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(1) Proof Firstly, we have a natural bilinear mapping i from (A/a,M) to M/aM,
that is, sending (ã,m) to ãm, where ã, ãm is the image of a in A/a and am ∈ M
repsectively, a ∈ A,m ∈ M. Suppose that (ã,m) = (b̃, n), then we have a−b ∈ a
and m = n. Then we know that ãm − b̃n = ˜(a − b)m = 0 and hence this
mapping is well defined. Besides, we can check that it is bilinear.

Let N be an A-module and we consider a bilinear mapping from (A/a,M) →
N. Then we prove that f can induce a mapping f̃ : M/aM → N such that
f̃ ◦ i = f . In fact, we only need to set f̃ (x + aM) = f (1̃, x), where 1̃ is the
image of 1 in A/a. We check that f̃ is well defined: let x1, x2 ∈ M such that
x1 − x2 ∈ aM and hence x1 − x2 = am for some a ∈ a,m ∈ M. Then we have:

f (1̃, x1) − f (1̃, x2) = f (1̃, x1 − x2) = f (1̃, am) = f (ã,m) = f (0,m) = 0.

And we can check that:

f̃ ◦ i(ã,m) = f̃ (ãm) = f (1̃, am) = f (ã,m).

Therefore, M/aM satisfies the university property of A/a ⊗A M and hence
M/aM ' A/a ⊗A M. �

(2) Proof For m ∈ M, we can write it as p(m) + m − p(m). We can check that
p(m − p(m)) = p(m) − p2(m) = p(m) − p(m) = 0 and hence m − p(m) ∈ M1

and p(m) ∈ M2. Therefore, M = M1 + M2. Then we pick m ∈ M1 ∩M2. Since
m ∈ M2, we can find n ∈ M such that m = p(n). Notice that m ∈ M1, we have:

0 = p(m) = p(p(n)) = p2(n) = p(n) = m.

Therefore, this is a direct sum and hence M = M1 ⊕ M2. �



(3) Proof We set A = Z, a = (m). Then by exercise (3), we know that Zm ⊗Z

N ' Zn/(m)Zn. Then we only need to prove that Zn/(m)Zn ' Zd, where
d = gcd(m, n).

We consider a the natural mapping φ from Zn to Zd, by sending the image of
x (an integer) in Zn to its image in Zd. Since d|n, we can find that the mapping
is well defined and surjective. Then we prove Ker φ = (m)Zn. For ã ∈ (m)Zn,
m|a and hence the image of a in Zd is 0. Then we consider ã ∈ Z such that
φ(̃a) = 0. Then we know that d|a. Since d = gcd(m, n), we can find s, t such
that sm + nt = d and hence we have s′, t′ such that s′m + t′n = a. Then we
can find ã = s̃′m = ms̃′ and hence Ker φ ⊆ (m)Zn. Therefore, we know that
Zn/(m)Zn ' Zd, and hence Zm ⊗Z Zn ' Zgcd(m,n). �

(4) Proof We define the f : Zm → Pα by sending 1m ∈ Zm to e1 ∈ Pα and
g : Pα → Zn sending e1, e2 to 0, 1n ∈ Zn respectively. Then we prove that the
following sequence:

1 // Zm
f // Pα

g // Zn
// 1

is exact. Since f (m) = me1 = 0 and 0 = g(αe1) = g(ne2) = n = 0, we can
find that f , g are well defined. Suppose that f (k1) = k1e1 = k2e1 = f (k2),
then k1 − k2 = 0 in Zm and hence f is injective. Since g(e2) = 1N , g is a
surjective mapping. And we have g ◦ f (1M) = g(e1) = 0. Besides, suppose
that g(k1e1 + k2e2) = k2 = 0 in Zn, then we have n|k2. Suppose that k2 = np
and we have k2e2 = pαe1 and hence f (k1 + pα)k1e1 +k2e2. Therefore, we have
Im f = Ker g, which implies the sequence is exact. �

(5) Proof The sufficient and necessary condition is that d|(α − β), where d =

gcd(m, n).

⇒ Suppose that we have the following commutative diagram:

0 // Zm

Id
��

fα // Pα

φ

��

gα // Zn

Id
��

// 0

0 // Zm
fβ // Pβ

gβ // Zn
// 0

where φ is an isomorphism. And we assume that Pα =< e1, e2 > and Pβ =<
e′1, e

′
2 > the definition in exercise 9. Then we have gβ = gα ◦ φ−1 and f −1

β =

f −1
α ◦ φ

−1. By exercise 8, we know that Zm ⊗ Zn ' Zd and we can check that
1m ⊗ 1n = 1d, where 1m, 1n, 1d is the identity of Zm,Zn,Zd respectively. Then
we have:

α1d = α1m ⊗ 1n = α ⊗ 1n = f −1
α (ne2) ⊗ gα(e2)

ii



and similarly, β1d = f −1
β (ne′2) ⊗ gβ(e′2). Then we have:

f −1
β (ne′2) ⊗ gβ(e′2) = f −1

α ◦ φ
−1(ne′2) ⊗ gα ◦ φ−1(e′2).

Then we consider the difference

f −1
α (ne2) ⊗ gα(e2) − f −1

α ◦ φ
−1(ne′2) ⊗ gα ◦ φ−1(e′2)

= f −1
α (n(e2 − φ

−1(e′2))) ⊗ gα(e2) + f −1
α ◦ φ

−1(ne′2) ⊗ gα ◦ φ−1(e2 − φ
−1(e′2))

We can find that gα(e2 − φ
−1(e′2)) = 1m − 1m = 0 and hence e2 − φ

−1(e′2) = ke1

for some k ∈ Z since Ker gα = Im fα. Therefore, we know that:

f −1
α (n(e2 − φ

−1(e′2))) ⊗ gα(e2) = f −1
α (nke1) ⊗ gα(e2) = nk(1m ⊗ 1n) = 0.

And we can check that the second term is also 0 and hence

α1d = f −1
α (ne2) ⊗ gα(e2) = f −1

α ◦ φ
−1(ne′2) ⊗ gα ◦ φ−1(e′2) = β1d.

Therefore, we have d|(α − β).

⇐ Since d|(α − β), we can find a such that m|(α − β − an). Then we define
φ(e1) = e′1 and φ(e2) = ae′1 + e2. We can check that φ is well defined ((na +

β)e′1 = nφ(e2) = φ(ne2) = αe′1.) and we have:

fα ◦ φ = fβ ◦ Id Id ◦gα = gβ ◦ φ.

So we only need to prove that φ is bijective. By the definition, we can find
that φ(e1) = e′1 and φ(e2 − ae′1) = e′2 and hence we define ψ(e′1) = e1 and
ψ(e′2) = e2 − ae1. We can check that ψ ◦ φ = IdPα and φ ◦ ψ = IdPβ and hence
φ is bijective. �
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