MATH 6111 ALGEBRA I PROBLEM SET 12

RUIZE YANG

Nov 21, 2017

1. Define $f: S^{-1}A \times M \to S^{-1}M$ by f(a/s, m) = am/s. Suppose a/s = b/r, i.e. there is $d \in S$ such that d(ra - sb) = 0. Then d(ram - sbm) = 0, which means am/s = bm/r. Thus, f is well-defined. We have

$$f\left(\frac{a}{s} + \frac{b}{r}, m\right) = f\left(\frac{ra + sb}{sr}, m\right) = \frac{(ra + sb)m}{sr} = \frac{ram}{sr} + \frac{sbm}{sr} = f\left(\frac{a}{s}, m\right) + f\left(\frac{b}{r}, m\right)$$
$$f\left(\frac{a}{s}, m + n\right) = \frac{a(m+n)}{s} = \frac{am}{s} + \frac{an}{s} = f\left(\frac{a}{s}, m\right) + f\left(\frac{a}{s}, n\right)$$
$$f\left(\frac{a}{s} \cdot b, m\right) = \frac{abm}{s} = f\left(\frac{a}{s}, bm\right).$$

f is a A-bilinear map, so there is $\tilde{f} : S^{-1}A \otimes_A M \to S^{-1}M$ such that $\tilde{f}(a/s \otimes m) = f(a/s, m) = am/s$. We can check that \tilde{f} is a $S^{-1}A$ -module homomorphism.

Define $g: S^{-1}M \to S^{-1}A \otimes_A M$ by $g(m/s) = 1/s \otimes m$. Then g is a $S^{-1}A$ -module homomorphism because

$$g\left(\frac{m}{s} + \frac{n}{r}\right) = g\left(\frac{rm + sn}{sr}\right) = \frac{1}{sr} \otimes (rm + sn) = \frac{1}{sr} \otimes rm + \frac{1}{sr} \otimes sn = g\left(\frac{m}{s}\right) + g\left(\frac{n}{r}\right)$$
$$g\left(\frac{a}{t} \cdot \frac{m}{s}\right) = \frac{1}{ts} \otimes am = \frac{a}{ts} \otimes m = \frac{a}{t} \cdot g\left(\frac{m}{s}\right).$$

Note that $\hat{f} \circ g(m/s) = \hat{f}(1/s \otimes m) = m/s$ and $g \circ \hat{f}(a/s \otimes m) = g(am/s) = 1/s \otimes am = a/s \otimes m$, so \tilde{f} and g are inverse of each other. It follows that $S^{-1}A \otimes_A M \cong S^{-1}M$. \Box

5. Consider the following sequences $0 \longrightarrow M' \xrightarrow{\psi} M \xrightarrow{\phi} M'' \longrightarrow 0$ and $0 \longrightarrow M'_{\mathfrak{m}} \xrightarrow{\psi'} M_{\mathfrak{m}} \xrightarrow{\phi'} M''_{\mathfrak{m}} \longrightarrow 0$, where \mathfrak{m} is a maximal ideal. $M_{\mathfrak{m}} = S^{-1}M$, where $S = A \setminus \mathfrak{m}$. For every \mathfrak{m} , we use ψ' , ϕ' and S uniformly.

- (\Rightarrow) This is Proposition 31.2 in Lecture Notes.
- (⇐) Lemma 1. $(\ker \psi)_{\mathfrak{m}} = \ker \psi'$ for every maximal ideal $\mathfrak{m} \subset A$.

Proof. Suppose $m' \in \ker \psi$. Then $\psi'(m'/s) = \psi(m')/s = 0$ for any $s \in S$, i.e. $m'/s \in \ker \psi'$. This means $(\ker \psi)_{\mathfrak{m}} \subset \ker \psi'$ and this holds for any maximal ideal $\mathfrak{m} \subset A$. Conversely, suppose $m'/s \in \ker \psi'$. Then $\psi(m')/s = \psi'(m'/s) = 0$, which implies $d\psi(m') = 0$ for some $d \in S$. Thus, $m'/s \in \ker \psi'$ for any $s \in S$. Let N be the submodule generated by $\psi(m')$.

