
6111 Homework 1

September 5, 2017

Problem 1. (5) Let G be a group and H1, H2 two subgroups of G of finite index. Prove that [G : H1∩H2] <
∞ i.e. H1 ∩H2 is of finite index as well.

Proof. Let X = {a(H1 ∩H2) : a ∈ G} be the set of left cosets of H1 ∩H2 and let Y = {(g1H1) ∩ (g2H2) :
g1, g2 ∈ G} be the set of intersections of a left coset of H1 with a left coset of H2. We want to show that
X is finite, since H1 ∩ H2 finite index means there are only finitely many left cosets. We know that Y is
a finite set, since H1, H2 finite index means that H1 and H2 both have finitely many left cosets, so the
set of intersections is also finite. If we can find an injection φ : X → Y , then we know the cardinality
of X is less than the cardinality of Y which implies X is finite. To construct such an injection, first
note that for any coset a(H1 ∩ H2), we see that a(H1 ∩ H2) ⊂ aH1 and a(H1 ∩ H2) ⊂ aH2, and so
a(H1 ∩H2) ⊂ (aH1) ∩ (aH2). Thus we have a map φ : X → Y defined by φ(a(H1 ∩H2)) = (aH1) ∩ (aH2).
We see this map is well defined as if a(H1 ∩H2) = b(H1 ∩H2), then b−1a ∈ H1 ∩H2 and so aH1 = bH1 and
aH2 = bH2. Next to show injectivity, if φ(a(H1∩H2)) = φ(b(H1∩H2)), then (aH1)∩(aH2) = (bH1)∩(bH2).
Thus,

(
(aH1)∩ (aH2)

)
∩
(
(bH1)∩ (bH2)

)
=

(
aH1 ∩ bH1

)
∩
(
aH2 ∩ bH2

)
is nonempty, and so since the cosets

of H1 and H2 are disjoint this implies aH1 = bH1, aH2 = bH2. Therefore, a−1b ∈ H1 and a−1b ∈ H2.
Thus a−1b ∈ H1 ∩ H2 and so a(H1 ∩ H2) = b(H1 ∩ H2). Thus φ(a(H1 ∩ H2)) = φ(b(H1 ∩ H2)) implies
a(H1 ∩H2) = b(H1 ∩H2) and so φ is injective. Therefore since Y is finite and there is an injection from X
to Y this implies that X is finite. So we conclude H1 ∩H2 is of finite index.

Problem 2. (9) Let m,n be two positive integers. What is the cardinality of Hom(Zm,Zn) := the set of
all group homomorphisms from Zm to Zn.

Proof. We will show |Hom(Zm,Zn)| = gcd(m,n).

First note that any homomorphism φ on a cyclic group 〈g〉 is determined by φ(g). This is because
〈g〉 = {gk : k ∈ Z} and φ(gk) = φ(g)k for all k ∈ Z, and so if two homomorphism φ1, φ2 agree on g,
then for all k ∈ Z, φ1(gk) = φ1(g)k = φ2(g)k = φ2(gk) and so φ1 = φ2 on all of 〈g〉. Now we know Zm
is a cyclic group, so let g ∈ Zm be a fixed generator of Zm and thus any homomorphism φ : Zm → Zn is
determined by φ(g). Therefore if we let ψ : Hom(Zm,Zn) → Zn be the map ψ(φ) = φ(g), then we see by
above that ψ is injective. So to count the homomorphisms it is equivalent to count the number of elements
of Zn which a generator can be mapped to.

Claim: The set {φ(g) : φ ∈ Hom(Zm,Zn)} is precisely the set of elements of Zn with order dividing
m.

