PRACTICE PROBLEMS FOR MID TERM 2 ABSTRACT ALGEBRA (5590H)

Topics: Sylow theorems §4.5. Direct and semidirect products §5.1, 5.4 and 5.5. Finite abelian groups $\S 5.2$. Automorphisms of groups $\S 4.4$. Alternating group §3.5, 4.6.

Problem 1. Let G be a finite group with 231 elements. Prove that (a) there is a unique Sylow 11-subgroup of G and it is contained in $Z(G)$ (b) there is a unique Sylow 7 -subgroup.

Problem 2. List all finite abelian groups of size 300. In each case, give the invariant factors of the group.

Problem 3. Let G be a finite group and $\psi: G \rightarrow G$ be an automorphism. Let $x \in G$ and $y=\psi(x)$. Show that ψ gives a bijection between conjugacy classes of G containing x and y.

Problem 3.* Take $G=S_{5}$ and let $\psi \in \operatorname{Aut}_{\mathrm{gp}}\left(S_{5}\right)$. Use the previous exercise to prove the following. (i) ψ gives a permutation of the set of 2 -cycles in S_{5}. (ii) There exists $a \in\{1,2,3,4,5\}$ such that

$$
\psi((1 k))=\left(a b_{k}\right), k=2,3,4,5 .
$$

(iii) Let $\sigma \in S_{5}$ be given by $\sigma(1)=a$ and $\sigma(k)=b_{k}(k=2,3,4,5)$. Then $\psi(x)=\sigma x \sigma^{-1}$. (Hence, every automorphism of S_{5} is inner).

Problem 4. Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number, and let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Let G be the following group with p^{3} elements:

$$
G=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{F}_{p}\right\}
$$

Show that $G \cong N \rtimes K$, where

$$
N=\left\{\left[\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: y, z \in \mathbb{F}_{p}\right\} \quad \text { and } \quad K=\left\{\left[\begin{array}{ccc}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]: x \in \mathbb{F}_{p}\right\}
$$

Problem 4.* Note that $N \cong \mathbb{F}_{p} \times \mathbb{F}_{p}$ and $K \cong \mathbb{F}_{p}$. Compute the group homomorphism $\alpha: \mathbb{F}_{p} \rightarrow \operatorname{Aut}_{\mathrm{gp}}\left(\mathbb{F}_{p} \times \mathbb{F}_{p}\right)$ so that $G \cong N \rtimes_{\alpha} K$.

Problem 5. Let $A_{4} \triangleleft S_{4}$ be the alternating group. Show that A_{4} does not have a subgroup of size 6. (This is the standard counterexample to the converse of Lagrange's theorem: $H<G$ implies $|H|$ divides $|G|$, but k divides $|G|$ does not imply that there is a subgroup of size k.)

