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1. Define f : S−1A ×M → S−1M by f(a/s,m) = am/s. Suppose a/s = b/r, i.e. there is

d ∈ S such that d(ra− sb) = 0. Then d(ram− sbm) = 0, which means am/s = bm/r. Thus,

f is well-defined. We have
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f is a A-bilinear map, so there is f̃ : S−1A ⊗A M → S−1M such that f̃(a/s ⊗ m) =

f(a/s,m) = am/s. We can check that f̃ is a S−1A-module homomorphism.

Define g : S−1M → S−1A ⊗A M by g(m/s) = 1/s ⊗ m. Then g is a S−1A-module

homomorphism because
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Note that f̃ ◦ g(m/s) = f̃(1/s ⊗m) = m/s and g ◦ f̃(a/s ⊗m) = g(am/s) = 1/s ⊗ am =

a/s⊗m, so f̃ and g are inverse of each other. It follows that S−1A⊗AM ∼= S−1M . �

5. Consider the following sequences 0 M ′ M M ′′ 0
ψ φ

and

0 M ′
m Mm M ′′

m 0
ψ′ φ′

, where m is a maximal ideal. Mm = S−1M ,

where S = A \m. For every m, we use ψ′, φ′ and S uniformly.

(⇒) This is Proposition 31.2 in Lecture Notes.

(⇐) Lemma 1. (kerψ)m = kerψ′ for every maximal ideal m ⊂ A.

Proof. Suppose m′ ∈ kerψ. Then ψ′(m′/s) = ψ(m′)/s = 0 for any s ∈ S, i.e. m′/s ∈
kerψ′. This means (kerψ)m ⊂ kerψ′ and this holds for any maximal ideal m ⊂ A. Conversely,

suppose m′/s ∈ kerψ′. Then ψ(m′)/s = ψ′(m′/s) = 0, which implies dψ(m′) = 0 for some

d ∈ S. Thus, m′/s ∈ kerψ′ for any s ∈ S. Let N be the submodule generated by ψ(m′).
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ψ(m′)/s = 0 for any s ∈ S implies Nm = 0. This holds for any maximal ideal m ⊂ A, so

N = 0, i.e. m′ ∈ kerψ. Hence, (kerψ)m = kerψ′ for every maximal ideal m ⊂ A.

Lemma 2. (imφ)m = imφ′ and (M ′′/ imφ)m ∼= M ′′
m/ imφ′ for every maximal ideal m ⊂ A.

Proof. By definition, φ′(m/s) = φ(m)/s, so easily (imφ)m = imφ′.

Define f : (M ′′/ imφ)m →M ′′
m/ imφ′ by f(m
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Conversely,
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⇒ m′′/s− n′′/r = a/b for some a ∈ imφ and b ∈ S

⇒ d′(b(rm′′ − sn′′)− sra) = 0 for some d′ ∈ S
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Thus, f is well-defined and injective. f is surjective by definition, therefore f is an isomor-

phism.

0 M ′
m Mm M ′′

m 0
ψ′ φ′

is an exact sequence for every maximal

ideal m ⊂ A. By Lemma 1, (kerψ)m = kerψ′ = 0 for every maximal ideal m ⊂ A and

therefore kerψ = 0. Similarly, we can get imφ = M ′′ and kerφ = imψ by applying Lemma

2 and the fact (kerφ/ imψ)m ∼= kerφ′/ imψ′ (which can be shown as in Lemma 2). Hence,

0 M ′ M M ′′ 0
ψ φ

is an exact sequence. �

7. Suppose J is an ideal in A[[x]]. Define

Ik = {c ∈ A| ∃f(x) ∈ J such that f(x) = cxk + higher} ∪ {0}.

It is easy to check that Ik is an ideal in A and I0 ⊂ I1 ⊂ · · · . A is Noetherian, so there is N

such that IN = IN+1 = · · · and each of them is finitely generated. Suppose Ik = 〈ck1, ..., ckn〉.
Since each Ik is finite generated and there are only finite different Ik’s, we can take subscript

n uniformly. There is fki ∈ J such that fki = ckix
k + higher. Let J ′ = 〈fki〉06k6N,16i6n and

claim that J ′ = J .

