PROBLEMS IN COMPLEX ANALYSIS

SACHIN GAUTAM

Problem 1. Let $U \subset \mathbb{C}$ be an open set. Prove that U is connected if, and only if U is path-connected. In this case, show that any two points of U can be joined by a zig-zag path, i.e., a path consisting only of horizontal and vertical line segments.

Problem 2. Let $n \in \mathbb{Z}_{\geq 2}$ and $z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n} \in \mathbb{C}$. Prove the following identity:

$$
\left|\sum_{k=1}^{n} z_{k} \overline{w_{k}}\right|^{2}=\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)\left(\sum_{k=1}^{n}\left|w_{k}\right|^{2}\right)-\sum_{1 \leq k<\ell \leq n}\left|z_{k} w_{\ell}-z_{\ell} w_{k}\right|^{2}
$$

This identity is due to Lagrange. It immediately implies the Cauchy-Schwarz inequality.
Problem 3. Let $z_{1}, z_{2}, z_{3} \in S^{1}=\{z:|z|=1\}$ be such that $z_{1}+z_{2}+z_{3}=0$. Show that these three points form vertices of an equilateral triangle.

Problem 4. Prove the Ptolemy relation: if A, B, C, D are four distinct points on a circle, then

$$
|A C||B D|=|A B||C D|+|A D||B C|,
$$

where $|P Q|$ denotes the length of the line segment joining P and Q.
Problem 5. Assume $z_{1}, z_{2} \in \mathbb{C}$ are two distinct points. Sketch the following curves as λ varies over $\mathbb{R}_{>0}$ (circles of Apollonius)

$$
\left\{z \in \mathbb{C}:\left|z-z_{1}\right|=\lambda\left|z-z_{2}\right|\right\}
$$

Problem 6. Sketch the following curves for $\lambda \in \mathbb{R}_{>0}$ (Bernoulli's lemniscate is when $\lambda=1$): $\left|z^{2}-1\right|=\lambda$.

Problem 7. Let $g \in C^{2}(\Omega ; \mathbb{R})$, where $\Omega \subset \mathbb{C}$ is an open and connected set. Show that the Laplace equation for g, written in polar coordinates, takes the following form:

$$
r^{2} \frac{\partial^{2} g}{\partial r^{2}}+r \frac{\partial g}{\partial r}+\frac{\partial^{2} g}{\partial \theta^{2}}=0
$$

Use this to prove that if g is harmonic, and independent of θ, then $g=A \ln (r)+B$, for some constants $A, B \in \mathbb{R}$.

Problem 8. Let $n \in \mathbb{Z}_{\geq 2}$. Describe the level curves $\operatorname{Re}\left(z^{n}\right)=0$ and $\operatorname{Im}\left(z^{n}\right)=0$.
Problem 9. Show that $u(x, y)=\frac{x}{x^{2}+y^{2}}$ is harmonic. Compute its harmonic conjugate (the domain is $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$).

Problem 10. Let $a \in[0,1)$ and $r \in[0,1-a)$. Let $C(a ; r)$ be the circle centered at a of radius r, and $S^{1}=C(0 ; 1)$ (note: $C(a ; r)$ lies inside S^{1}). Let $A_{1}=e^{\imath \psi_{1}}$ and $A_{2}=e^{\imath \psi_{2}}$ be two points on S^{1} such that the line segment $A_{1} A_{2}$ is tangent to $C(a ; r)$. What is the relation between ψ_{1} and ψ_{2} ? This calculation is due to Jacobi, who used it to prove Poncelet's porism for circles.

Problem 11. Let $\Omega \subset \mathbb{C}$ be an open, connected and simply-connected set, $u: \Omega \rightarrow \mathbb{R}$ a harmonic function (i.e., $u \in C^{2}(\Omega, \mathbb{R})$, and $u_{x x}+u_{y y}=0$). Show that there exists $v: \Omega \rightarrow \mathbb{R}$ such that $f=u+v v$ is holomorphic. Hence, u is real-analytic. This is an instance of "regularity theorems" in mathematics.

