim
qλ→∞

J(λ) = lim
qλ→∞

(1⊗ q−2θ(λ))
(
R21

0

)−1
J(λ)(1⊗ q2θ(λ))

= lim
qλ→∞

∑
β,γ≥0

q−2〈λ+ρ,β+γ〉
(
(1⊗ qx2

i )S(γ)J (β)(λ)(1⊗ q−x2
i )
)

= 1

Similarly we have:

lim
qλ→0

= lim
qλ→0

R21
0 (1⊗ q2θ(λ))J(λ)(1⊗ q−2θ(λ))

= R21
0 lim

qλ→0

∑
β≥0

q2〈λ+ρ,β〉
(
(1⊗ q−x2

i )J (β)(λ)(1⊗ qx2
i )
)

= R21
0

�

2. Dynamical Weyl group

This section is aimed at defining certain operators Aw,V (λ) depending on λ ∈ h∗,
for each w ∈W and V an integrable g (or Uqg) module. The main reference for this
part is [4, §3–5]. 2

We consider the quantum group Uq(g), for q a complex number, not a root of
unity. We also fix a logarithm of q and have q2 = e~. To have a uniform description,
we allow q = 1 or ~ = 0 however.

2based on the talk by Martina Balagovic
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2.1. Quantum Verma identities. Let λ ∈ h∗ be a dominant integral weight and
Mλ be the Verma module. Fix w ∈ W and a reduced expression of w = si1 · · · sil
and define:

α(j) := sil · · · sij+1αij

nj := 2

〈
λ+ ρ, α(j)

〉〈
α(j), α(j)

〉
Lemma. With the preceding notations, we have

(1) The set {(nj , dj) : j = 1, · · · , l} is independent of the reduced expression of
w.

(2) The element fn1
i1
· · · fnl

il
∈ Uq(n−) is independent of the reduced expression of

w.
(3) The vector f (n1)

i1
· · · f (nl)

il
1λ ∈ Mλ is a singular vector of Mλ[w · λ], which is

independent of the reduced expression of w.

Notation: Recall the shifted action of W on h∗ written as w · λ is given by:

w · λ = w(λ+ ρ)− ρ

We will denote by 1λ
w·λ the singular vector of Mλ[w · λ] obtained in (3) of Lemma

above.

Proof. One can prove using an easy induction argument on l(w) that the vector
1λ

w·λ ∈ Mλ[w · λ] and is a singular vector. To prove the independence from the
choice of a reduced expression, using Tits’ Lemma, we can assume that two reduced
expressions differ by a braid move, thus it suffices to prove the claim for rank 2
cases: A1 ×A1, A2, B2 and G2 and w = w0 is the longest element.

In this case the set {α(j) : 1 ≤ j ≤ l} is the set of positive roots, each with
multiplicity one. This proves (1). For the rest a simple calculation implies that we
only need to check the following equalities in the respective cases (for every a, b ≥ 0):

(A1 ×A1)
fa
1 f

b
2 = f b

2f
a
1

(A2)
fa
1 f

a+b
2 f b

1 = f b
2f

a+b
1 f b

2

(B2)
fa
1 f

a+b
2 fa+2b

1 f b
2 = f b

2f
a+2b
1 fa+b

2 fa
1

(G2)
fa
1 f

a+b
2 f2a+3b

1 fa+2b
2 fa+3b

1 f b
2 = f b

2f
a+3b
1 fa+2b

2 f2a+3b
1 fa+b

2 fa
1

Of course it is possible to prove these from the Serre relations. However a more
conceptual proof goes as follows. First we know that both sides applied to 1λ are
singular vectors of Mλ[w ·λ]. We claim that the space of singular vectors in Mλ[w ·λ]
is 1–dimensional. Assuming this, we get that both sides of the equations are related
by a non–zero scalar. Then one can project Uqn− to the q–commutative algebra
generated by {fi : i = 1, 2} with relation fifj = q

aij

i fjfi which implies that the
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scalar is in fact equal to 1.

Let k = dim
(
Mλ[w · λ]Uqn+

)
. Since λ is dominant integral, Mw·λ is irreducible

and hence we have M⊕k
w·λ ⊂Mλ. Comparing dimensions of the weight spaces on the

both sides, we obtain that k = 1. �

2.2. Dynamical Weyl group for sl2. In this paragraph g = sl2 and we identify
h∗ with C via zα/2 ↔ z. The Weyl group in this case is W =

〈
1, s|s2 = 1

〉
. Under

the identification h∗ = C, the action of s is by multiplication by (−1).

For λ ∈ N and V a finite–dimensional Uqsl2–module, v ∈ V [µ] we have the
intertwiner:

Φv
λ : Mλ →Mλ−µ ⊗ V

Proposition. The intertwiner Φv
λ restricts to a homomorphism:

Mλ

Φv
λ // Mλ−µ ⊗ V

Ms·λ
?�

OO

// Ms·(λ−µ) ⊗ V
?�

OO

Proof. Let us begin by writing:

Φv
λ1λ = 1λ−µ ⊗ v +

∑
p>0

ap ⊗ vp

where ap ∈Mλ[λ− µ− p] and vp ∈ V [µ+ p]. Applying f (λ+1) to both sides we can
write:

Φ1λ
s·λ = f (m)1λ−µ ⊗ v′ +

∑
p>m

a′p ⊗ v′p

Using the fact that 1λ
s·λ is singular, we obtain that f (m)1λ−µ is a singular vector

and hence m = λ− µ+ 1 and we are done. �

Define As,V (λ) : V [ν] → V [s(ν)] by:

Φv
λ1

λ
s·λ = 1λ−ν

s·λ−ν ⊗As,V (v) + · · ·

2.3. Computation of As,V (λ). We will need the following notational set up. Recall
that for each n ≥ 0 there is a unique irreducible Uqsl2 module of dimension n + 1,
Ln. The action of Uqsl2 is given on a basis {v0, · · · , vn} by:

Evj = [n− j + 1]vj−1 Fvj = [j + 1]vj−1 Kvj = qn−2jvj

Let Mλ be the Verma module. To describe the action of Uqsl2 we fix a basis
{mr(λ) := f (r)1λ : r ≥ 0}

Emr(λ) = [λ− r + 1]mr−1(λ) Fmr(λ) = [r + 1]mr+1(λ) Kmr(λ) = qλ−2rmr(λ)
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Define:

c
(n)
k;r (µ) := (−1)rq−r(n−2k+r+1)

[
n− k + r

r

]
q[

µ
r

]
q

ξ
(n)
k (µ) =

k∑
r=0

c
(n)
k;r (µ)mr(µ)⊗ vk−r ∈Mµ ⊗ Ln

Then it is easy to see that ξ(n)
k (µ) is a singular vector. Hence we have:

Φvk
λ 1λ = ξ

(n)
k (λ− n+ 2k)

In order to compute Φvk
λ 1λ

s·λ we will need the following computation, easily proved
by induction:

∆(f (λ+1)) =
λ+1∑
r=0

qr(λ+1−r)f (λ+1−r)K−r ⊗ f (r)

Thus we have (in the following computations µ = λ− n+ 2k):

Φvk
λ 1λ

s·λ = ∆(f (λ+1))ξ(n)
k (µ)

=
∑

0≤r≤λ+1
0≤t≤k

c
(n)
k;t (µ)qr(n−2k+1−r+2t)

[
λ+ 1− r + t

t

]
q

[
k − t+ r

r

]
q

mλ+1−r+t(µ)⊗ vk−t+r

Let us write As,Ln(λ)(vk) = Ak
n(λ)vn−k. Then taking coefficient of mµ+1(µ) from

the above summation, we get:

Ak
n(λ) = qn−2k

k∑
t=0

(−1)t

[
n− k + t

k

]
q

[
k
t

]
q

[λ− n+ 2k + 1]
[λ− n+ 2k − s+ 1]

Lemma. We have the following equality for each n, k ∈ N, k ≤ n

k+1∑
t=1

(−1)t+1

[
n− t+ 1

k

]
q

[
k

t− 1

]
q

1
[λ− n+ k + t]

=

∏k
j=1[λ+ j + 1]∏k+1

j=1 [λ− n+ k + j]

The proof is an easy argument using partial fractions.

This lemma directly implies that

Ak
n(λ) = (−1)kqn−2k

k∏
j=1

[λ+ j + 1]
[λ− n+ k + j]

(2.1)
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2.4. Dynamical Weyl group for arbitrary g. Let V be an integrable Uqg–
module. For each ν ∈ P (V ) and si a simple reflection defineAsi,V (λ) : V [ν] → V [siν]
by considering the (Uqisl2)

(i) corresponding the root αi:

Asi,V (λ) := As,V (λ(hi))

Proposition. Let w = si1 · · · sil be a reduced expression for w ∈W . Define:

Aw,V (λ) := Asi1
,V ((si2 · · · sil) · λ) · · ·Asil−1

,V (sil · λ)Asil
,V (λ)

Then Aw,V (λ) : V [ν] → V [wν] and has the following form:

Φv
λ1

λ
w·λ = 1λ−ν

w·λ−ν ⊗Aw,V (λ)v + · · ·
and hence it is independent of the choice of the reduced expression.

Proof is an easy induction on l(w).

Corollary. (1) Aw,V (λ) : V [ν] → V [wν] is invertible, rational function of qλ

(or λ if q = 1).
(2) Let BW be the braid group of type g. For each w ∈ BW we can define

Aw,V (λ) by
AT−1

i ,V (λ) := Asi,V (si · λ)−1

(3) If l(w1w2) = l(w1) + l(w2) then we have:

Aw1w2,V (λ) = Aw1,V (w2 · λ)Aw2,V (λ) (2.2)

2.5. Relation with the fusion operator.

Proposition. For U, V two integrable Uqg–modules we have:

Aw,U⊗V (λ)JUV (λ) = JUV (w · λ)A(2)
w,V (λ)A(1)

w,U (λ− h2) (2.3)

Proof. We compute both sides on u⊗ v. It is clear that the value of left–hand side
on u ⊗ v is the expectation value of the bottom horizontal arrow of the following
diagram:

Mλ

Φv
λ // Mλ−wt(v) ⊗ V

Φu
λ−wt(v)

⊗1
// Mλ−wt(u)−wt(v) ⊗ U ⊗ V

Mw·λ
?�

OO

// Mw·(λ−wt u−wt(v)) ⊗ U ⊗ V
?�

OO

Similarly the value of the right–hand side on u⊗ v is given by the expectation value
of the composition of bottom horizontal arrows in the following diagram:

Mλ

Φv
λ // Mλ−wt(v) ⊗ V

Φu
λ−wt(v)

⊗1
// Mλ−wt(u)−wt(v) ⊗ U ⊗ V

Mw·λ
?�

OO

// Mw·(λ−wt(v)) ⊗ V
?�

OO

// Mw·(λ−wt u−wt(v)) ⊗ U ⊗ V
?�

OO

�
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2.6. Application of Proposition 2.5: I. We define a few more versions of the
braid group action on meromorphic functions of λ ∈ h∗ taking values in V , an
integrable Uqg–module.