Each fki is in J , so J ′ ⊂ J . For any f ∈ J , say f(x) = a0 + a1x + · · · . a0 ∈ I0,

so a0 = b1c01 + · · · + bnc0n for some b1, · · · , bn ∈ A. Let g0 = b1f01 + · · · + bnf0n. Then

g0 ∈ J ′ ⊂ J , so f − g0 = a′1x+ higher ∈ J . Continue to find g1, ..., gN ∈ J ′ and get

f − g0 − · · · − gN = a
(N+1)
N+1 xN+1 + higher,

where a
(N+1)
N+1 ∈ IN+1 ⊂ IN . Similarly, there exists gN+1 ∈ 〈fN1, ..., fNn〉 ⊂ J ′ such that

f − g0 − · · · − gN − xgN+1 = a
(N+2)
N+2 xN+2 + higher.
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Continue this process and get

f = g0 + · · ·+ gN + xgN+1 + x2gN+2 + x3gN+3 + · · · ,

where gN+2, gN+3, ... ∈ 〈fN1, ..., fNn〉 ⊂ J ′. Thus, f ∈ g0 + · · · + gN + 〈fN1, ..., fNn〉 ⊂ J ′, as

desired. �

9. Suppose N is a submodule of M [x]. Define

Lk = {m ∈M | ∃f(x) ∈M [x] such that f(x) = mxk + lower} ∪ {0}.

It is easy to check that Lk is a submodule of A and L0 ⊂ L1 ⊂ · · · . M is a Noetherian

module over A, so there is l ∈ N such that Ll = Ll+1 = · · · and each of them is finitely

generated. Suppose Lk = 〈mk1, ...,mkn〉. Again we take subscript n uniformly as in Problem

7. There is fki ∈ N such that fki = mkix
k + lower. Let N ′ = 〈fki〉06k6l,16i6n and claim that

N ′ = N .

Each fki is in N , so N ′ ⊂ N . For any f ∈ N , define d = deg f . If d 6 l, then f ∈ N ′

by the choices of fki. Suppose d > l. Since Ld = Ll, there is gd ∈ 〈fl1, ..., fln〉 ⊂ N ′ such

that f − xd−lgd is of degree at most d − 1. Continue this process and find gd−1, ..., gl+1 ∈
〈fl1, ..., fln〉 ⊂ N ′ such that f − xd−lgd − · · · − xgl+1 is of degree at most l. We can see that

f − xd−lgd − · · · − xgl+1 is in N ′ by the case of d 6 l. Thus, f ∈ N ′ as desired. We have

shown that every submodule in M [x] is finitely generated, therefore M [x] is a Noetherian

module over A[x]. �

10. If f(m) = 0 for some m ∈ M , then we have f 2(m) = f(f(m)) = f(0) = 0 and

fk(m) = 0 for k > 2. Thus, ker f ⊂ ker f 2 ⊂ · · · . The kernel of any module homomorphism

is a submodule. Since M is a Noetherian module over A, there is n ∈ N such that ker fn =

ker fn+1 = · · · .
f is surjective, so for any m ∈M there is m1 ∈M such that f(m1) = m. Then there is

m2 ∈ M such that f(m2) = m1, i.e. f 2(m2) = m. This implies f 2 is surjective. Similarly,

fk is surjective for k > 2.

Assume ker f 6= 0. Then f(a) = 0 for some a ∈ M − {0}. fn is surjective, so there

is m ∈ M such that fn(m) = a. Then fn+1(m) = f(k) = 0, i.e. m ∈ ker fn+1. But

ker fn = ker fn+1 implies a = fn(m) = 0, a contradiction. Thus, ker f = 0. f is surjective,

therefore f is an isomorphism. �


