PRACTICE MID TERM 1 ABSTRACT ALGEBRA (5590H)

Problem 1. Let m, n be two positive integers. Determine the number of group homomorphisms from $\mathbb{Z}/m\mathbb{Z}$ to $\mathbb{Z}/n\mathbb{Z}$.

Problem 2. Let $X \in GL_2(\mathbb{R})$ be the following matrix: $X = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Prove that the centralizer $C_{GL_2\mathbb{R}}(X)$ of X in $GL_2(\mathbb{R})$ consists of diagonal matrices. Recall that the centralizer is defined as: $C_G(x) = \{g \in G : gx = xg\}$.

Problem 3. Let *H* be a finite abelian group (written additively) such that order of every element $h \in H$, $h \neq 0$, is 2 (i.e., 2h = 0 for every $h \in H$). Prove that either |H| = 2, or $\sum_{h \in H} h = 0$.

Problem 4. Compute the number of conjugacy classes in the dihedral group D_{24} (symmetries of regular 12-gon).

Problem 5. Let G be a finite group acting on a finite set X, such that the action is *free*: that is, $\operatorname{Stab}_G(x) = \{e\}$ for every $x \in X$. Prove that |G| divides |X|.

Problem 6. (a) Let G be a finite group such that G/Z(G) is cyclic. Prove that G is abelian (hence G = Z(G)). (b) Use the previous exercise to show that if G is a non-abelian group of size pq, then $Z(G) = \{e\}$ (here p, q are two distinct primes).