Definition. Let w ∈ BW , V, V1, · · · , VN be integrable Uqg–modules.
(1) Shifted dynamical action For a meromorphic function f(λ) ∈ V :

(w ◦ f)(λ) = Aw,V (w−1 · λ)f(w−1 · λ)

(2) Unshifted dynamical action Define:

Aw,V (λ) := Aw,V

(
−λ− ρ+

1
2
h

)
here h stands for the dynamical notation introduced before. More explic-
itly A

(
−λ− ρ+ 1

2h
)
(v) = A

(
−λ− ρ+ 1

2 wt(v)
)
v. Finally we have the

unshifted dynamical action of BW on the space of meromorphic functions
f(λ) ∈ V :

(w ∗ f)(λ) = Aw,V (w−1λ)f(w−1λ)
(3) Shifted multicomponent dynamical action Define

Aw,V1,··· ,VN
(λ) := A

(N)
w,VN

(λ)A(N−1)
w,VN−1

(λ− hN ) · · ·A(1)
w,V1

(λ− h2 − · · · − hN )

Aw,V1,··· ,VN
:= Aw,V1,··· ,VN

−λ− ρ+
1
2

N∑
j=1

hj


Then the shifted multicomponent dynamical action of BW on the space of
meromorphic functions f(λ) ∈ V1 ⊗ · · · ⊗ VN is given by:

(w • f)(λ) := Aw,V1,··· ,VN
(w−1 · λ)f(w−1 · λ)

(4) Unshifted multicomponent dynamical action

(w � f)(λ) := Aw,V1,··· ,VN
(w−1λ)f(w−1λ)

Similarly define the multicomponent versions of the fusion operators:

J1···N (λ) := J1,[2,N ](λ)J2,[3,N ](λ) · · ·JN−1,N (λ)

J 1,··· ,N (λ) = J1,··· ,N

−λ− ρ+
1
2

N∑
j=1

hj


We have the following important corollary of Proposition 2.5

Corollary. The following relations hold as operators on the space of meromorphic
functions f(λ) ∈ V1 ⊗ · · · ⊗ VN

(1)
J1,··· ,N (w•) = (w◦)J1,··· ,N

(2)
J 1,··· ,N (w�) = (w∗)J 1,··· ,N
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The proof is essentially an iterative use of Proposition 2.5, except that the mean-
ing of these equations needs a word of explanation. (1) means the following equality
for each f(λ):

J1,··· ,N (λ)Aw,V1,··· ,VN
(w−1 · λ)f(w−1 · λ)

= Aw,V1⊗···⊗VN
(w−1 · λ)J1,··· ,N (w−1 · λ)f(w−1 · λ)

2.7. Application of Proposition 2.5: II. One can use Proposition 2.5 to carry
out the computation of As,V (λ) for g = sl2 more conceptually (also see the calcula-
tion in section 2.3). The idea of the computation is as follows:

• Compute the dynamical operator for V = L1 the standard 2–dimensional
representation. This is easy step and the answer is given by:

As,L1(λ)v0 = qv1 As,L1(λ)(v1) = −q−1 [λ+ 2]
[λ+ 1]

v0 (2.4)

• Use the fact that Lm+1 is a subrepresentation generated by the highest
weight vector of L1⊗Lm to get the recurrence relation among As,Lm , which
determines it up to a scalar.

• Use the limits λ→ ±∞ to fix the scalar.

Let us denote by Ak
m(λ) the coefficient:

As,Lm(λ)vk = Ak
m(λ)vm−k

Proposition 2.5 yields the following:

As,L1⊗Lm(λ)JL1,Lm(λ) = JL1,Lm(−λ)A(2)
s,Lm

(λ)A(1)
s,L1

(λ− h2)

which gives the following recurrence relation (in what follows the symbol ≡ means
equality up to a factor which is independent of λ).

A0
m+1(λ) = A0

m(λ)A0
1(λ−m)

Ak
m+1(λ)Ak−1

m−1(λ) ≡ Ak
m(λ)A0

1(λ−m+ 2k)A0
1(λ−m+ 2k − 2)

with base condition A0
1 = 1 and

A1
1(λ) ≡ [λ+ 2]

[λ+ 1]

Upon solving this system we obtain:

Ak
m(λ) = cm,k

∏k
k=1[λ+ 1 + j]∏k

j=1[λ−m+ k + j]
(2.5)
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2.8. Limits. In order to compute the scalar cm,k we take the limits qλ → ∞, 0
respectively. From the expression of Ak

m(λ) it is clear that these limits exist.

A+
V := lim

qλ→∞
As,V (λ)

A−V := lim
qλ→0

As,V (λ)

Then we get:

q−k(m−k+1)A+
Lm

(vk) = qk(m−k+1)A−Lm
(vk) =: A∞Lm

(vk)

Then it is clear that cm,k is given by A∞Lm
(vk) = cm,kvm−k.

Proposition. A∞Lm
(vk) = (−1)kqm−2kvm−k

Proof. Recall that by Theorem 1.10 we have

lim
qλ→∞

JUV (λ) = 1 lim
qλ→0

JUV (λ) = R21
0

This implies by Proposition 2.5

A+
U⊗V = R21

0 (A+
U ⊗A+

V )

Therefore if we define A′ = Aq
h(h+2)

4 then we get:

A′U⊗V = R21(A′U ⊗A′V )

And hence the defining property of R implies that:

A′f = −q−2eA′ A′e = −q2fA′

and the same holds for A∞ since they are proportional: A∞|Lmq
m(m+2)/4 = A′|Lm .

Now we can proceed as follows:

A+

L⊗m
1

v⊗m
0 = qmv⊗m

1

which implies that for Lm we have:

A∞(v0) = qmvm

and the desired result follows form the commutation between {e, f} and A∞ given
above. �

2.9. Relation with quantum Weyl group. Now we return to general set up
of an arbitrary simple Lie algebra g. For any chamber in h∗, say C, we have the
following notion of limit of the dynamical Weyl group operators:

AC
w,V := lim

λ→∞
in C direction

Aw,V (λ)

The following equation is easy to verify. For w = si1 · · · sil a reduced expression, we
have:

AC
w,V = A

ε1(C)
si1

,V · · ·A
εl(C)
sil

.V

where εj(C) = sign
〈
C,α(j)

〉
. In particular we have the following:
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Proposition. Let us define A± to be AC for C dominant (and anti–dominant re-
spectively). Then A±w,V is independent of the choice of reduced expression. In par-
ticular Ti 7→ A±si

extends to (two) group homomorphisms.

Recall the definition of q–Weyl group operators:

Si := expq−1
i

(q−1
i eiK

−1
i ) expq−1

i
(−fi) expq−1

i
(qeiKi)q

hi(hi+1)/2
i

where the q–exponential is defined by:

expq(x) =
∑
n≥0

qn(n−1)/2 x
n

[n]!

Then for sl2 the following computation can be directly verified:

Svj = (−1)m−jq(m−j)(j+1)vm−j

and hence we have the following equality of operators on finite–dimensional modules
over Uqsl2:

A+
Lm

= (−1)mS A−Lm
= qhS−1

which directly implies the following important corollary:

Corollary. The elements {Si : i ∈ I} satisfy the braid relations (of type g) in any
integrable Uqg–module.

Remark. It is easy to check that the results of §2 apply to arbitrary Kac–Moody
algebra g and locally finite h–diagonalizable modules V .

3. Affine Lie algebras

Now we consider the case of (untwisted) affine Lie algebras. We closely follow the
conventions of [4, 7]. The main references for this part are [1, 7, 8]. 3

3.1. Loop realization. Recall the notations from §1.1. In addition we set

m :=
(θ, θ)

2
h∨ := 1 + ρ(θ∨)

Note that m = 1 for simply–laced cases (A,D,E); m = 3 for G2 and m = 2 other-
wise. h∨ is known as the dual Coxeter number.

Define g[z, z−1] to be the Lie algebra of Laurent polynomials with coefficients in
g. Let ĝ be the central extension of g[z, z−1] given by the following 2–cocycle:

ω(x(k), y(l)) = kδk+l,0(x, y)

where we denote by x(n) := x.zn for x ∈ g and n ∈ Z. It is easy to see that
ω : g[z, z−1]× g[z, z−1] → C satisfies the cocycle condition:

ω([a, b], c) + cyclic = 0 for every a, b, c ∈ g[z, z−1]

3based on the talk by Salvatore Stella



DYNAMICAL YANG–BAXTER EQUATIONS 17

Hence the following bracket defines a Lie algebra structure on ĝ := g[z, z−1]⊕ Cc:

[x(k), y(l)] := [x, y](k + l) +mkδk+l,0(x, y)c

and ad(c) ≡ 0. Let ∂ denote the following derivation of ĝ:

∂(c) = 0 ∂(x(n)) = nx(n)

Let g̃ := ĝ o Cd. That is, ĝ is a Lie subalgebra of g̃ and ad(d)(•) = ∂(•). Define
ĥ := h⊕ Cc and h̃ := h⊕ Cc⊕ Cd.

We extend the inner product on h to one on h̃ by declaring (c, d) = 1/m and
(c, c) = (d, d) = 0 = (c, h) = (d, h). This bilinear form defines an isomorphism
ν̃ : h̃∗ → h̃. Let δ,Λ0 ∈ h̃∗ be two linear forms dual to the elements d and c

respectively. A typical element of h̃∗ is written as λ̃ = λ+ kΛ0 + lδ. Moreover ν̃ is
determined by the following:

ν̃|h = ν

ν̃(Λ0) = md ν̃(δ) = mc

We have the root space decomposition of g̃ relative to h̃:

g̃ = h̃ +
⊕
eα∈ bR

g̃eα
where R̂ = {α + nδ : either α ∈ R,n ∈ Z or α = 0, n ∈ Z×}. We choose the
following base of R̂:

∆̂ := {αi : i ∈ I} ∪ {−θ + δ =: α0}

Then the set of coroots ∆̂∨ ∈ h̃ is given by:

∆̂∨ = {hi : i ∈ I} ∪
{
h0 := c− θ∨

}
In order to obtain the Kac–Moody presentation of g̃ let us choose eθ ∈ gθ and
fθ ∈ g−θ determined by the condition that (eθ, fθ) = 1/m. Define

e0 := fθ(1) f0 := eθ(−1)

Then clearly [e0, f0] = −θ∨+c = h0. The system of generators {hi, ei, fi : i ∈ {0}∪I}
(and d) give a Kac–Moody presentation of ĝ (respectively g̃).

We have the similar notions of affine root lattice, weight lattice etc. Let us choose
ρ̂ ∈ h̃∗ so that ρ̂(hi) = 1 for each i ∈ {0} ∪ I as follows:

ρ̂ = ρ+ h∨Λ0

A word of caution: The notations we have used are consistent with [4, 7], but differ
slightly from [2]. In [2] the normalization of (., .) is chosen so that (θ, θ) = 2, i.e,
m = 1.
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3.2. Affine Weyl group. Let us denote by Waff , the affine Weyl group, the group
generated by reflections 〈s0, si : i ∈ I〉 ⊂ GL(h̃∗). Using ν̃ we also have an action
of Waff on h̃. In order to understand this group better, we introduce the following
element:

tθ∨ := s0sθ

The following equations can be verified by direct computations:

tθ∨(λ+ kΛ0 + lδ) = λ+mkν−1(θ∨) + kΛ0 +
(
l − λ(θ∨)−mk

(θ∨, θ∨)
2

)
δ

tθ∨(h+ kd+ lc) = h+ kθ∨ + kd+
(
l −m(h, θ∨)−mk

(θ∨, θ∨)
2

)
c

Let us define tα∨ for any α∨ ∈ Q∨ as an operator on h̃ by:

tα∨(h+ kd+ lc) = h+ kα∨ + kd+
(
l −m(h, α∨)− mk

2
(α∨, α∨)

)
c (3.1)

Then the following properties can be easily verified:

wtα∨w
−1 = twα∨ tα∨tβ∨ = tα∨+β∨

which together with the fact that tθ∨ ∈ Waff and that θ∨ is a short root of R∨

implies that t∨α ∈ Waff for every α∨ ∈ Q∨. We obtain the following theorem (using
the fact that the action of Waff on h̃ is faithful):

Theorem. The assignment s0 7→ (sθ,−θ∨) extends to an isomorphism of groups
Waff

∼= W nQ∨.

3.3. Extended affine Weyl group. It is easy to see that (3.1) defined for α∨ ∈ P∨

preserves the set of roots R̂. This allows us to define a larger group of symmetries:

W e
aff := W n P∨ (3.2)

together with a length function l(w) = number of positive roots mapped to negative
by w. Let us denote by Π ⊂ W e

aff the subgroup of elements of length 0. Let V be
the real affine hyperplane in h̃/Cc defined by δ = 1, which we can identify with hR
via h 7→ h+ d. A quick computation using (3.1) implies that the action of Waff and
W e

aff descends to an affine linear action on h given by:

tα∨(h) = h+ α∨ W acts as usual

The linear form α + nδ ∈ R̂ gets identified with an affine linear function on h
given by: (α + nδ)(h) = α(h) + n. Let haff-reg be the complement in h of the affine
root hyperplanes: hα+nδ := {h : α(n) = −n}.

Let us choose the alcove in hR defined by

C := {h ∈ hR : αi(h) > 0 for every i ∈ {0} ∪ I}

In other words C = {h : αi(h) > 0 and θ(h) < 1}. It is clear that C is an open
simplex in hR and the walls of C are canonically labeled by {0}∪ I. The elements of
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Π permute the walls of C and hence act as symmetries of the affine Dynkin diagram.
The following theorem is given in [1, Chapter 6, §2].

Theorem. The subgroup Π of W e
aff is isomorphic to P∨/Q∨. There is a canonical

bijection between the set Π \ {1} and the set of minuscule coweights:

Π \ {1} ↔ J := {i ∈ I : θ(ω∨i ) = 1}
Let 1 6= π ∈ Π correspond to i ∈ J . Then as an element of W e

aff we have:

π = tω∨i wiw0

where wi is the longest element of the root system obtained by deleting i from the
Dynkin diagram of g. Finally we have a group isomorphism W e

aff
∼= Π nWaff .

3.4. Affine braid group. Using the length function on W e
aff we can define the

extended affine braid group denoted by Be
aff as a group generated by {Tw : w ∈W e

aff}
subject to the relations:

TuTv = Tuv if l(uv) = l(u) + l(v)

Corresponding to the realizations W e
aff = W nP∨ and W e

aff = Π nWaff we have two
presentations of Be

aff :
(1) Be

aff is generated by {Tw, Y
γ : w ∈W,γ ∈ P∨} subject to

TuTv = Tuv if l(uv) = l(u) + l(v)

Y λY µ = Y λ+µ for every λ, µ ∈ P∨

T−1
i Y λT−1

i =
{
Y λ if αi(λ) = 0
Y si(λ) if αi(λ) = 1

(2) Be
aff is generated by {Uπ, Tw : w ∈Waff , π ∈ Π} subject to

TuTv = Tuv if l(uv) = l(u) + l(v)
UπUπ′ = Uπ+π′

UπTsiU
−1
π = Tsπ(i)

The affine braid group Baff is a subgroup of Be
aff generated by {Tw : w ∈Waff}.

3.5. Category O and finite–dimensional representations. Since g̃ is a Kac–
Moody algebra one can define the notion of highest weight modules, category O,
Verma modules etc.

Definition. A representation V of g̃ is said to be h̃–diagonalizable if

V =
⊕
eλ∈eh∗

V [λ̃]

We say V is locally finite if for each i ∈ I ∪ {0}, the operators ei, fi act locally
nilpotently. The category O consists of finitely–generated h̃–diagonalizable modules
V such that there exist a finite collection {λ̃a : 1 ≤ a ≤ r} such that µ̃ ∈ P (V )
implies that µ̃ ≤ λ̃a for some a.



20 SACHIN GAUTAM

Figure 1. Decomposition for O
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One defines the Verma module Meλ for each λ̃ ∈ h̃∗ analogously and it is easy to
show that Meλ ∈ O.

Now let us focus on another family of representations of g̃ which do not belong
to category O. Let V be a finite–dimensional representation of ĝ. One can prove
easily that c acts by 0 on such representations. Define loop representation of g̃ by
V := V [z, z−1] where x(r) acts by zrx(r) and d acts by z d

dz . Then one has:

P (V ) = {λ+ nδ : λ ∈ P (V ) ⊂ h∗, n ∈ Z}

and V is h̃–diagonalizable. Moreover V is also locally finite, but not in category O.

Example. Let g = sl2 and choose a ∈ C×. Define V = Ln(a), a ĝ–module with
basis {v0, · · · , vn} and ĝ–action given by:

e(r).vi = ar(n− i+ 1)vi−1 f(r).vi = ar(i+ 1)vi+1 h(r).vi = ar(n− 2i)vi

Then g̃ action on the corresponding loop representation, V , with basis {vi(s) : 0 ≤
i ≤ n, s ∈ Z} is given by:

e(r).vi(s) = ar(n− i+ 1)vi−1(r + s) f(r).vi(s) = ar(i+ 1)vi+1(r + s)

h(r).vi(s) = ar(n− 2i)vi(r + s) d.vi(s) = svi(s)

Then it is clear that the weights of V are not bounded from above.

Let us denote by Repfd(g̃) the category of loop representations of g̃ which is man-
ifestly same as the category of finite–dimensional representations of g[z, z−1]. We
remark that the two notions essentially differ by choice of the triangular decompo-
sition of ĝ (see Figures 1, 2 where each • on top row indicates n+, on middle row
indicates h and on bottom row indicates n−, spread over all Z).

Finally we introduce the notion of shift of a module V by b ∈ C× as:

V (b) := V/(z − b)V ∈ Repfd(ĝ)
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Figure 2. Decomposition for Repfd(g̃)
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4. Intertwiners and fusion operator for affine Lie algebras

In this section we consider the intertwiner operator between Verma module and
a tensor product of Verma module with loop representation. The contents of this
section carry over uniformly to the quantum affine algebras and we consider both the
classical and quantum cases together. A brief discussion of quantum affine algebras
is given later. 4

4.1. Completed tensor product I. Let λ̃ ∈ h̃∗ and let Meλ be the Verma module.
Let V be a loop representation of Uqg̃. We would like to have an analogue of
Proposition 1.4 in this setting. Define the expectation value homomorphism as:

〈•〉 : HomUqeg(Meλ,Meµ ⊗ V ) → V [λ̃− µ̃]

In order for this map to be invertible, we need to consider the completed tensor
product ⊗̂ defined as:

Definition. Let U and V be two diagonalizable h̃ modules. Then:

U⊗̂V :=
⊕

eµ
∏

eβ
U [µ̃− β̃]⊗ V [β̃]


Proposition. The expectation value homomorphism 〈•〉 is an isomorphism for
generic λ̃ and large dominant λ̃:

〈•〉 : HomUqeg(Meλ,Meµ⊗̂V ) → V [λ̃− µ̃]

Remark. The proposition would be false without the completion. For example,
let g = sl2 and λ̃ = λ ∈ C. Take V = L1 to be the standard two dimensional
representation. We claim that there are no singular vectors in Meλ⊗V . Assume the
contrary that ξ is a singular vector and let m ⊗ viz

n be a non–zero term in ξ with
largest n. Then h(1)ξ has the term (−1)im⊗ viz

n+1 which is not cancelled by any
other, which contradicts that n̂+ξ = 0.

4based on the talk by Andrea Appel



22 SACHIN GAUTAM

Thus it makes sense to consider an operator Φveλ whose expectation value in v ∈ V .

4.2. Completed tensor product II. We can similarly define the fusion operator
JUV (λ̃, z) for which we need the following completion of the tensor product.

Definition. Let V1, · · · , VN be loop representations of Uqg̃. Define:

V1~⊗ · · · ~⊗VN :=
(
V1 ⊗ · · · ⊗ VN

)
[[z2/z1, · · · , zN/zN−1]][zi, z−1

i : i = 1, · · · , N ]

with natural Uqg̃–module structure.

With this notation, we define the fusion operator JUV (λ̃, z1, z2) whose value at
u ⊗ v (for u ∈ U [wt(u)] and v ∈ V [wt(v)]) is same as the expectation value of the
following composition:

Meλ Φveλ // Meλ−wt(v)
⊗̂V

Φueλ−wt(v)
⊗1

// Meλ−wt(u)−wt(v)
⊗̂(U~⊗V )

We claim that the fusion operator is in fact an element of End(U⊗V )[[z2/z1]] which
allows us to write it as a formal series in z = z2/z1.

JUV (λ̃, z) =
∑
n≥0

JUV,nz
n

We remark that the usual properties of the fusion operator hold. That is, it is an
invertible operator which is a rational function of qeλ. Moreover Proposition 2.5 and
Corollary 2.6 hold (where BW in the statements is replaced by Baff).

Remark. The following computation motivates the definition of ~⊗. Let Φ : Meλ →
Meµ⊗̂V be an intertwiner. We only consider weight spaces under d in what follows.
Since n̂− has negative energy, we have (l = λ̃(d))

Meλ =
⊕
n≥0

Meλ[l − n]

If 〈Φ〉 = v.zk for v ∈ V [γ] then Φ maps

Φvzkeλ : Meλ[l − n] →
⊕
t≥0

Meλ−γ−kδ
[l − k − t]⊗ V [k + t− n]

Let us assume that k = 0 and let u ∈ U [µ]. Then the composition of Φueλ−γ
⊗ 1 ◦Φveλ

maps:

Meλ[l− n]
Φveλ→∏

t≥0

Meλ−γ
[l− t]⊗ V [t− n]

Φueλ−γ→
∏

p,t≥0

Meλ−γ−µ
[l− p]⊗U [p− t]⊗ V [t− n]

The last term of the composition has z terms of the form (z2/z1)t.zp
1z

−n
2 . This is

the reason for considering ~⊗. Note that the fusion operator is the expectation value
of this composition, and hence only considers the case n = 0 = p for which we only
get a power series in z2/z1 as claimed.