 $\psi(m')/s = 0$ for any $s \in S$ implies $N_{\mathfrak{m}} = 0$. This holds for any maximal ideal $\mathfrak{m} \subset A$, so N = 0, i.e. $m' \in \ker \psi$. Hence, $(\ker \psi)_{\mathfrak{m}} = \ker \psi'$ for every maximal ideal $\mathfrak{m} \subset A$.

Lemma 2. $(\operatorname{im} \phi)_{\mathfrak{m}} = \operatorname{im} \phi'$ and $(M''/\operatorname{im} \phi)_{\mathfrak{m}} \cong M''_{\mathfrak{m}}/\operatorname{im} \phi'$ for every maximal ideal $\mathfrak{m} \subset A$. *Proof.* By definition, $\phi'(m/s) = \phi(m)/s$, so easily $(\operatorname{im} \phi)_{\mathfrak{m}} = \operatorname{im} \phi'$.

Define $f: (M'' / \operatorname{im} \phi)_{\mathfrak{m}} \to M''_{\mathfrak{m}} / \operatorname{im} \phi'$ by $f(\frac{m'' + \operatorname{im} \phi}{s}) = m'' / s + \operatorname{im} \phi'$. $\frac{m'' + \operatorname{im} \phi}{s} = \frac{n'' + \operatorname{im} \phi}{r} \Leftrightarrow d(rm'' - sn'') \in \operatorname{im} \phi$ for some $d \in S$, which implies

$$\frac{m''}{s} - \frac{n''}{r} = \frac{d(rm'' - sn'')}{dsr} \in (\operatorname{im} \phi)_{\mathfrak{m}} = \operatorname{im} \phi'.$$

Conversely,

$$m''/s + \operatorname{im} \phi' = n''/r + \operatorname{im} \phi' \Leftrightarrow m''/s - n''/r \in \operatorname{im} \phi'$$

$$\Rightarrow m''/s - n''/r = a/b \text{ for some } a \in \operatorname{im} \phi \text{ and } b \in S$$

$$\Rightarrow d'(b(rm'' - sn'') - sra) = 0 \text{ for some } d' \in S$$

$$\Rightarrow d'b(rm'' - sn'') = d'sra \in \operatorname{im} \phi \Leftrightarrow \frac{m'' + \operatorname{im} \phi}{s} = \frac{n'' + \operatorname{im} \phi}{r}.$$

Thus, f is well-defined and injective. f is surjective by definition, therefore f is an isomorphism.

 $0 \longrightarrow M'_{\mathfrak{m}} \xrightarrow{\psi'} M_{\mathfrak{m}} \xrightarrow{\phi'} M''_{\mathfrak{m}} \longrightarrow 0 \quad \text{is an exact sequence for every maximal ideal } \mathfrak{m} \subset A.$ By Lemma 1, $(\ker \psi)_{\mathfrak{m}} = \ker \psi' = 0$ for every maximal ideal $\mathfrak{m} \subset A$ and therefore $\ker \psi = 0$. Similarly, we can get $\operatorname{im} \phi = M''$ and $\ker \phi = \operatorname{im} \psi$ by applying Lemma 2 and the fact $(\ker \phi/\operatorname{im} \psi)_{\mathfrak{m}} \cong \ker \phi'/\operatorname{im} \psi'$ (which can be shown as in Lemma 2). Hence, $0 \longrightarrow M' \xrightarrow{\psi} M \xrightarrow{\phi} M'' \longrightarrow 0$ is an exact sequence.

7. Suppose J is an ideal in A[[x]]. Define

$$I_k = \{ c \in A \mid \exists f(x) \in J \text{ such that } f(x) = cx^k + higher \} \cup \{0\}.$$

It is easy to check that I_k is an ideal in A and $I_0 \subset I_1 \subset \cdots$. A is Noetherian, so there is Nsuch that $I_N = I_{N+1} = \cdots$ and each of them is finitely generated. Suppose $I_k = \langle c_{k1}, ..., c_{kn} \rangle$. Since each I_k is finite generated and there are only finite different I_k 's, we can take subscript n uniformly. There is $f_{ki} \in J$ such that $f_{ki} = c_{ki}x^k + higher$. Let $J' = \langle f_{ki} \rangle_{0 \leq k \leq N, 1 \leq i \leq n}$ and claim that J' = J.

