PRACTICE MID TERM 1 ABSTRACT ALGEBRA (5590H)

Problem 1. Let m, n be two positive integers. Determine the number of group homomorphisms from $\mathbb{Z} / m \mathbb{Z}$ to $\mathbb{Z} / n \mathbb{Z}$.

Problem 2. Let $X \in \mathrm{GL}_{2}(\mathbb{R})$ be the following matrix: $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Prove that the centralizer $C_{\mathrm{GL}_{2} \mathbb{R}}(X)$ of X in $\mathrm{GL}_{2}(\mathbb{R})$ consists of diagonal matrices. Recall that the centralizer is defined as: $C_{G}(x)=\{g \in G: g x=x g\}$.

Problem 3. Let H be a finite abelian group (written additively) such that order of every element $h \in H, h \neq 0$, is 2 (i.e, $2 h=0$ for every $h \in H$). Prove that either $|H|=2$, or $\sum_{h \in H} h=0$.
Problem 4. Compute the number of conjugacy classes in the dihedral group D_{24} (symmetries of regular 12-gon).

Problem 5. Let G be a finite group acting on a finite set X, such that the action is free: that is, $\operatorname{Stab}_{G}(x)=\{e\}$ for every $x \in X$. Prove that $|G|$ divides $|X|$.

Problem 6. (a) Let G be a finite group such that $G / Z(G)$ is cyclic. Prove that G is abelian (hence $G=Z(G)$). (b) Use the previous exercise to show that if G is a non-abelian group of size $p q$, then $Z(G)=\{e\}$ (here p, q are two distinct primes).