4.3. Quantum affine algebras: two definitions.
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5. Trigonometric Knizhnik–Zamolodchikov equations

The aim of this section is to obtain a differential equation satisfied by the fusion
operators for affine Lie algebra g̃. Main references for this part are [2, 5].5

5.1. Casimir operator. Let g be a Kac–Moody algebra. For each α ∈ R+ choose
a basis {e(s)α } of gα and the dual basis {e(s)−α} of g−α. The following construction of
the Casimir element is taken from [7, §2.5]. Define:

C0 := 2
∑

α∈R+

∑
s

e
(s)
−αe

(s)
α ∈ Ug

Finally choose ρ ∈ h∗ such that ρ(hi) = 1 for each i.

Proposition. For x ∈ gα we have:

[C0, x] = −x (2 〈ρ, α〉+ 2ν(α) + 〈α, α〉)

where α ∈ {0} ∪R.

Proof. The assertion is clear for α = 0 since C0 is of weight 0. We claim that if
the assertion holds for x ∈ gα and y ∈ gβ then it holds for [x, y] ∈ gα+β. To prove
this we have:

[C0, [x, y]] = [x, [C0, y]] + [[C0, x], y]

= −[x, y] (2 〈ρ, α+ β〉+ 〈α, α〉+ 〈β, β〉)− 2 ([x, yν(β)] + [xν(α), y])

= −[x, y] (2 〈ρ, α+ β〉+ 〈α+ β, α+ β〉+ 2ν(α+ β))

Thus it suffices to prove the proposition for x ∈ gαi , i.e, x = ei (the proof for x = fi

is similar). In order to carry out the computation, we need the following claim:
Claim: If z ∈ gβ−α where α, β ∈ h∗ such that β − α ∈ R, then we have:∑

r

e
(r)
−α ⊗ [z, e(r)α ] =

∑
s

[e(s)−β, z]⊗ e
(s)
β

Assuming this claim, we have:

[C0, ei] = 2
∑

α∈R+

∑
j

[e(j)−α, ei]e
(j)
α + e

(j)
−α[e(j)α , ei]

= 2
∑

j

[e(j)−αi
, ei]e(j)αi

+ 2
∑

α∈R+\{αi}

(
[e(s)−α, ei]e

(s)
α + e

(r)
−α+αi

[e(r)α−αi
, ei]
)

= 2
∑

j

[e(j)−α, ei]e
(j)
αi

The last term can be easily seen to be equal to−2ν(αi)ei which is same as−ei(2ν(αi)+
2 〈αi, αi〉) as claimed in the proposition (since 2 〈ρ, αi〉 = 〈αi, αi〉).

5based on the talk by Sachin Gautam
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Proof of the claim: Let us pair both sides of the required equation with e ⊗ e′ ∈
gα ⊗ g−β. Then by invariance and non–degeneracy of 〈., .〉 we have:

L.H.S. =
∑

r

〈
e
(r)
−α, e

〉〈
[z, e(r)α ], e′

〉
=
∑

r

〈
e
(r)
−α, e

〉〈
[e′, z], e(r)α

〉
=
〈
e, [e′, z]

〉
Similarly we get that the right–hand side is same as 〈[x, e], e′〉 and we are done. �

Corollary. Define C = C0 + 2ν(ρ) +
∑

i x
2
i , where {xi} is an orthonormal basis of

h. Then we have:
[C, x] = 0 for every x ∈ g

Proof. In view of the proposition above, we only need to show that for every x ∈ gα

we have the following: [∑
i

x2
i , x

]
= x(2ν(α) + 〈α, α〉)

which we prove as: [∑
i

x2
i , x

]
=
∑

i

α(xi)xxi + xiα(xi)x

= 2α(xi)xxi + α(xi)2x

= x(2ν(α) + 〈α, α〉)
�

5.2. Casimir element of g̃. In our case, the Kac–Moody algebra is g̃. We have
two expressions for Ĉ ∈ U g̃ which follow from Corollary 5.1.

Ĉ = 2m(c+ h∨)d+ C + 2

 ∑
α∈R+
n>0

e−α(−n)eα(n)

+eα(−n)e−α(n) +
∑
n>0

i

xi(−n)xi(n)

 (5.1)

where {xi} is an orthonormal basis of h, R is the root system of (g, h) (see §1.1),
e−α = dαfα is dual vector to eα and C is the Casimir element for g.

Second expression for Ĉ is more useful for future applications. Let B be an
orthonormal basis of g. Then
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Ĉ = 2m(c+ h∨)d+
∑
a∈B

(∑
n>0

2a(−n)a(n) + a(0)2
)

= C + 2m(c+ h∨)d+ 2
∑
a∈B
n>0

a(−n)a(n)
(5.2)

5.3. Let M be a highest weight g̃–module of highest weight λ̃ = λ+ kΛ0 + lδ. Let
m ∈M be the highest weight vector of M . Then for any u ∈ U g̃, we have:

d(u.m) = l(u.m) + [d, u].m

L0(u.m) = −∆k(λ)(u.m) + [L0, u].m

where L0 is defined by:

L0 := − 1
2m(c+ h∨)

C + 2
∑
a∈B
n>0

a(−n)a(n)

 (5.3)

and ∆k(λ) is given by (−1) the action of L0 on m:

∆k(λ) =
〈λ+ 2ρ, λ〉
2m(k + h∨)

(5.4)

Definition. The zeroth Sugawara operator is an element of a certain completion of
U ĝ given by (5.3).

Theorem. Let M be a highest weight module over g̃ of highest weight λ̃ = λ+kΛ0+
lδ. Then we have

d = L0 + ∆k(λ) + l (5.5)
where L0 is given by (5.3) and ∆k(λ) is given by (5.4).

5.4. Operator KZ. From this section onwards, we will only consider the evaluation
at 1. To be more precise V is a finite–dimensional g–module and V (z) = V [z, z−1]
is g̃–module defined by:

x(r) 7→ zrx d 7→ z
d

dz
c 7→ 0

Let us fix λ̃ = λ+ kΛ0 + lδ ∈ h̃∗ and µ ∈ h∗. In this section we derive a differential
equation satisfied by the intertwiner Φ(z) : Meλ → Meλ−µ

⊗̂V (z). For ξ ∈ V ∗ let us
consider the following linear map:

Ψξ(z) := (1⊗ ξ) ◦ Φ(z) : Meλ →Meλ−µ
((z))

Definition. For a ∈ g we define

a+(z) =
∑
n≥1

a(−n)zn−1

a−(z) = −
∑
n≥0

a(n)z−n−1
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Then we have the following theorem.

Theorem. The linear map Ψξ satisfies the following differential equation:

m(k + h∨)z
∂

∂z
Ψξ(z) = z

(∑
a∈B

a+(z)Ψaξ −Ψaξa−(z)

)
+

1
2
ΨCξ + cλ,µΨξ

where C is the Casimir element of g and cλ,µ is a scalar given by:

cλ,µ :=
1
2

(〈λ+ 2ρ, λ〉 − 〈λ− µ+ 2ρ, λ− µ〉)

Proof. We begin by recording the commutation relations between x(n) and Ψξ for
any x ∈ g. Since Φ is an intertwiner we have:

Φ ◦ x(n) = (x(n)⊗ 1 + zn1⊗ x)Φ

which composed with (1⊗ ξ) gives:

[x(n),Ψξ(z)] = znΨxξ (5.6)

Similarly using Φ ◦ d = (d⊗ 1 + 1⊗ d)Φ we obtain:

z
d

dz
Ψξ(z) = [Ψξ(z), d]

By Theorem 5.3 we get:

z
d

dz
Ψξ(z) = [Ψξ(z), L0] + (∆k(λ)−∆k(λ− µ))Ψξ(z)

Using the definition of L0 (5.3) and the commutation relations (5.6) we get:

[Ψξ(z), L0] =
1

2m(k + h∨)

[∑
a∈B

[a(0),Ψξ(z)]a(0) + a(0)[a(0),Ψξ(z)] +

2

(∑
n>0

[a(−n),Ψξ(z)]a(n) + a(−n)[a(n),Ψξ(z)]

)]

=
1

2m(k + h∨)

[∑
a∈B

Ψaξ(z)a(0) + a(0)Ψaξ(z) + 2

(∑
n>0

z−nΨaξ(z)a(n) + zna(−n)Ψaξ(z)

)]

=
1

2m(k + h∨)

[∑
a∈B

a(0)Ψaξ(z)−Ψaξ(z)a(0) + 2za+(z)Ψaξ(z)− 2zΨaξ(z)a−(z)

]

=
1

2m(k + h∨)

[
2z

(∑
a∈B

a+(z)Ψaξ(z)−Ψaξ(z)a−(z)

)
+ ΨCξ(z)

]
since C =

∑
a2. This computation directly implies the statement of the theorem

and we are done. �



DYNAMICAL YANG–BAXTER EQUATIONS 27

5.5. Trigonometric KZ. Recall the multicomponent fusion operator J 1,··· ,N (λ̃, z)
is defined as (see Definition 2.6):

J (λ̃, z) = J

−λ̃− ρ̂+
1
2

N∑
j=1

h(j), z


In order to spell out the definition of the multicomponent fusion operator, we fix
some notations. Let V1, · · · , VN be finite–dimensional g–modules and choose vi ∈
V [µi]. Fix λ̃ = λ+ kΛ0 + lδ ∈ h̃∗ as before. Define:

γ̃i := −λ̃− ρ̂+
1
2

(µ1 + · · ·+ µi − µi+1 − · · · − µN ) = γi − (k + h∨)Λ0 − lδ

Then J (λ̃, z)(v1 ⊗ · · · ⊗ vN ) is the expectation value of the composition:

Φ(z1, · · · , zN ) = Φv1eγ1
◦ · · · ◦ ΦvNeγN

Let us define the following operators on V1(z1)~⊗ · · · ~⊗VN (zN ) (see Definition 4.2
for ~⊗)

∇i := mkzi
∂

∂zi
+
∑
j 6=i

rijzj + rjizi
zi − zj

+ λ
(i) (5.7)

∇0
i := mkzi

∂

∂zi
− 1

2

∑
j<i

x
(j)
l x

(i)
l −

∑
j>i

x
j)
l x

(i)
l

+ λ
(i) (5.8)

where {xl} is an orthonormal basis of h and A(i) := 1⊗i−1 ⊗A⊗ 1⊗N−i. Recall the
notations γ = ν(γ) ∈ h. The Drinfeld r–matrix is defined as:

r =
1
2

∑
xl ⊗ xl +

∑
α>0

eα ⊗ e−α

Theorem. For each i = 1, · · · , N we have

∇iJ 1,··· ,N = J 1,··· ,N∇0
i (5.9)

The proof of this theorem is given in §5.6 – §5.9. We begin by unfolding the
definitions and introducing some notations for convenience.