Problem 12. Compute the following integrals.
(1) $\int_{C} \frac{z e^{z}}{(z-a)^{n+1}} d z$. Here $C=C(a, r)$ is the counterclockwise circle around $a \in \mathbb{C}$ of radius $r \in \mathbb{R}_{>0}$, and $n \in \mathbb{Z}_{\geq 0}$.
(2) $\int_{C} \frac{\sin (z)}{z(1-z)^{3}} d z$. Here $C=C(0,1 / 2)$ is the circle of radius $1 / 2$ around 0 .

Problem 13. Let $p(z)=z^{n}+\sum_{j=0}^{n-1} a_{j} z^{n-j} \in \mathbb{C}[z]$ be a polynomial of degree $n \geq 2$. Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ be its roots (not necessarily distinct, listed according to their multiplicity). Let $\zeta \in \mathbb{C}$ be a root of $p^{\prime}(z)$ such that $\zeta \notin\left\{z_{1}, \ldots, z_{n}\right\}$. Show that

$$
\left(\sum_{j=1}^{n} \frac{1}{\left|\zeta-z_{j}\right|^{2}}\right) \zeta=\sum_{j=1}^{n} \frac{z_{j}}{\left|\zeta-z_{j}\right|^{2}} .
$$

This result is called Gauss-Lucas Theorem. It shows that ζ can be written as a linear combination of z_{j} such that the coefficients are positive real and add up to 1 .

Problem 14. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that $f(0)=0$ and $\lim _{z \rightarrow \infty} \operatorname{Re}(f(z))=0$. Show that $f(z)=0$ for every $z \in \mathbb{C}$. (Hint: show that e^{f} is bounded, and use Liouville's theorem).

Problem 15. Dirichlet's test. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of complex numbers. Set $S_{k}=a_{1}+\cdots+a_{k}(k \geq 1)$. Show that:
(1) For every $n, m \in \mathbb{Z}_{\geq 1}, n \geq m$, we have:

$$
\sum_{k=m}^{n} a_{k} b_{k}=\sum_{k=m}^{n-1} S_{k}\left(b_{k}-b_{k-1}\right)-S_{m-1} b_{m}+S_{n} b_{m} .
$$

This formula is called Abel's transformation.
(2) Assume that there exists $M \in \mathbb{R}_{>0}$ such that $\left|S_{k}\right| \leq M$, for every $k \geq 1$. Further, assume that $\left\{b_{n}\right\}$ is real, monotonically non-increasing, and $\lim _{n \rightarrow \infty} b_{n}=0$. Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent.

Problem 16. Weierstrass' M test. Let $\left\{a_{n}(z)\right\}_{n=1}^{\infty}$ be a sequence of functions defined on a domain Ω. Assume that, for every compact set $K \subset \Omega$, there exists $M_{K}(n) \in \mathbb{R}_{>0}$ such that

- $\left|a_{n}(z)\right|<M_{K}(n)$ for every $z \in K$ and $n \geq 1$.
- $\sum_{n=1}^{\infty} M_{k}(n)$ is convergent.

Then, $\sum_{n=1}^{\infty} a_{n}(z)$ converges, uniformly and absolutely, on Ω.
Problem 17. Decide whether the following series are convergent or not. For the second, decide the values of θ for which it converges.
(a) $\sum_{n=1}^{\infty} e^{\iota n}$,
(b) $\sum_{n=1}^{\infty} \frac{e^{\operatorname{sn} \theta}}{n}$.