Each f_{ki} is in J, so $J' \subset J$. For any $f \in J$, say $f(x) = a_0 + a_1x + \cdots$. $a_0 \in I_0$, so $a_0 = b_1c_{01} + \cdots + b_nc_{0n}$ for some $b_1, \cdots, b_n \in A$. Let $g_0 = b_1f_{01} + \cdots + b_nf_{0n}$. Then $g_0 \in J' \subset J$, so $f - g_0 = a'_1x + higher \in J$. Continue to find $g_1, \dots, g_N \in J'$ and get

$$f - g_0 - \dots - g_N = a_{N+1}^{(N+1)} x^{N+1} + higher,$$

where $a_{N+1}^{(N+1)} \in I_{N+1} \subset I_N$. Similarly, there exists $g_{N+1} \in \langle f_{N1}, ..., f_{Nn} \rangle \subset J'$ such that

$$f - g_0 - \dots - g_N - xg_{N+1} = a_{N+2}^{(N+2)}x^{N+2} + higher.$$

Continue this process and get

desired.

$$f = g_0 + \dots + g_N + xg_{N+1} + x^2g_{N+2} + x^3g_{N+3} + \dots,$$

where $g_{N+2}, g_{N+3}, \dots \in \langle f_{N1}, \dots, f_{Nn} \rangle \subset J'$. Thus, $f \in g_0 + \dots + g_N + \langle f_{N1}, \dots, f_{Nn} \rangle \subset J'$, as desired

9. Suppose N is a submodule of M[x]. Define

$$L_k = \{ m \in M | \exists f(x) \in M[x] \text{ such that } f(x) = mx^k + lower \} \cup \{ 0 \}.$$

It is easy to check that L_k is a submodule of A and $L_0 \subset L_1 \subset \cdots$. M is a Noetherian module over A, so there is $l \in \mathbb{N}$ such that $L_l = L_{l+1} = \cdots$ and each of them is finitely generated. Suppose $L_k = \langle m_{k1}, ..., m_{kn} \rangle$. Again we take subscript n uniformly as in Problem 7. There is $f_{ki} \in N$ such that $f_{ki} = m_{ki}x^k + lower$. Let $N' = \langle f_{ki} \rangle_{0 \le k \le l, 1 \le i \le n}$ and claim that N' = N.

Each f_{ki} is in N, so $N' \subset N$. For any $f \in N$, define $d = \deg f$. If $d \leq l$, then $f \in N'$ by the choices of f_{ki} . Suppose d > l. Since $L_d = L_l$, there is $g_d \in \langle f_{l1}, ..., f_{ln} \rangle \subset N'$ such that $f - x^{d-l}g_d$ is of degree at most d-1. Continue this process and find $g_{d-1}, \ldots, g_{l+1} \in$ $\langle f_{l1}, ..., f_{ln} \rangle \subset N'$ such that $f - x^{d-l}g_d - \cdots - xg_{l+1}$ is of degree at most l. We can see that $f - x^{d-l}g_d - \cdots - xg_{l+1}$ is in N' by the case of $d \leq l$. Thus, $f \in N'$ as desired. We have shown that every submodule in M[x] is finitely generated, therefore M[x] is a Noetherian module over A[x].

10. If f(m) = 0 for some $m \in M$, then we have $f^2(m) = f(f(m)) = f(0) = 0$ and $f^k(m) = 0$ for $k \ge 2$. Thus, ker $f \subset \ker f^2 \subset \cdots$. The kernel of any module homomorphism is a submodule. Since M is a Noetherian module over A, there is $n \in \mathbb{N}$ such that ker $f^n =$ $\ker f^{n+1} = \cdots.$

f is surjective, so for any $m \in M$ there is $m_1 \in M$ such that $f(m_1) = m$. Then there is $m_2 \in M$ such that $f(m_2) = m_1$, i.e. $f^2(m_2) = m$. This implies f^2 is surjective. Similarly, f^k is surjective for $k \ge 2$.

Assume ker $f \neq 0$. Then f(a) = 0 for some $a \in M - \{0\}$. f^n is surjective, so there is $m \in M$ such that $f^n(m) = a$. Then $f^{n+1}(m) = f(k) = 0$, i.e. $m \in \ker f^{n+1}$. But ker $f^n = \ker f^{n+1}$ implies $a = f^n(m) = 0$, a contradiction. Thus, ker f = 0. f is surjective, therefore f is an isomorphism.