Notations used in the proof: We fix V1, · · · , VN and vi ∈ Vi[µi] throughout and use
the notations at the beginning of this section. To simplify the expressions we will
have Mi = Meγi

and 1i = 1eγi
. Let us write Φi(zi) = Φvieγi

(zi). For a fixed linear from

ξi ∈ V ∗
i we denote by Ψξi

i the composition (1⊗ ξi) ◦Φi as in §5.4. We will drop the
subscript 1, · · · , N from J and for a linear form ξ = ξ1⊗· · ·⊗ ξN ∈ (V1⊗· · ·⊗VN )∗

we will write J ξ for the composition ξ ◦ J :

J ξ(z) :=
〈
1∗0,Ψ

ξ1
1 · · ·ΨξN

N 1N

〉
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With these conventions in mind, let us compute the right–hand side of (5.9).

J (λ̃, z)∇0
i (v1⊗ · · ·⊗ vN ) =

〈λ, µi〉 −
1
2

∑
j<i

〈µj , µi〉 −
∑
j>i

〈µj , µi〉

J (λ̃, z)

Note that by linearity it suffices to prove (5.9) when evaluated on v1 ⊗ · · · ⊗ vN .
Thus equation (5.9) is equivalent to the following:

(∇i − pi)J (λ̃, z)(v1 ⊗ · · · ⊗ vN ) = 0

where pi is the scalar obtained above:

pi =

〈λ, µi〉 −
1
2

∑
j<i

〈µj , µi〉 −
∑
j>i

〈µj , µi〉


Evaluating this equation at a linear form ξ we obtain an equivalent version:

mkzi
∂J ξ(z)
∂zi

= −ξ

∑
j 6=i

rijzj + rjizi
zi − zj

+ λ(i) − pi

J (z)

 (5.10)

5.6. Let us begin by computing
∂J ξ(z)
∂zi

using Theorem 5.4.

zi
∂J ξ(z)
∂zi

=

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1 (zi−1)

(
zi
∂Ψξi

i (zi)
∂zi

)
Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉

=
−1
mk

〈
1∗0, · · ·

(
zi

(∑
a∈B

a+(zi)Ψaξi −Ψaξi
i a−(zi)

)
+

1
2
ΨCξi + ciΨ

ξi
i

)
· · ·1N

〉

where we have used the fact that γ̃i(c) = −k − h∨. The scalar ci is given by (see
Theorem 5.4)

ci =
1
2

(〈γi + 2ρ, γi〉 − 〈γi−1 + 2ρ, γi−1〉)

which one can easily calculate to be −pi. We break the above expression into three
terms:

T1 =

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1

(
zi
∑
a∈B

a+(zi)Ψaξi(zi)

)
Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉

T2 =

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1

(
zi
∑
a∈B

Ψaξi
i (zi)a−(zi)

)
Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉

T3 =
〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1

(
1
2
ΨCξi

i (zi)− piΨ
ξi
i (zi)

)
Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉
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Note that T3 is same as ξ
((

1
2
C(i) − pi

)
J
)

. Thus we have to prove the following:

−mkzi
∂J ξ(z)
∂zi

= T1 − T2 + ξ

((
1
2
C(i) − pi

)
J (z)

)
(5.11)

5.7. Let us begin by computing T1. In order to do so, we need the commutation
relation between a±(z) and Ψξ. These follow from [x(n),Ψξ] = znΨxξ given in (5.6):

[a±(ζ),Ψξ(z)] =
Ψaξ(z)
z − ζ

(5.12)

Hence we get (the summation over a ∈ B is assumed):

T1 = zi

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1 (zi−1)a+(zi)Ψaξi(zi)Ψ
ξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉
= zi

〈
1∗0, a

+(zi)Ψξ1(z1) · · ·Ψξi−1

i−1 (zi−1)Ψ
aξi
i Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )1N

〉
− zi

i−1∑
j=1

〈
1∗0, · · · [a+(zi),Ψ

ξj

j (zj)] · · ·Ψaξi
i (zi) · · ·1N

〉
Recall from Definition 5.4 that a+(z) =

∑
n≥1 a(−n)zn−1. Hence the first term

above is zero and we get:

T1 = −zi
∑

1≤j≤i−1
a∈B

1
zj − zi

〈
1∗0, · · ·Ψ

aξj

j (zj) · · ·Ψaξi
i (zi) · · ·1N

〉
(5.13)

5.8. It remains to compute T2. Using the computation similar to the previous
section, we have (again summation over a ∈ B is assumed):

T2 = zi

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1 (zi−1)Ψ
aξi
i Ψξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )a−(zi)1N

〉
+ zi

N∑
j=i+1

〈
1∗0, · · ·Ψ

aξi
i (zi) · · · [a−(zi),Ψ

ξj

j (zj)] · · ·1N

〉
Using the fact that a(n)1N = 0 for every n ≥ 1 and the definition of a−(z) =
−
∑

n≥0 a(n)z−n−1 we get that the first term is same as −T ′2 where:

T ′2 =
∑
a∈B

〈
1∗0,Ψ

ξ1(z1) · · ·Ψξi−1

i−1 (zi−1)Ψ
aξi
i (zi)Ψ

ξi+1

i+1 (zi+1) · · ·ΨξN
N (zN )a1N

〉
while the last term is:

zi

N∑
j=i+1

1
zj − zi

〈
1∗0, · · ·Ψ

aξi
i (zi) · · ·Ψ

aξj

j (zj) · · ·1N

〉
Hence we get

T2 = −T ′2 + zi
∑

i+1≤j≤N
a∈B

1
zj − zi

〈
1∗0, · · ·Ψ

aξi
i (zi) · · ·Ψ

aξj

j (zj) · · ·1N

〉
(5.14)



30 SACHIN GAUTAM

5.9. Finally in order to simplify the expression of T ′2 we replace the tensor
∑
a⊗a

by
∑
xl ⊗ xl +

∑
α>0 eα ⊗ e−α + e−α ⊗ eα. Combined with the following facts:

(a) xl1N = γN (xl)1N .
(b)

∑
xlγN (xl) = ν(γN ).

(c) For each α > 0, eα1N = 0.

we obtain the following expression for T ′2:

T ′2 = −

γ(i)
N +

N∑
j=1

e(i)α e
(j)
−α

J


Now we have:
N∑

j=1

e(i)α e
(j)
−α = C(i) + ρ(i) +

∑
j 6=i

rij −
1
2

∑
l

j=1,··· ,N

x
(i)
l x

(j)
l

One can easily verify that
∑

j x
(i)
l x

(j)
l acts by (γN − γ0)(i). Combining these obser-

vations and the fact that γ0 + γN = −2λ− 2ρ we get:

T ′2 = ξ

λ(i) −
∑
j 6=i

rij −
1
2
C(i)

J (5.15)

Substituting back the values of T1 and T2 from equations (5.13), (5.14) into (5.11)
we obtain equation (5.10) and we are done with the proof of Theorem 5.5.

5.10. Limit of equation (5.9). Let us consider the limiting case z1 >> z2 >>
· · · >> zN of the equation (5.9). Recall that the Drinfeld r–matrix for g is defined
by:

r =
1
2

∑
l

xl ⊗ xl +
∑
α>0

eα ⊗ e−α

If we let zk/zl → 0 for every k > l, then we obtain:∑
j 6=i

rijzj + rjizi
zi − zj

−→ −
∑
j<i

rij +
∑
j>i

rji

Let us consider the case N = 2. In this case the multicomponent fusion operator is
same as the fusion operator:

J 1,2(λ̃, z) = JV1,V2

(
−λ̃− ρ̂+

1
2
(h(1) + h(2))

)
∈ End(V1 ⊗ V2)[[z2/z1]]

Let J (λ̃) be the constant term of J (λ̃, z). Equation (5.9) for i = 2 then becomes:(
1⊗ λ− 1

2

∑
xl ⊗ xl −

∑
α>0

e−α ⊗ eα

)
J (λ̃) = J (λ̃)

(
1⊗ λ− 1

2

∑
l

xl ⊗ xl

)



DYNAMICAL YANG–BAXTER EQUATIONS 31

Since J is of weight zero, we evaluate both sides on the weight space (V1⊗V2)[µ1+µ2]
and use the following equality of operators on this weight space∑

xl ⊗ xl = (1⊗ (µ1 + µ2)− 1⊗
∑

x2
l )

to obtain

[J (λ̃), 1⊗ θ̃(λ)] =

(∑
α>0

e−α ⊗ eα

)
J (λ̃)

where

θ̃(λ) = −λ+
1
2
(µ1 + µ2)−

1
2

∑
x2

l = θ

(
−λ− ρ+

1
2
(µ1 + µ2)

)
Recall the definition of θ(λ) from Theorem 1.8. This equation is precisely the ABRR
equation (1.2). Since the solution to (1.2) is unique, and is given by the fusion
operator for g (see Theorem 1.8) we obtain:

Theorem. The fusion operator J(λ̃, z) has the following form:

J(λ̃, z) = J(λ) +O(z)

In particular J(λ̃, z) is invertible.

5.11. Application of Theorem 5.5 :I. In this section we use Theorem 5.5 and
Corollary 2.6 to prove the compatibility between the trigonometric KZ operators
and dynamical Weyl group operators.

Theorem. For each i = 1, · · · , N and w ∈ Baff we have:

∇i(wλ̃)Aw,V1⊗···⊗VN
(λ̃) = Aw,V1⊗···⊗VN

(λ̃)∇i(λ̃)

(see Definition 2.6 for the notations).

Proof. We multiply both sides of the equation by J (λ̃) on the right and use The-
orem 5.5, Corollary 2.6 to get:

∇i(wλ̃)Aw,V1⊗···⊗VN
(λ̃)J (λ̃) = J (wλ̃)∇0

i (wλ̃)Aw,V1,··· ,VN
(λ̃)

Aw,V1⊗···⊗VN
(λ̃)∇i(λ̃)J (λ̃) = J (wλ̃)Aw,V1,··· ,VN

(λ̃)∇0
i (λ̃)

where Aw,V1,··· ,VN
is the multicomponent dynamical action (see Definition 2.6). The

right–hand sides of both the equations above are in fact equal, which is easy to see
since Aw,V1,··· ,VN

maps

Aw,V1,··· ,VN
(λ̃) : V1[µ1]⊗ · · · ⊗ VN [µN ] → V1[wµ1]⊗ · · · ⊗ VN [wµN ]

and using the definition of ∇0
i given in (5.8). Finally since J is invertible (see

Theorem 5.10) we obtain the desired assertion. �
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5.12. A generalization: factorizable systems. Let V1, · · · , VN be g modules
and r(z) ∈ g⊗ g be a meromorphic function satisfying the unitary condition r(z) +
r21(−z) = 0. Choose s ∈ g such that [s⊗1+1⊗ s, r(z)] = 0. Consider the following
system of partial differential equations for a function F (u1, · · · , uN ) ∈ V1⊗· · ·⊗VN :

∂F

∂ui
= ~

∑
j 6=i

rij(ui − uj) + s(i)

F (5.16)

Then we have the following theorem:

Theorem. The system (5.16) is consistent if and only if

[r12(u1 − u2), r23(u2 − u3)] + [r12(u1 − u2), r13(u1 − u3)]

+ [r13(u1 − u3), r23(u2 − u3)] = 0 (5.17)

The equation (5.17) is known as the classical Yang–Baxter equation with spectral
parameter.
Proof. Again let Ai =

∑
j 6=i rij(ui − uj) + s(i). The system (5.16) is consistent if

and only if we have, for every i 6= j:

∂Ai

∂uj
− ∂Aj

∂ui
= [Ai, Aj ]

Now we have the following computations:
(1) For i 6= j the left–hand side is computed as:

∂Ai

∂uj
− ∂Aj

∂ui
= −r′ij(ui − uj) + r′ji(uj − ui)

= 0

by the unitary condition rij(ui − uj) + rji(uj − ui) = 0.
(2) Next we compute the right–hand side :

[Ai, Aj ] =
∑
k 6=i
l 6=j

[rik(ui−uk), rjl(uj−ul)]+
∑
k 6=i

[rik(ui−uk), s(j)]+
∑
l 6=j

[s(i), rjl(uj−ul)]

Now it is easy to see that the last two terms vanish because of the constraint
[s⊗ 1 + 1⊗ s, r(z)] = 0 and the first term can be written as:

[Ai, Aj ] =
∑
k 6=i,j

[rik(ui − uk), rjk(uj − uk)] + [rij(ui − uj), rjk(uj − uk)]

+ [rik(ui − uk), rji(uj − ui)]

�

Remark. In our case we have r(u) =
r21e

u + r12
eu − 1

and (5.9) is a factorizable system

after making the change of variables zi = eui in (5.16).