Problem 18. Let $\sum_{n=0}^{\infty} a_{n} z^{n+1}$ be a power series with non-zero radius of convergence. Show that $\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}$ has infinite radius of convergence.
Problem 19. Bernoulli numbers. Define $\left\{B_{n}\right\}_{n=0}^{\infty} \subset \mathbb{Q}$ by:

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \text { for }|z|<2 \pi
$$

(a) Show that $B_{0}=1, B_{1}=-\frac{1}{2}$ and $B_{2 k+1}=0$, for all $k \geq 1$.
(b) Prove the following recurrence relation for $\left\{B_{n}\right\}$:

$$
B_{n}=-\frac{1}{n+1} \sum_{\ell=0}^{n-1}\binom{n+1}{\ell} B_{\ell} \forall n \geq 1
$$

(c) Write the Taylor series expansion of $\log (\sin (z) / z)$, near $z=0$, and indicate its radius of convergence.

Problem 20. Let $A(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. Prove that $A(z)$ is the Taylor series expansion, near 0 , of a rational function (defined at 0) if, and only if there exist $q_{1}, \ldots, q_{\ell} \in \mathbb{C}$ and $N \geq \ell$ such that

$$
a_{n}=q_{1} a_{n-1}+q_{2} a_{n-2}+\cdots+q_{\ell} a_{n-\ell}, \text { for every } n \geq N
$$

Problem 21. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be the Taylor series of a holomorphic function, for all $z \in D(0 ; R)$.
(a) Show that for every $r<R$, we have:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{\iota \theta}\right)\right|^{2} d \theta=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}
$$

(b) For each $r<R$, let $M(r):=\operatorname{Max}\{|f(s)|:|s|=r\}$. Prove that $\left|c_{n}\right| \leq \frac{M(r)}{r^{n}}$, for every $n \geq 0$.
(c) Show that, if there exists $r \in(0, R)$ and $n \in \mathbb{Z}_{\geq 0}$ such that $\left|c_{n}\right| r^{n}=M(r)$, then $f(z)=c_{n} z^{n}$.

Problem 22. For a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ and an isolated singularity α of f (i.e., $D^{\times}(\alpha, r) \subset \Omega$ for some $\left.r>0\right)$, define:

$$
\operatorname{Res}(f ; \alpha):=\frac{1}{2 \pi \iota} \int_{C(\alpha, r)} f(z) d z
$$

(a) If $f(z)=\sum_{m=1}^{\infty} d_{m}(z-\alpha)^{-m}+\sum_{n=0}^{\infty} c_{n}(z-\alpha)^{n}$ is the Laurent series expansion of f on the punctured neighbourhood $D^{\times}(\alpha, r)$, then show that $\operatorname{Res}(f ; \alpha)=d_{1}$.
(b) Let $\varphi: D(\alpha, r) \rightarrow \mathbb{C}$ be another, holomorphic function. Show that $\operatorname{Res}(\varphi f ; \alpha)=$ $\varphi(\alpha) \operatorname{Res}(f ; \alpha)$.
(c) Same φ as above, assume that α is a pole of order N, for the function f. Show that:

$$
\operatorname{Res}\left(\varphi \frac{f^{\prime}}{f} ; \alpha\right)=N \varphi(\alpha)
$$

Problem 23. For each of the following, determine a formal solution $w(z)$, near $z=0$, with $w(0)=0$ and $w^{\prime}(0)=1$ initial conditions. Discuss the radius of convergence of your solution.
(a) $w^{\prime \prime}-z^{2} w=3 z^{2}-z^{4}$.
(b) $\left(1-z^{2}\right) w^{\prime \prime}-2 z w^{\prime}+n(n+1) w=0$, here $n \in \mathbb{Z}$.

Problem 24. Let X be an $n \times n$ matrix over \mathbb{C}, and let $\sigma(X)=\left\{\lambda_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ be the eigenvalues of X (repeated according to their multiplicities).
(1) Consider the operator $\operatorname{ad}(X): Y \mapsto X Y-Y X$ on the vector space of $n \times n$ matrices. Show that the eigenvalues of $\operatorname{ad}(X)$ are $\left\{\lambda_{j}-\lambda_{k}: 1 \leq j, k \leq n\right\}$.
(2) Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function, where $\Omega \subset \mathbb{C}$ is an open, connected set containing $\sigma(X)$. Define