Proof of claim: First if h ∈ Zn and h = φ(g) for some φ ∈ Hom(Zm,Zn), then hm = φ(g)m = φ(gm) =
φ(e) = e, and so hm = e. Therefore the order of h divides m. (Let k be the order of h. If k does not divide m,
then let l be the largest integer such that kl < m, and so m ∈ {kl+1, ..., kl+(k−1)}, but hkl+j = hj 6= e for
all 1 ≤ j ≤ k− 1, and so hm 6= e. So by contrapositive if hm = e then the order of h divides m.) Conversely
assume the order of h divides m and define the map φh(gk) = hk for all k ∈ Z. First note that φh is well
defined, since if gk = gl, then gk−l = e and so m divides (k − l). Thus, φh(gk−l) = hk−l = e, since hm = e.
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Thus φh(gk) = φh(gl). Next note that φh is a homomorphism since φh(gkgl) = hk+l = hkhl = φh(gk)φh(gl).
Thus we have proven the claim and all that remains is to count the number of elements of Zn which have
order dividing m.

An element l having order dividing m means that lm = 0 in Zn, equivalently ml ≡ 0 (mod n). This is
equivalent to lmn ∈ Z. Now we want to count all l ∈ {1, ..., n} such that lmn ∈ Z. Let gcd(m,n) be the
greatest common divisor of m and n, and so we know that there exists cm, cn ∈ N with cm, cn relatively
prime such that m = gcd(m,n)cm and n = gcd(m,n)cn. Thus, m

n = cm
cn

. Now since cm, cn are rela-
tively prime, we see that for any integer l, l cmcn ∈ Z if and only if l = scn for some s ∈ Z (this is easy
to see by looking at the prime factorizations). So The set of l which we want to count is precisely the set
{scn : 1 ≤ scn ≤ n, s ∈ N}. It is immediate that this set is indexed by the set {s : 1 ≤ s ≤ n/cn, s ∈ N} which
is of size n/cn = gcd(m,n). Thus we see that there are gcd(m,n) many elements of Zn which are the image
of the generator g under some homomorphism, and those elements are precisely {1cn, 2cn, ...., gcd(m,n)cn}.
Therefore by the previous argument, this set is the same size as the set of homomorphisms, and so we see
that |Hom(Zm,Zn)| = gcd(m,n).

Problem 3. (11) Let G be a group and consider the following subset of G:

X = {aba−1b−1 : a, b ∈ G}

Let H = 〈X〉 the subgroup generated by X. Show that:
(i) H is normal
(ii) G/H is abelian

Proof. We will show a stronger result. Let H be any subgroup containing X (and so clearly the subgroup
generated by X is one such subgroup). For any g ∈ G and h ∈ H, we see that ghg−1h−1 ∈ X ⊂ H, and so
ghg−1 = (ghg−1h−1)h ∈ H. Thus, gHg−1 ⊂ H and so H is normal. Let aH, bH ∈ G/H. We want to show
(ab)H = (ba)H, so equivalently we want to show (ba)−1ab ∈ H. However, (ba)−1ab = a−1b−1ab ∈ X ⊂ H.
Thus, (aH)(bH) = (bH)(aH) and since these are arbitrary cosets, we conclude that G/H is abelian.

Problem 4. Let M(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. Let G = {M(θ) : 0 ≤ θ ≤ 2π} ⊂ GL2(C) and let X = R2 \ 0.

Consider the group action of G on X. Determine whether the action is free, faithful, or transitive and
describe the orbit space G \X.

Proof. We will show that the action of G on X is faithful, free, and not transitive.

Let ‖ · ‖ be the standard euclidean norm on R2, and let x = (x1, x2) ∈ R2. We see that

‖M(θ)x‖2 = (cos(θ)x1 − sin(θ)x2)2 + (sin(θ)x1 + cos(θ)x2)2

= cos2(θ)x21 + sin2(θ)x22 − 2 cos(θ) sin(θ)x1x2 + sin2(θ)x21 + cos2(θ)x22 + 2 sin(θ) cos(θ)x1x2

= cos2(θ)(x21 + x22) + sin2(θ)(x22 + x21) = x21 + x22 = ‖x‖2

Thus we see that ‖M(θ)‖ = 1 for all θ (where this is the operator norm). Moreover we see from above that
for any x ∈ R2\0, ‖M(θ)x‖ = ‖x‖, which implies that the G orbit of x is a collection of vectors with the same
norm as x. That is, Gx ⊂ {y ∈ R2 : ‖y‖ = ‖x‖}. This implies there is more than one G orbit in X (since each
orbit is a proper subset of X and the union of the orbits equals X), and thus G does not act transitively on X.