DYNAMICAL YANG–BAXTER EQUATIONS 33

5.13. Application of Theorem 5.5 : II. Now we prove that the fusion operator
defines an analytic function is a suitable domain. For this we rewrite equation (5.9)
ignoring the scalar factor pi, for a function F (z1, · · · , zN ) ∈ V1 ⊗ · · · ⊗ VN as:

mkzi
∂F

∂zi
= −

∑
j 6=i

rijzj + rjizi
zi − zj

+ λ
(i)

F

Consider the change of variables ζi = zi+1/zi for i = 1, · · · , N − 1 and ζN = zN .
Then we have:

mkζl
∂F

∂ζl
=

 l∑
j=1

Aj

F for l 6= N

where Ai =
∑

j 6=i

rijzj + rjizi
zi − zj

+ λ
(i). For l = N we have:

mkζN
∂F

∂ζN
= −

 N∑
j=1

Aj

F = −λF

We replace F by ζλ/mk
N F to get

∂F

∂ζN
= 0. Therefore the function F does not depend

on ζN . Moreover we have:

Ai =
∑
j 6=i

rijzj + rjizi
zi − zj

+ λ
(i)

=
∑
j<i

rij + rjiζi−1 · · · ζj
ζi−1 · · · ζj − 1

+
∑
j>i

rijζj−1 · · · ζi + rji
1− ζj−1 · · · ζi

+ λ
(i)

Thus we obtain the following equivalent system:

mkζl
∂F

∂ζl
= Ãl(ζ1, · · · , ζN )F (5.18)

where each Ãl is regular function in the domain:

D := {(ζ1, · · · , ζN−1) ∈ CN−1 : |ζi| < 1}
The system (5.18) is a consistent system with normal crossing divisors at 0. Thus
we can use the following theorem, which is well known in the theory of differential
equations (see §5.14 for a proof):

Theorem. The system (5.18) has a fundamental solution

F = ζ
eA1(0)
1 · · · ζ

eAN−1(0)
N−1 F0(ζ1, · · · , ζN−1)

where F0 is computed as a formal power series and defines an analytic function in
the domain D. In particular if f(ζ) is a vector valued solution of (5.18) of the form:

f(ζ) = ζδ1
1 · · · ζδN−1

N−1 f0(ζ)

where f0 is a formal power series, then f = F.v for a constant vector v ∈ V1⊗· · ·⊗VN

and hence f0 converges in D.
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As a consequence of this theorem (and using Theorem 5.5) we obtain the following
important

Corollary. The fusion operator J (λ̃, z) defines an analytic function in the domain
|z1| > · · · > |zN |.

5.14. Proof of Theorem 5.13. We will give a proof of the Theorem 5.13 for the
case N = 1, which can be easily extended to arbitrary N .

Let us consider the problem of solving a system
dF

dz
=
A(z)
z

F

where A(z) =
∑

r≥0Arz
r defines an analytic function in the disc Da := {z ∈ C :

|z| < a} with values in Mn(C). We begin by writing a fundamental solution of the
form:

Φ(z) = H(z)zA0

with H(z) = 1 +
∑

r≥1Hrz
r. Assuming that the operator m− ad(A0) is invertible

on Mn(C), we can write a recursive system:

Hm = (m− ad(A0))−1
m∑

r=1

ArHm−r

which solves the differential equation formally. We claim that the formal solution
converges in the disc Da. The proof is given in the following steps:

(a) Define a scalar valued function φ(z) =
∑∞

i=1 ||Ai||zi. A standard argument
proves that φ(z) is convergent in |z| < a.

(b) Choose a positive constant c such that ||(m − ad(A0))−1|| < c for every
m ≥ 1. Define

y(z) :=
1

1− cφ(z)
The fact that φ(0) = 0 implies that there is (possibly smaller) neighborhood
of 0 on which y(z) is convergent, say |z| < a1 ≤ a.

(c) Let y(z) =
∑∞

i=0 yiz
i be power series expansion of y(z) in the disc |z| < a1.

Then we have:

y0 = 1 and ym = c

m∑
i=1

ym−i||Ai||

(d) It follows from the definitions that ||Hm|| < ym for every m. Hence conver-
gence of y(z) implies convergence of H(z) in |z| < a1.

(e) To complete the argument, observe that H(z) is solution of following differ-
ential equation:

H(z)′ =
∑∞

i=0Biz
i

z
H(z)

where each Bi is linear operator on Mn(C) given by: B0 = ad(A0) and Bm

is multiplication by Am. Since this differential equation is defined in the disc
|z| < a, the solution H(z) has no singularities in a1 ≤ |z| < a.
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6. Trigonometric q–KZ equations

In this section we obtain a difference equation satisfied by the multicomponent
fusion operator for quantum affine algebras.6

6.1. The Drinfeld element. Let (H,R) be a quasi–triangular Hopf algebra. That
is, the following axioms are satisfied:

∆21(a) = R∆(a)R−1 for every a ∈ H
∆⊗ 1(R) = R13R23

1⊗∆(R) = R13R12

Proposition. Assuming (H,R) is a quasi–triangular Hopf algebra, we have:
(1) (ε⊗ 1)(R) = 1⊗ 1 = (1⊗ ε)(R)
(2) (S ⊗ 1)(R) = R−1 = (1⊗ S−1)(R)

Proof. For (1) apply (ε⊗ 1⊗ 1) to ∆⊗ 1(R) = R13R23 and use the counit axiom.
For (2) apply µ12 ◦ (S ⊗ 1 ⊗ 1) to the same hexagon axiom. In order to prove
S ⊗ S(R) = R, we apply µ23 ◦ (S ⊗ S ⊗ 1) to 1⊗∆(R) = R13R12. �

Theorem. Let u := m(S ⊗ 1)(R21). Then we have:
(1) u is invertible with u−1 = m(S−1 ⊗ S)(R21).
(2) S2(x) = uxu−1 for every x ∈ H.

Proof. We begin by proving that ux = S2(x)u for every x ∈ H. Let us write

∆(3)(x) = fk ⊗ gk ⊗ hk

Using R⊗ 1(∆⊗ 1) ◦∆(x) = (∆21 ⊗ 1) ◦∆(x)R⊗ 1 we get (writing R = ai ⊗ bi):

aifk ⊗ bigk ⊗ hk = gkai ⊗ fkai ⊗ hk

Now apply µ(3) ◦ (13) ◦ (1⊗ S ⊗ S2) to both sides of this equation to get:

S2(hk)S(gk)S(bi)aifk = S2(hk)S(bi)S(fk)gkai

Using S(fk)gk ⊗ hk = 1 ⊗ x we get that the right–hand side is same as S2(x)u.
Similarly using fk ⊗ gkS(hk) = x ⊗ 1 we get that the left–hand side is same as ux
and we are done.

To prove that v = S−1(bi)S(ai) is the inverse of u we write:

uv = uS−1(bj)S(aj) = S(bj)uS(aj) = S(bibj)aiS(aj) = 1

where we have used the fact that S ⊗ 1(R) = R−1. Finally S2(v)u = uvu−1u = 1
implies that u admits both left and right inverses, which thus have to be the same
as v. �

6Notes based on the talk by Sachin Gautam
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6.2. Quantum Casimir operator. Let g be a Kac–Moody algebra and let Uqg be
the corresponding Drinfeld–Jimbo quantum group, defined as:

Definition. Uqg is a unital associative algebra over C generated by qh, ei, fi where
h ∈ h and i ∈ I. These generators are subjected to the following relations:
(QG1) qhqh′ = qh+h′ for every h, h′ ∈ h.
(QG2) For each i ∈ I and h ∈ h we have:

qheiq
−h = qαi(h)ei qhfiq

−h = q−αi(h)fi

(QG3) [ei, fj ] = δij
qhi
i − q−hi

i

qi − q−1
i

(QG4) For i 6= j let t = 1− aij . Then we have:
t∑

s=0

(−1)s

[
t
s

]
qi

et−s
i eje

s
i = 0

and similarly for f ′s.
The algebra Uqg has a structure of a Hopf algebra with the comultiplication given
by:

∆(ei) = ei ⊗ ki + 1⊗ ei

∆(fi) = fi ⊗ 1 + k−1
i ⊗ fi

∆(qh) = qh ⊗ qh

where ki := qhi
i . The counit ε is given by:

ε(ei) = ε(fi) = 0 ε(qh) = 1

This determines the antipode S:

S(ei) = −eik−1
i S(fi) = −kifi

S(qh) = q−h

The following proposition is fundamental in constructing an R–matrix for Uqg.
The proof of this proposition is highly computational and is skipped in these notes.
An interested reader can consult [6] for details.

Proposition. Let Uqb± be the subalgebras of Uqg generated by qh and {ei : i ∈ I}
(respectively {fi : i ∈ I}). Then there exists a unique non–degenerate pairing 〈., .〉 :
Uqb+ × Uqb− → C determined by:

(1)
〈
qh, qh′

〉
= q〈h,h′〉

(2) 〈ei, fj〉 = δij
1

qi−q−1
i

(3) 〈1, ·〉 = 〈·, 1〉 = ε(·)
(4) 〈aa′, b〉 =

〈
a⊗ a′,∆21(b)

〉
(5) 〈a, bb′〉 = 〈∆(a), b⊗ b′〉

Theorem. Let R ∈ Uqg⊗ Uqg be the canonical element determined by Proposition
6.2. Then (Uqg, R) is a quasi–triangular Hopf algebra.
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Proof. We prove this theorem assuming the existence and uniqueness of the Drin-
feld pairing. We begin by proving the hexagon axioms:

(1) We pair both sides of the equation ∆ ⊗ 1(R) = R13R23 with a dual vector
bk ⊗ bl ⊗ at, which simplifies to 〈∆(at), bk ⊗ bl〉 = 〈at, bkbl〉. Similarly the
other hexagon axiom is equivalent to 〈aa′, b〉 =

〈
a⊗ a′,∆21(b)

〉
.