$$
f(X):=\frac{1}{2 \pi \iota} \int_{C}(z-X)^{-1} f(z) d z
$$

where C is a contour in Ω containing $\sigma(X)$. Show that the eigenvalues of $f(X)$ are $\left\{f\left(\lambda_{j}\right): 1 \leq j \leq n\right\}$.
(3) Let $\|\cdot\|$ denote a norm on the space of $n \times n$ matrices. Prove the following (Gelfand's formula)

$$
\lim _{n \rightarrow \infty}\left\|X^{n}\right\|^{\frac{1}{n}}=\operatorname{Max}\left\{\left|\lambda_{j}\right|: 1 \leq j \leq n\right\}
$$

Problem 26. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ be a continuous function such that (i) $f(t) \rightarrow 0$ as $t \rightarrow 0^{+}$, and (ii) there exist constants $M, C, R \in \mathbb{R}_{>0}$ such that $|f(t)|<M e^{C t}$ for all $t>R$. Show that, for $z \in \mathbb{C}$ such that $\operatorname{Re}(z)>0$, we have:

$$
\int_{0}^{\infty} f(t) e^{-z t} d t=z^{-1} \int_{0}^{\infty} f^{\prime}(t) e^{-z t} d t
$$

Use this to prove the identity (Euler): $\int_{0}^{\infty} \frac{t^{n}}{n!} e^{-z t} d t=z^{-n-1}$, for all $n \in \mathbb{Z}_{\geq 0}$.

Problem 27. Compute the asymptotic expansions of the following integrals, as $\operatorname{Re}(z) \rightarrow \infty$.
(a) $\int_{0}^{\infty} \frac{e^{-z t}}{1+t^{n}} d t\left(n \in \mathbb{Z}_{\geq 1}\right)$,
(b) $\int_{0}^{\infty}(1+t)^{a} e^{-z t} d z(a \in \mathbb{C})$.

Problem 28. Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be a meromorphic function, with finitely many poles at $a_{1}, \ldots, a_{n} \in \mathbb{C}$. Let $A \in \mathbb{R}$ be such that $\operatorname{Re}\left(a_{j}\right)<A$ for all $1 \leq j \leq n$. Assume that $\lim _{\substack{z \rightarrow \infty \\ \operatorname{Re}(z) \leq A}}|g(z)|=0$. Prove that, for every $t \in \mathbb{R}_{>0}$, we have:

$$
\int_{L_{A}} g(z) e^{z t} d z=2 \pi \iota \sum_{k=1}^{n} \operatorname{Res}_{z=a_{j}}\left(f(z) e^{z t}\right)
$$

Here, $L_{A}=A+\iota \mathbb{R}$ is the infinite vertical line.
Problem 29. Let $a \in \mathbb{R}_{>0}$ and $L_{a}=a+\iota \mathbb{R}$. Show that for every $n \in \mathbb{Z}_{\geq 0}$ and $t \in \mathbb{R}_{>0}$, we have:

$$
\frac{1}{2 \pi \iota} \int_{L_{a}} e^{z t} z^{-n-1} d z=\frac{t^{n}}{n!}
$$

(Bonus) Generalize this to obtain the inverse to the Laplace transform.
Problem 30. Compute the Laplace transform $\int_{0}^{\infty} \varphi(t) e^{-z t} d t$ for $\varphi: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ given by $\varphi(t)=n$ for $t \in[n, n+1)$.

