6111 Homework 1

September 5, 2017

Problem 1. (5) Let G be a group and H;, Hy two subgroups of G of finite index. Prove that [G : H; N Hs] <
oo i.e. Hy N Hy is of finite index as well.

Proof. Let X = {a(H1 N H2) : a € G} be the set of left cosets of Hy N Hy and let Y = {(g1H1) N (92H2) :
91,92 € G} be the set of intersections of a left coset of H; with a left coset of Hy. We want to show that
X is finite, since H1 N Hs finite index means there are only finitely many left cosets. We know that Y is
a finite set, since Hp, Hy finite index means that H; and Hs both have finitely many left cosets, so the
set of intersections is also finite. If we can find an injection ¢ : X — Y, then we know the cardinality
of X is less than the cardinality of Y which implies X is finite. To construct such an injection, first
note that for any coset a(Hy N Hs), we see that a(Hy N Hy) C aHy and a(Hy N Hy) C aHs, and so
a(Hy N Hy) C (aHy) N (aHz). Thus we have a map ¢ : X — Y defined by ¢(a(Hy N Ha)) = (aHy) N (aHz).
We see this map is well defined as if a(Hy N Hs) = b(Hy N Hy), then b~'a € Hy N Hy and so aH; = bH; and
aHy; = bHs. Next to show injectivity, if ¢(a(H1NH2)) = ¢(b(H1NHy)), then (aHy)N(aHz) = (bH1)N(bHz).
Thus, ((aH1) N (aH2)) N ((bH1) N (bH2)) = (aHy NbH;) N (aHz NbH>) is nonempty, and so since the cosets
of Hy and H, are disjoint this implies aH; = bH;, aHy = bHy. Therefore, a='b € H, and a~'b € H,.
Thus a_lb S H1 N H2 and so CL(Hl N HQ) = b(Hl n HQ) Thus d)(a(Hl n HQ)) = ¢(b(H1 n Hg)) implies
a(Hy N Hy) = b(Hy N Hy) and so ¢ is injective. Therefore since Y is finite and there is an injection from X
to Y this implies that X is finite. So we conclude Hy N Hs is of finite index. O]

Problem 2. (9) Let m,n be two positive integers. What is the cardinality of Hom(Z,,,Z,) := the set of
all group homomorphisms from Z,, to Z,.

Proof. We will show |Hom(Zy,, Z,)| = ged(m,n).

First note that any homomorphism ¢ on a cyclic group (g) is determined by ¢(g). This is because
(9) = {¢g* : k € Z} and ¢(g*) = ¢(g)* for all k € Z, and so if two homomorphism ¢1, ¢, agree on g,
then for all k € Z, ¢1(g*) = ¢1(9)* = ¢2(9)* = ¢2(g*) and so ¢1 = ¢ on all of (g). Now we know Z,,
is a cyclic group, so let g € Z,, be a fixed generator of Z,, and thus any homomorphism ¢ : Z,, — Z, is
determined by ¢(g). Therefore if we let ¥ : Hom(Zy,,Zy) — Zy, be the map (¢p) = ¢(g), then we see by
above that 1 is injective. So to count the homomorphisms it is equivalent to count the number of elements
of Z,, which a generator can be mapped to.

Claim: The set {¢(g) : ¢ € Hom(Zy,,Z,)} is precisely the set of elements of Z, with order dividing
m.

Proof of claim: First if h € Z,, and h = ¢(g) for some ¢ € Hom(Zy,, Zy,), then h™ = ¢(g)™ = ¢(g™) =
¢(e) = e, and so h™ = e. Therefore the order of h divides m. (Let k be the order of h. If k does not divide m,
then let [ be the largest integer such that kl < m, and so m € {kl+1,...,kl+(k—1)}, but h**J = hJ +# e for
all 1 < j < k-1, and so h"™ # e. So by contrapositive if h™ = e then the order of h divides m.) Conversely
assume the order of h divides m and define the map ¢ (g¥) = h* for all k € Z. First note that ¢y, is well
defined, since if g* = ¢!, then g*~! = e and so m divides (k — ). Thus, ¢x(g*~") = h¥~! = e, since h™ = e.



Thus é5(g"%) = én(g'). Next note that ¢y, is a homomorphism since ¢y (g%g') = K+ = h¥*hl = ¢, (g%)on(g").
Thus we have proven the claim and all that remains is to count the number of elements of Z, which have
order dividing m.

An element [ having order dividing m means that " = 0 in Z,, equivalently m! = 0 (mod n). This is
equivalent to It € Z. Now we want to count all I € {1,...,n} such that [”* € Z. Let gcd(m,n) be the
greatest common divisor of m and n, and so we know that there exists ¢,,,c, € N with ¢, ¢, relatively
prime such that m = ged(m,n)c,, and n = ged(m,n)c,. Thus, Tt = i—"; Now since ¢,,,c, are rela-
tively prime, we see that for any integer [, l%’: € Z if and only if I = s¢, for some s € Z (this is easy
to see by looking at the prime factorizations). So The set of | which we want to count is precisely the set
{scn : 1 < sc, <m,s €N} It is immediate that this set is indexed by the set {s: 1 < s < n/¢,, s € N} which

is of size n/c, = ged(m,n). Thus we see that there are ged(m,n) many elements of Z,, which are the image

of the generator g under some homomorphism, and those elements are precisely {1c,, 2¢,, ..., gcd(m,n)c, }.
Therefore by the previous argument, this set is the same size as the set of homomorphisms, and so we see
that |Hom(Zy,, Z,)| = ged(m,n). O