(2) In order to prove that R intertwines ∆ and ∆21, we need a multiplicative
identity: for every x ∈ U+ and y ∈ U− we have:

yx =
〈
S−1(x(1)), y(1)

〉〈
x(3), y(3)

〉
x(2)y(2)

where a(1)⊗a(2)⊗a(3) = ∆(3)(a). This identity is proved in the following two
steps: first one proves that the equation for x, x′ implies the same for xx′

(and similarly for y). This reduces to checking the identity on the generators
of Uqg, which can be done directly.

(3) Finally let x ∈ U+ and consider the product R∆(x):

R∆(x) = aix
(1) ⊗ bix

(2)

= aix
(1) ⊗ x(3)b

(2)
i

〈
S−1(x(2), b

(1)
i

〉〈
x(4), b

(3)
i

〉
Use the hexagon axiom to write:

ai ⊗ b
(1)
i ⊗ b

(2)
i ⊗ b

(3)
i = aiajak ⊗ bk ⊗ bj ⊗ bi

which yields:

R∆(x) = aiajakx
(1) ⊗ x(3)bj

〈
S−1(x(2)), bk

〉〈
x(4), bi

〉
= x(4)ajS

−1(x(2))x(1) ⊗ x(3)bj

= x(2) ⊗ x(1)R

as required. Note that we have used the fact that
∑
ai 〈z, bi〉 = z for any

z ∈ U+ and the axioms of the Hopf algebra H.
�

As a consequence of the theorem above, we obtain the following important

Corollary. Let u be the Drinfeld element of Uqg. Define Cq := q2ρu−1. Then Cq

is a central element. Moreover, V is a highest weight module over Uqg of highest
weight λ then

Cq = q〈λ+2ρ,λ〉IdV

where ρ ∈ h∗ is any element satisfying ρ(hi) = 1 for each i. Let us denote ∆(λ) =
〈λ+ 2ρ, λ〉.

6.3. Quantum Sugawara operator. We return to our situation of the Kac–
Moody algebra g̃. We have the following expression for the R–matrix (see Theorem
6.2)

R̃ = qm(c⊗d+d⊗c)q
P

xl⊗xl
∑

t

ut ⊗ ut
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where {ut} is a homogeneous basis of Uqn̂+ and {ut} is the dual basis of Uqn̂− with
respect to the Drinfeld pairing given in Proposition 6.2.

Using our choice of ρ̂ = ρ + h∨Λ0 we obtain the following expression for the
q–Casimir element:

Cq = q2ρ+2mh∨du−1

= q2ρ+2md(c+h∨)q
P

x2
l
∑

t S
−1(ut)S(ut)

(6.1)

Note that since Cq acts by q∆(eλ) on a highest weight module V of highest weight
λ̃, we get:

u = q2ρ+2mh∨dq−∆(eλ) (6.2)

Note that in our case we have:

∆(λ̃) = 〈λ+ 2ρ, λ〉+ 2ml(k + h∨)

Theorem. The following two operators are equal on a highest weight module V of
highest weight λ̃:

q2md(k+h∨) = q−2ρ+∆(eλ)
(
µ
(
(q2mkd ⊗ 1)((S ⊗ 1)(R21))(q−2mkd ⊗ 1)

))
where R = q−m(c⊗d+d⊗c)R̃.

Proof. Let us write et = qm andR = αi⊗βi. Then the expression of Y = S⊗1(R̃21)
is:

Y =
∑

a,b≥0

(−t)a+b

a!b!
S(βi)dacb ⊗ cadbαi

u = µ(Y ) = S(βi)q−2mcdαi

which implies the required equation, when compared with the expression (6.2). �

6.4. More on R–matrix. Recall that the universal R–matrix R̃ of Uqg̃ is con-
structed using the Proposition 6.2. We define:

R := q−m(c⊗d+d⊗c)R̃

Explicitly written, we have:

R = q
P

xl⊗xl
∑

yt ⊗ yt

where {yt} is a basis of Uqn+ and {yt} is the dual basis of Uqn− under the Drinfeld
pairing (see Proposition 6.2). We think of R as the R–matrix of Uqĝ. Let us define
an automorphism Dz of Uqĝ⊗ C[z, z−1] by:

Dz(h) = h Dz(ei) = zδi0ei Dz(fi) = z−δi0fi
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and set R(z) := (Dz ⊗ 1)(R) ∈ Uqĝ⊗ Uqĝ[[z]]. Further define:

∆z(a) := (Dz ⊗ 1)(∆(a))

∆′
z(a) := (Dz ⊗ 1)(∆21(a))

Theorem. The R–matrix satisfies the following:

(1) For each a ∈ Uqĝ:

R(z)∆′
z(a)R(z)−1 = q−m(c⊗d+d⊗c)∆′

z(a)q
m(c⊗d+d⊗c)

(2) Hexagon axioms hold:

(∆⊗ 1)(R(z)) = qm(d⊗c⊗1)R13(z)q−m(d⊗c⊗1)R23(z) (6.3)

(1⊗∆)(R(z)) = q−m(d⊗c⊗1)R13(z)qm(d⊗c⊗1)R12(z) (6.4)

Proof. (1) is clear from the definitions and the intertwining property of R̃. In
order to prove (6.3) use the hexagon axiom for R̃ and use the definition of R:

qm(c⊗1⊗d+1⊗c⊗d+d⊗1⊗c+1⊗d⊗c)∆⊗ 1(R)

= qm(c⊗1⊗d+d⊗1⊗c)R13q
m(1⊗c⊗d+1⊗d⊗c)R23

which yields:

∆⊗ 1(R) = q−m(1⊗c⊗d)R13q
m(1⊗c⊗d)R23

Now apply Dz⊗Dz⊗1 and use the fact that conjugation with q−m(1⊗c⊗d) is same as
that with qm(d⊗c⊗1) on R13 to get (6.3). The equation (6.4) is proved similarly. �

6.5. Quantum currents. Let us recall the conventions of the loop representations.
Let V be a finite–dimensional module over Uqĝ. We define V (z) to be the represen-
tation of Uqg̃ (or by restriction the module over Uqĝ) defined as: V (z) := V [z, z−1]
and:

x 7→ Dz(x) d 7→ z
d

dz

Now let V be a finite–dimensional Uqĝ–module and define:

L±V (z) ∈ Uqĝ⊗ End(V )[[z±1]]

by:

L+
V (z) := (1⊗ πV )(R21(z)) = (1⊗ πV (z))(R21) (6.5)

L−V (z) := (1⊗ πV )(R−1(z−1)) = (1⊗ πV (z))(R−1) (6.6)
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6.6. Operator q–KZ equations. In this paragraph let λ̃ = λ + kΛ0 + lδ and let
µ ∈ h∗. Consider the following intertwiner:

Φ(z) : Meλ →Meλ−µ
⊗̂V (z)

Define:

p := q−2m(k+h∨) D := pd U := q2(cdm−ρ)u

Note that by (6.2) we have the following:

D = U−1q−∆(eλ) on Meλ
This observation, together with the fact that Φ(z) is an intertwiner implies that:

Φ(p−1z) = q∆(eλ)−∆(eλ−µ)(U−1 ⊗ 1)Φ(z)U (6.7)

In order to carry out the computation for U−1⊗1◦Φ(z)◦U , we need the following
two definitions:

Definition. Let H be a Hopf algebra and V1, V2, V3 be H–modules.
(1) Let ∗ denote a right action of H⊗3 on HomC(V1, V2 ⊗ V3) given by:

(x⊗ y ⊗ z) ∗Ψ := (S(y)⊗ S(z)) ◦Ψ ◦ x
(2) Let • denote the action of H⊗2 on the same space of linear maps (written

on the right), given by:

Ψ • (a⊗ b) = (1⊗ b) ◦Ψ ◦ a
Note that we have the following:

(Ψ • (a⊗ b)) • (a′ ⊗ b′) = Ψ • (aa′ ⊗ b′b)

Theorem. The intertwining operator Φ satisfies the following difference equation:

Φ(pz) = q∆(eλ−µ)−∆(eλ)L+
V (qkmpz)(1⊗ q2ρ)

(
Φ(z) • L−V (z)−1

)
(6.8)

Proof. In light of the equation (6.7) it remains to compute U−1 ⊗ Φ(z)U . We
begin by writing Φ(z)◦U using the intertwining property (in the following equations
R̃ = ai ⊗ bi):

ΦU = ΦS(bi)aiq
2(cdm−ρ)

=
(
(S ⊗ S)∆21(bi)

)
Φaiq

2(cdm−ρ)

=
((

(1⊗∆21)(R̃)
)
∗ Φ
)
q2(cdm−ρ)

=
(
R̃13 ∗

(
R̃12 ∗ Φ

))
q2(cdm−ρ)

Now we use the fact that R̃12 ∗ Φ(z) = (S ⊗ 1)(R̃21)(u ⊗ 1)Φ to continue the
computation:

(U−1 ⊗ 1)ΦU = (q−2(cdm−ρ) ⊗ 1)
(
(u−1 ⊗ 1)(1⊗ S(bi))(S(bj)⊗ aj)(u⊗ 1)Φai

)
q2(cdm−ρ)

= (q−2(cdm−ρ) ⊗ 1)
(
(1⊗ S(bi))R̃−1

21 Φai

)
q2(cdm−ρ)
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Next we use the following computation of (1⊗ S)(R̃):

(1⊗ S)(R̃) = (Ad(q−2ρ)⊗ 1)R̃−1(q−2mh∨)

Note that on a tensor product of highest weight module with finite–dimensional
module R̃ is same as (1⊗ qmkd)R which allows us to further write:

(1⊗ S)(R̃) = (Ad(q−2ρ)⊗ 1)
(
R−1(q−2mh∨)(1⊗ q−mkd)

)
Using these computations we proceed with simplifying (U−1 ⊗ 1)ΦU :

(U−1 ⊗ 1)Φ(z)U =
[(

(q−2(kdm−ρ) ⊗ 1)R−1
21 (1⊗ q−mkd)Φ(z)

)
•
(
(q−2ρ ⊗ 1)R−1(q−2mh∨)(q2ρ ⊗ q−mkd)

)]
q2(kdm−ρ)

=
[(

(q−2(kdm−ρ) ⊗ 1)R−1
21 (1⊗ q−mkd)Φ(z)

)
•
(
(q−2ρ ⊗ 1)R−1(q−2mh∨)(q2kdm ⊗ q−mkd)

)]
=
[(

(q−2(kdm−ρ) ⊗ q−kdm)R−1
21 (1⊗ q−mkd)Φ(z)

)
•
(
(q−2ρ ⊗ 1)R−1(q−2mh∨)(q2kdm ⊗ 1)