Problem 31. Let $\psi(x+\iota y)=u(x, y)+\iota v(x, y)$ be a holomorphic function on an open, connected set $\Omega \subset \mathbb{C}$. Let $z_{0}=x_{0}+\iota y_{0} \in \Omega$ be a critical point of ψ (i.e., $\psi^{\prime}\left(z_{0}\right)=0$) and let $n \in \mathbb{Z}_{\geq 2}$ be such that $0=\psi^{\prime}\left(z_{0}\right)=\ldots=\psi^{(n-1)}\left(z_{0}\right)$ and $\psi^{(n)}\left(z_{0}\right)=a e^{\iota \alpha} \neq 0$.
(1) Write $z=x+\iota y=z_{0}+\rho e^{\iota \theta}, u=u(x, y), v=v(x, y), u_{0}=u\left(x_{0}, y_{0}\right)$ etc. Show that $u^{2}+v^{2}=u_{0}^{2}+v_{0}^{2}+\frac{2 a \rho^{n}}{n!}\left(u_{0} \cos (n \theta+\alpha)+v_{0} \sin (n \theta+\alpha)\right)+O\left(\rho^{n+1}\right), \quad$ as $\rho \rightarrow 0^{+}$.
(2) Prove that, through z_{0}, the directions of steepest ascent/descent are given as follows.

Steepest descent	$-\frac{\alpha}{n}+(2 p+1) \frac{\pi}{n}$	$p=0, \ldots, n-1$
Steepest ascent	$-\frac{\alpha}{n}+2 p \frac{\pi}{n}$	$p=0, \ldots, n-1$

(3) Prove the maximum modulus principle: if $|\psi(z)|$ takes its maximum value at $z_{0} \in \Omega$, then ψ is a constant function.

Problem 32. Compute the critical points and directions of steepest ascent/descent from each of these points, for the following functions: (a) $\frac{z^{2}}{2}-\alpha z,(\alpha \in \mathbb{C})$, and (b) $\frac{z^{3}}{3}-z$.
Problem 33. Prove the Riemann-Lebesgue Lemma: if $(a, b) \subset \mathbb{R}$ and $f \in L^{1}(a, b)$ (that is, $\left.\int_{a}^{b}|f(t)| d t<\infty\right)$, then

$$
\lim _{\lambda \rightarrow+\infty} \int_{a}^{b} f(t) e^{i \lambda t} d t=0
$$

Problem 34. Prove the following asymptotic expansion, as $x \rightarrow \infty$:

$$
\int_{0}^{1} \ln (t) e^{\iota x t} d t \sim \iota \frac{\ln (x)}{x}-\frac{\iota \gamma+\pi / 2}{x}+\iota e^{\iota x} \sum_{n=1}^{\infty}(-1)^{n} \frac{(n-1)!}{x^{n+1}} .
$$

Here, γ is the Euler-Mascheroni constant.
Problem 35. Discuss the $n \rightarrow \infty$ behaviour of $\Psi^{(n)}(1)$, where $\Psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}$ is the logarithmic derivative of the gamma function.

Problem 36. Assume that $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ is a sequence of complex numbers such that $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is an entire (i.e., radius of convergence is infinity) function. Note that, by Cauchy's formula:

$$
a_{n}=\frac{1}{2 \pi \iota} \int_{C} z^{-n-1} f(z) d z=\frac{1}{2 \pi \iota} \int_{C} e^{-\ln (z)(n+1)} f(z) d z
$$

Use this observation, together with the method of steepest descent, to obtain $n \rightarrow \infty$ behaviour of a_{n}, in the following examples.
(a) $f(z)=e^{z}$, (b) $f(z)=e^{z^{k}}$, (c) $a_{n}=\frac{B_{n}}{n!}$, where B_{n} is the n-th Bernoulli number (see Problem 19 above).

Problem 37. Discuss the change in asymptotic expansions as $\lambda \rightarrow \infty$ of the following integral, as θ varies in $(0,2 \pi), \theta \neq \pi$.

$$
I(\lambda, \theta)=\int_{0}^{e^{\iota \theta}} \frac{e^{\lambda z^{2}}}{1+z} d z
$$

Problem 38. Compute the leading term behaviour of the following integral, as $\lambda \rightarrow \infty$. Here $a \in \mathbb{R}$ is a fixed constant, and C is the infinite horizontal line $\mathbb{R}+\iota$.

$$
I(\lambda, a)=\int_{C} \frac{e^{\iota \lambda\left(\frac{z^{3}}{3}-z\right)}}{z-a} d z
$$