Problem 3. (11) Let G be a group and consider the following subset of G:
X ={aba"'b"" :a,b € G}

Let H = (X) the subgroup generated by X. Show that:
(i) H is normal
(ii) G/H is abelian

Proof. We will show a stronger result. Let H be any subgroup containing X (and so clearly the subgroup
generated by X is one such subgroup). For any g € G and h € H, we see that ghg *h~' € X C H, and so
ghg™ = (ghg='h=1)h € H. Thus, gHg~' C H and so H is normal. Let aH,bH € G/H. We want to show
(ab)H = (ba)H, so equivalently we want to show (ba)~'ab € H. However, (ba) tab=a"'b"lab e X C H.
Thus, (eH)(bH) = (bH)(aH) and since these are arbitrary cosets, we conclude that G/H is abelian. O
Problem 4. Let M(0) = (;gjggg ‘ij(lgﬁ)). Let G = {M(0) : 0 < 0 < 21} C GLy(C) and let X = R2\ 0.
Consider the group action of G on X. Determine whether the action is free, faithful, or transitive and
describe the orbit space G \ X.

Proof. We will show that the action of G on X is faithful, free, and not transitive.

Let || - || be the standard euclidean norm on Ry, and let z = (z1,x9) € R?. We see that

| M (8)z||* = (cos(8)x1 — sin(f)z2)* + (sin(B)z; + cos()xs)?
= cos?(0)x? + sin®(0)x2 — 2 cos(f) sin(f) 122 + sin?(0)z? + cos?(0)z3 + 2sin(0) cos(6)x1xo

= cos®(0) (] + 23) + sin®(0) (23 + 27) = 2% + 23 = |2

Thus we see that ||[M(0)| =1 for all § (where this is the operator norm). Moreover we see from above that
for any x € R?\0, || M (0)z|| = ||z||, which implies that the G orbit of z is a collection of vectors with the same
norm as z. That is, Gz C {y € R? : ||y|| = ||=||}. This implies there is more than one G orbit in X (since each
orbit is a proper subset of X and the union of the orbits equals X), and thus G does not act transitively on X.

Now we will show that the action is free. Note that for any 6, the characteristic polynomial for M(6)
is det(M(0) — Iz) = (cos(0) — )% +sin?(0) = 22 — 2z cos(f) + 1 (where I is the identity matrix). We know by
the fundamental theorem of algebra that 22 — 2z cos(f) +1 = (z — A1 )(z — X2) for some Ai, Ay € C, and since
A1A2 = 1, we see that the two eigenvalues of M (6) are multiplicative inverses. Therefore, if M (0)x = = for
some x € X, then 1 is an eigenvalue of M (#) and so by above we see that 1 is an eigenvalue of multiplicity



two. Thus, 22 — 2z cos(f) + 1 = (x — 1)? = x — 22 + 1, which implies cos(f) = 1. Therefore, sin(f) = 0, and
so we see that M(6) = I. Thus if M(0) fixes any element of X, then M (#) is the identity. So we see that
the action of G on X is free.

Free implies faithful, and so we have shown that the action is free, faithful, and not transitive.

We showed before that every orbit of G lie within a concentric circle. Next we will show that the or-
bits of G are exactly the concentric circles in R%. Let C, = {z € R? : ||z| = r}. By before we see that
for all ||z|| = r, Gz C C,. Now, let x,, = (r,0). For any y = (y1,y2) € C,, we see that there exists 6 such
that y; = rcos(d), y2 = rsin(f). To justify this we see first that y? + y2 = 2, and so 0 < y;/r,y2/r < 1.
Thus since the image of cos is [0,1] we see that y;/r = cos(f) for some 6. Since cos(0)? + sin(9)? = 1,
this implies that (y2/r)? = sin(6)?, and so y»/r = +sin(f) = sin(£0). Finally since cos(f) = cos(—0), we
conclude that y = (rcos(f),rsin(6)) for some 6. However, we see that M (6)x, = (rcos(), rsin(f)). Thus,
y = M(0)x, and so y € Gx,. Therefore since y € C, is arbitrary, we conclude that C, C Gz, C C, and
therefore Gz = C,. for all z with ||z|| = 7. Thus, G\ X = {C, : r e RT}. O

Problem 5. Assume G is a group and H is a subgroup such that [G : H] < co. Prove that there exists a
normal subgroup N of G such that [G: N] < oo and N C H.

Proof. We see that G acts on G/H by left multiplication, that is g1 - (¢H) = (g19)H. This group action is
a homomorphism ¢ : G — Sym(G/H), and so the kernel ker(y) is a normal subgroup of G. Additionally,
by the first isomorphism theorem, G/ker(p) = im(p) and im(p) < Sym(G/H) a finite group, and so
|G/Eker(¢)| < oo. Thus we see that [G : ker(y)] < oo. So ker(y) is a normal subgroup of finite index, so
all that remains is to see that ker(p) C H. Let g € ker(¢). Therefore for any coset g1H, gg1H = g1 H.
Looking at the coset H, we see gH = H which implies that g € H. Since g € ker(yp) is arbitrary we conclude

ker(y) C H. Thus we found a normal subgroup of finite index inside of H and so we are done. O