)]
=
[(

(q2ρ ⊗ 1)R−1
21 (qkm)(q−2kdm ⊗ q−2mkd)Φ(z)

)
•
(
(q−2ρ ⊗ 1)R−1(q−2mh∨)(q2kdm ⊗ 1)

)]
=
[(

(q2ρ ⊗ 1)R−1
21 (qkm)Φ(z)

)
•
(
(q−2kdm ⊗ 1)(q−2ρ ⊗ 1)R−1(q−2mh∨)(q2kdm ⊗ 1)

)]
=
[(

(q2ρ ⊗ 1)R−1
21 (qkm)Φ(z)

)
•
(
(q−2ρ ⊗ 1)R−1(p)

)]
We finally simplify it to:

(U−1 ⊗ 1)Φ(z)U =
(
(1⊗ q−2ρ)L+

V (qkmz)−1Φ(z)
)
• L−V (p−1z)

which together with (6.7) finishes the proof of this theorem. �

6.7. Trigonometric q–KZ equations. Recall that we denote by J (λ̃, z1, · · · , zN )
the unshifted dynamical fusion operator. Let us define the following operators:

Definition. For each λ̃ ∈ h̃∗ and i = 1, · · · , N define:

∇q
i := Ri+1,i

(
zi+1

zi

)
· · ·RN,i

(
zN
zi

)
(q2λ)iTi,pRi,1

(
zi
zi

)−1

· · ·Ri,i−1

(
zi
zi−1

)−1

Further define the “Cartan part” of ∇q
i,0 as:

∇q
i,0 := q2λ

i q−
P

j<i(xl)j(xl)i+
P

j>i(xl)j(xl)iTi,p

where p = q2km and Ti,p is the multiplicative shift of argument operators:

Ti,pzj = pδijzj

Note that the shift involved in the definitions above is different from the one used
in the previous section (which was again denoted by p for lack of a better notation).

Theorem.
∇q

iJ (λ̃, z) = J (λ̃, z)∇q
i,0 (6.9)
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We again begin by introducing some convenient notations and unfolding the as-
sertion of (6.9) (see §5.5 ). Let us fix V1, · · · , VN finite–dimensional Uqĝ–modules
and vi ∈ Vi[µi]. Define:

γ̃i := −λ̃− ρ̂+
1
2

(µ1 + · · ·+ µi − µi+1 − · · · − µN )

Let Φi(zi) := Φvieγi
(zi) denote the intertwiner. Then, by definition, the operators

J (λ̃, z) evaluated on the vector v1 ⊗ · · · ⊗ vN is given by:

J (λ̃, z)(v1 ⊗ · · · ⊗ vN ) = 〈1∗0,Φ1(z1) · · ·ΦN (zN )1N 〉

which we denote by Φ(z1, · · · , zN ) ∈ (V1 ⊗ · · · ⊗ VN )[[z2/z1, · · · , zN/zN−1]].

Evaluating both sides of (6.9) on v1⊗· · ·⊗vN one obtains the following equation:

Φ(z1, · · · , zi−1, pzi, zi+1, · · · , zN ) = cRi,i−1

(
pzi
zi−1

)
· · ·Ri,1

(
pzi
z1

)(
q−2λ

)
i

RN,i

(
zN
zi

)−1

· · ·Ri+1,i

(
zi+1

zi

)−1

Φ(z1, · · · , zN ) (6.10)

where c is a constant given by:

c = q〈2λ,µi〉−
P

j<i〈µj ,µi〉+
P

j>i〈µj ,µi〉 (6.11)

The proof of (6.10) is given in §6.8 – 6.10.

6.8. The idea of the proof is to use the operator q–KZ equation (Theorem 6.6).
Recall that by the definition of γ̃i the relevant level here is −k − h∨, by which we
should replace k of Theorem 6.6. We begin by writing the left–hand side of (6.10):

Ti,pΦ(z) = 〈1∗0,Φ1(z1) · · ·Φi−1(zi−1)Φi(pzi)Φi+1(zi+1) · · ·ΦN (zN )1N 〉

Using Theorem 6.6 we get:

Φi(pzi) =
(
L+

Vi
(q(k−h∨)mzi)(q2ρ)i

(
Φi(zi) • L−Vi

(zi)−1
))

Thus we obtain

Ti,pΦ(z) = q∆(eγi−1)−∆(eγi) 〈1∗0,Φ1(z1) · · ·Φi−1(zi−1)(
L+

Vi
(q(k−h∨)mzi)(q2ρ)i

(
Φi(zi) • L−Vi

(zi)−1
))

Φi+1(zi+1) · · ·ΦN (zN )1N

〉
(6.12)

One can easily check that the constant term of the equation above is same as c given
in (6.11).

In order to proceed, we need the commutation relations between the intertwiners
and the quantum currents L±.
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6.9. The following lemma follows easily from the hexagon axioms (6.3) and (6.4).

Lemma. Let Φ : Meλ →Meλ−µ
⊗ V1(z1) be an intertwiner and V2 be another finite–

dimensional representation of Uqĝ. Then we have:

RV2,V1

(
q−km z2

z1

)
L+

V2
(z2)1,3 (Φ(z1)⊗ 1) = (Φ(z1)⊗ 1) ◦ L+

V2
(z2)

as operators Meλ ⊗ V2(z2) →Meλ−µ
⊗ V1(z1)⊗ V2(z2).

Using this lemma, one can reduce the equation (6.12) to obtain:

Ti,pΦ(z) = cRi,i−1

(
pzi
zi−1

)
· · ·Ri,1

(
pzi
z1

)(
qγ0+2ρ

)
i
〈1∗0,Φ1(z1) · · ·Φi−1(zi−1)(

Φi(zi) • L−Vi
(zi)−1

)
Φi+1(zi+1) · · ·ΦN (zN )1N

〉
(6.13)

6.10. Next we make use of the following commutation between the quantum current
L−V and the intertwiners. Again the assertion of the following lemma follows directly
from the hexagon axioms (see (6.3) and (6.4)).

Lemma. Let Φ be an intertwiner as before (see statement of Lemma 6.9) and V2

be a finite–dimensional representation of Uqĝ. Then we have:

(1⊗ βj ⊗ 1)R−1
3,2(Φ⊗ 1)∆(αj) = (1⊗ βj ⊗ 1)(Φ⊗ 1)(αj ⊗ 1)

where we write R = αj ⊗ βj.

Using this lemma we can reduce equation (6.13) to the following

Ti,pΦ(z) = cRi,i−1

(
pzi
zi−1

)
· · ·Ri,1

(
pzi
z1

)(
q−2λ

)
i
RN,i

(
zN
zi

)−1

· · ·Ri+1,i

(
zi+1

zi

)−1

Φ(z)

which finishes the proof of Theorem 6.7.

6.11. A generalization. Similar to the generalization of the trigonometric KZ
equation to arbitrary factorizable systems given in §5.12 we have the following result
due to Frenkel and Reshetikhin.

Theorem. Let V1, · · · , VN be N finite–dimensional vector spaces and let Rij(u) ∈
End(Vi ⊗ Vj) be given operators which are depend meromorphically on the complex
parameter u. Further assume that we have di ∈ End(Vi) such that

Rij(u)didj = didjRij(u)

To this data we associate the following system of difference equations with step κ:

F (u1, · · · , ui−1, ui + κ, ui+1, · · · , uN ) = AiF (u1, · · · , uN ) (6.14)

for a function F (u1, · · · , uN ) ∈ V1⊗ · · · ⊗VN . Here the operators Ai are defined by:

Ai = Ri,i−1(ui−ui−1+κ) · · ·Ri,1(ui−u1+κ)diRN,i(uN−ui)−1 · · ·Ri+1,i(ui+1−ui)−1
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Then the system (6.14) is consistent if, and only if the quantum Yang–Baxter equa-
tions hold:

Ri,i+1(ui − ui+1)Ri,i+2(ui − ui+2)Ri+1,i+2(ui+1 − ui+2) =

Ri+1,i+2(ui+1 − ui+2)Ri,i+2(ui − ui+2)Ri,i+1(ui − ui+1)
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Index of almost–fixed notations

• Notations for simple Lie algebras
– g is a simple Lie algebra over C.
– 〈., .〉 is an invariant, symmetric, non–degenerate bilinear form on g.
– h is a fixed Cartan subalgebra of g.
– R ⊂ h∗ is the root system of the pair (g, h).
– ∆ = {αi : i ∈ I} ⊂ R is a fixed base of R.
– ν : h∗ → h is the isomorphism determined by 〈., .〉 restricted to h.

– For γ ∈ h∗, we define γ∨ := 2
ν(γ)
〈γ, γ〉

∈ h

– di :=
〈αi, αi〉

2
.

– ∆∨ = {hi := α∨i : i ∈ I}.
– W is the Weyl group. P,Q are the weight/root lattices respectively.

– θ ∈ h∗ is the longest root. We set m =
〈θ, θ〉

2
.

– ρ ∈ h∗ is defined by ρ(hi) = 1 for each i ∈ I. It is same as the sum of
the fundamental weights, which is also equal to half sum of the positive
roots. We set h∨ := 1 + ρ(θ∨).

– Chevalley generators of g are denoted by {hi, ei, fi : i ∈ I} where ei ∈
gαi and fi ∈ g−αi are chosen so as to have 〈ei, fi〉 = d−1

i .
• Notations for affine Lie algebras

– ĝ is the central extension of g[z, z−1] with the bracket given by:

[x(k), y(l)] = [x, y](k + l) + kδk+l,0 〈x, y〉mc
– g̃ is the semi–direct product of ĝ with the derivation d given by: [d, c] =

0 and [d, x(n)] = nx(n).
– h̃ = h⊕ Cc⊕ Cd ⊂ g̃ is the Cartan subalgebra.
– 〈., .〉 is extended to g̃ by the following formulae:

(1) 〈., .〉 on h̃ is same as the bilinear form on h and (d, h) = (c, h) =

(c, c) = (d, d) = 0; (c, d) =
1
m

.

(2) 〈x(n), y(m)〉 = δn+m,0 〈x, y〉.
– ν̃ : h̃∗ → h̃ is the isomorphism determined by 〈., .〉. More explicitly
ν̃(λ) = ν(λ) for λ ∈ h and ν̃(Λ0) = md, ν̃(δ) = mc where Λ0, δ ∈ h̃∗ are
dual to c, d respectively.

– ρ̂ is chosen as ρ+ h∨Λ0. Hence ν̃(ρ̂) = ν(ρ) +mh∨d.
– R̂ is the affine root system of the pair (g̃, h̃):

R̂ = {α+ nδ : either α ∈ R,n ∈ Z or α = 0, n ∈ Z×}

– ∆̂ := {αi : i ∈ I} ∪ {α0 := δ − θ}
– ∆̂∨ = {hi : i ∈ I} ∪ {h0 = c− θ∨}.
– Define f0 := eθ(−1) and e0 := fθ(1). Then {fi, hi, ei : i ∈ {0} ∪ I} are

the Chevalley generators of ĝ.
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