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1. Define f: ST'Ax M — S™'M by f(a/s,m) = am/s. Suppose a/s = b/r, i.e. there is
d € S such that d(ra —sb) = 0. Then d(ram — sbm) = 0, which means am/s = bm/r. Thus,

f is well-defined. We have
f(g+é,m> :f(ra—i-sb,m) _ (ra + sb)ym _ram sbm =f< ,m) +f(é,m>
s T sr sr sr sr r
a _m+n) _am  an_ o a
f(g,m+n>— s s * s <S,m>+f<8,n>

(2] =2 (2m).

f is a A-bilinear map, so there is f : S7'A ®4 M — S™'M such that f(a/s ® m) =
f(a/s,m) = am/s. We can check that f is a S~*A-module homomorphism.

Define g : S7'M — S7'A®4 M by g(m/s) = 1/s @ m. Then g is a S~'A-module
homomorphism because

m n rm -+ sn 1 1 1 m n
g(——l——)zg —_— :—®(rm+sn):—®7‘m+—®sn:g<—)+g<—>
sr sr sr s

w |

s r sr r
(a m) 1 2 _a @ m = a (m)
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Note that fog(m/s) = f(1/s®@m)=m/s and go f(a/s @ m) = glam/s) = 1/s @ am =
a/s®m, so f and g are inverse of each other. It follows that S~*A ®, M = S~'M. O
5. Consider the following sequences 0 s M s M 2 M” —— 0 and
0 —— M) v, My, v, M » 0 , where m is a maximal ideal. M, = S™'M,

where S = A\ m. For every m, we use ¢, ¢’ and S uniformly.
(=) This is Proposition 31.2 in Lecture Notes.
(<) Lemma 1. (ker), = ker ) for every maximal ideal m C A.

Proof. Suppose m’ € kert. Then ¢'(m//s) = ¢¥(m')/s = 0 for any s € S, i.e. m'/s €
ker)’. This means (ker 1), C ker’ and this holds for any maximal ideal m C A. Conversely,
suppose m’/s € kerv’. Then ¢(m’)/s = ¢'(m’/s) = 0, which implies dy)(m’) = 0 for some

d € S. Thus, m'/s € kery’ for any s € S. Let N be the submodule generated by ¥ (m/).
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(m')/s = 0 for any s € S implies N, = 0. This holds for any maximal ideal m C A, so
N =0, i.e. m’' € kert. Hence, (ker ), = kert’ for every maximal ideal m C A.
Lemma 2. (im @)y, = im ¢’ and (M”/im ¢), = M,/ im ¢’ for every maximal ideal m C A.
Proof. By definition, ¢/(m/s) = ¢(m)/s, so easily (im ¢), = im ¢'.
Define f : (M"/im ¢)y, — M/ /im ¢’ by f( "+‘m¢) m”/s+im ¢’ ”+lm¢ "timqs &

"_ g

d(rm n”) € im ¢ for some d € S, which implies

m// n// d 7,,,',n/// _ Sn//
s r dsr

Conversely,
m"/s+im¢ =n"/r+im¢’ < m"/s—n"/r € im ¢
= m"/s—n"/r =a/bfor some a € im¢ and b € S
= d'(b(rm” — sn”) — sra) = 0 for some d’ € S
m" +im¢ n’ +im¢
Thus, f is well-defined and injective. f is surjective by definition, thefefore f is an isomor-

= d'b(rm” — sn") = d'sra € im¢ &

phism.

0 > M, N My A My » 0 is an exact sequence for every maximal
ideal m C A. By Lemma 1, (kert), = ker¢/ = 0 for every maximal ideal m C A and
therefore ker ) = 0. Similarly, we can get im ¢ = M” and ker ¢ = im+) by applying Lemma
2 and the fact (ker ¢/im )y, = ker¢’/ime)’ (which can be shown as in Lemma 2). Hence,

0 — M —2s M 2

> M » 0 is an exact sequence. O

7. Suppose J is an ideal in A[[z]]. Define
I, = {c € A| 3f(z) € J such that f(x) = ca® + higher} U {0}.

It is easy to check that [ is an ideal in A and Iy C I; C ---. A is Noetherian, so there is N
such that Iy = Iy;1 = - - - and each of them is finitely generated. Suppose I, = (cx1, .-, Ckn)-
Since each [}, is finite generated and there are only finite different I;’s, we can take subscript
n uniformly. There is fi; € J such that fy; = cgz® + higher. Let J' = (fri)ock<n1<icn and
claim that J' = J.

Each fy; isin J, so J' C J. For any f € J, say f(z) = ap + a1z + ---. ag € Iy,
so ag = bicpr + -+ + byco, for some by, --- b, € A. Let go = byfor + -+ + b, fon. Then
go € J C J,so f— go=ajx+ higher € J. Continue to find gy, ...,gn € J" and get

f—=9— " —gn= ag\J,VJ:EI)INH + higher,

where ag\],vﬁl) € Iny1 C Iy. Similarly, there exists gni1 € (fn1, -, fn) C J' such that

f—go—-—gn —TgN41 = ag\zfv+§2)xz\/+2 + higher.
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Continue this process and get
f=g0++gn+xgne +2°gnra + Tgnas + oo

where gN+2; gN+3, -+ € <fN17-“7an> C J'. ThUS, f € 9o + - +gN + <fN1>-“7fNTL> - JI) as
desired. 0

9. Suppose N is a submodule of M|x]. Define
Ly = {m € M| 3f(x) € M[z] such that f(z) = ma"* + lower} U {0}.

It is easy to check that Lj is a submodule of A and Ly C L; C ---. M is a Noetherian
module over A, so there is [ € N such that L; = L;;; = --- and each of them is finitely
generated. Suppose Ly = (myq, ..., Mg,). Again we take subscript n uniformly as in Problem
7. There is f; € N such that fy; = myz® + lower. Let N’ = {fri)o<k<ii<i<n and claim that
N = N.

Each fi; isin N, so N’ C N. For any f € N, define d = deg f. If d < [, then f € N’
by the choices of fi;. Suppose d > [. Since Ly = L;, there is g4 € (fi1, ..., fin) C N’ such
that f — 2% 'g, is of degree at most d — 1. Continue this process and find g4_1, ..., 111 €
(fir, s fin) C N’ such that f —297'g; — -+ — 2g;,, is of degree at most [. We can see that
f—a%lgy — -+ —xg41 is in N’ by the case of d < I. Thus, f € N’ as desired. We have
shown that every submodule in M|x] is finitely generated, therefore M[x] is a Noetherian
module over Alz]. O

10. If f(m) = 0 for some m € M, then we have f%(m) = f(f(m)) = f(0) = 0 and
f¥(m) =0 for k > 2. Thus, ker f C ker f2 C ---. The kernel of any module homomorphism
is a submodule. Since M is a Noetherian module over A, there is n € N such that ker f* =

ker fntl =...

f is surjective, so for any m € M there is m; € M such that f(m;) = m. Then there is
my € M such that f(my) = my, ie. f2(my) = m. This implies f? is surjective. Similarly,
f* is surjective for k > 2.

Assume ker f # 0. Then f(a) = 0 for some a € M — {0}. f" is surjective, so there
is m € M such that f"(m) = a. Then f"*'(m) = f(k) = 0, i.e. m € ker f"*'. But
ker f* = ker f"*! implies @ = f"(m) = 0, a contradiction. Thus, ker f = 0. f is surjective,
therefore f is an isomorphism. O