Now we will show that the action is free. Note that for any θ, the characteristic polynomial for M(θ)
is det(M(θ)−Ix) = (cos(θ)−x)2 +sin2(θ) = x2−2x cos(θ)+1 (where I is the identity matrix). We know by
the fundamental theorem of algebra that x2−2x cos(θ) + 1 = (x−λ1)(x−λ2) for some λ1, λ2 ∈ C, and since
λ1λ2 = 1, we see that the two eigenvalues of M(θ) are multiplicative inverses. Therefore, if M(θ)x = x for
some x ∈ X, then 1 is an eigenvalue of M(θ) and so by above we see that 1 is an eigenvalue of multiplicity
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two. Thus, x2 − 2x cos(θ) + 1 = (x− 1)2 = x− 2x+ 1, which implies cos(θ) = 1. Therefore, sin(θ) = 0, and
so we see that M(θ) = I. Thus if M(θ) fixes any element of X, then M(θ) is the identity. So we see that
the action of G on X is free.

Free implies faithful, and so we have shown that the action is free, faithful, and not transitive.

We showed before that every orbit of G lie within a concentric circle. Next we will show that the or-
bits of G are exactly the concentric circles in R2. Let Cr = {x ∈ R2 : ‖x‖ = r}. By before we see that
for all ‖x‖ = r, Gx ⊂ Cr. Now, let xr = (r, 0). For any y = (y1, y2) ∈ Cr, we see that there exists θ such
that y1 = r cos(θ), y2 = r sin(θ). To justify this we see first that y21 + y22 = r2, and so 0 ≤ y1/r, y2/r ≤ 1.
Thus since the image of cos is [0, 1] we see that y1/r = cos(θ) for some θ. Since cos(θ)2 + sin(θ)2 = 1,
this implies that (y2/r)

2 = sin(θ)2, and so y2/r = ± sin(θ) = sin(±θ). Finally since cos(θ) = cos(−θ), we
conclude that y = (r cos(θ), r sin(θ)) for some θ. However, we see that M(θ)xr = (r cos(θ), r sin(θ)). Thus,
y = M(θ)xr and so y ∈ Gxr. Therefore since y ∈ Cr is arbitrary, we conclude that Cr ⊂ Gxr ⊂ Cr and
therefore Gx = Cr for all x with ‖x‖ = r. Thus, G \X = {Cr : r ∈ R+}.

Problem 5. Assume G is a group and H is a subgroup such that [G : H] < ∞. Prove that there exists a
normal subgroup N of G such that [G : N ] <∞ and N ⊂ H.

Proof. We see that G acts on G/H by left multiplication, that is g1 · (gH) = (g1g)H. This group action is
a homomorphism ϕ : G → Sym(G/H), and so the kernel ker(ϕ) is a normal subgroup of G. Additionally,
by the first isomorphism theorem, G/ker(ϕ) ∼= im(ϕ) and im(ϕ) ≤ Sym(G/H) a finite group, and so
|G/ker(ϕ)| < ∞. Thus we see that [G : ker(ϕ)] < ∞. So ker(ϕ) is a normal subgroup of finite index, so
all that remains is to see that ker(ϕ) ⊂ H. Let g ∈ ker(ϕ). Therefore for any coset g1H, gg1H = g1H.
Looking at the coset H, we see gH = H which implies that g ∈ H. Since g ∈ ker(ϕ) is arbitrary we conclude
ker(ϕ) ⊂ H. Thus we found a normal subgroup of finite index inside of H and so we are done.
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