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September 22, 2017

Notations: In this homework, we denote the commutator group of a group G by (G,G),
except for problem 6. Define

D1(G) := (G,G), Dn(G) := (Dn−1(G), Dn−1(G)).

and

C1(G) := (G,G), Cn(G) := (G,Cn−1(G)).

Problem 3.

Proof. For any A1 =

[
a1 b1
0 d1

]
, A2 =

[
a2 b2
0 d2

]
∈ B, we have

A1A2A
−1
1 A−12 =

1

a1d1

1

a2d2

[
a1 b1
0 d1

] [
a2 b2
0 d2

] [
d1 −b1
0 a1

] [
d2 −b2
0 a2

]
=

[
1 c
0 1

]
, (1)

where c =
1

d1d2
[b1(d2 − a2) + b2(a1 − d1)]. For any

[
1 c
0 1

]
with c ∈ C, we have[

1 c
0 1

]
=

[
2 0
0 1

] [
1 c
0 1

] [
2 0
0 1

]−1 [
1 c
0 1

]−1
(2)

is in the commutator group (B,B) of B. Therefore, (B,B) =

{[
1 c
0 1

]
: c ∈ C

}
.

Take two elements C1 =

[
1 c1
0 1

]
and C2 =

[
1 c1
0 1

]
in D1(B) = (B,B). By substituting

a1 = a2 = d1 = d2 = 1 and b1 = c1, b2 = c2 into (1), we get C1C2C
−1
1 C−12 = I2, the 2 × 2

identity matrix. So D2(B) = (D1(B), D1(B)) = {I2}, and thus B is solvable.

We know that C2(B) = (B,B), and want to compute C3(B) = (B,C(B)). For any

A =

[
a b
0 d

]
∈ B,C =

[
1 c
0 1

]
∈ C(B), by plugging A1 = A and A2 = C into (1), we get

ACA−1C−1 =

[
1 c(a− d)/d
0 1

]
. Note that (2) also implies that any

[
1 c
0 1

]
with c ∈ C

is in (B,C2(B)) = C3(B). So C3(B) =

{[
1 c
0 1

]
: c ∈ C

}
= C2(B). In addition,

Cn(B) = (B, (· · · , (B,C2(B)))) = C2(B) 6= {I2} for any n ≥ 2. So B is not nilpotent.
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Problem 5.

Proof. We first claim for any n1 ∈ N1, n1N2Hn
−1
1 = N2H. Indeed, given any n2 ∈ N, h ∈ H,

we have
n1n2hn

−1
1 = n1n2hn

−1
1 (h−1n1n

−1
1 h) = n1n2(hn

−1
1 h−1n1︸ ︷︷ ︸

∈(G,N1)⊂N2

)n−11 h.

Since N2 is normal, we have n1[n2(hn
−1
1 h−1n1)]n

−1
1 ∈ N2, and thus n1n2hn

−1
1 ∈ N2H. So

n1N2Hn
−1
1 ⊂ N2H. And then N2H = n−11 n1N2Hn

−1
1 n1 ⊂ n−11 N2Hn1 ⊂ N2H.

Take any n1 ∈ N1, h ∈ H. Since N2 is normal, hN2H = N2hH = N2H. It follows that

n1hN2Hh
−1n−11 = n1hN2Hn

−1
1 = n1N2hHn

−1
1 = n1N2Hn

−1
1 = N2H.

Therefore, N2H is normal in N1H.

Problem 6.
Notation: We use [, ] instead of (, ), to denote commutators.

Proof. Suppose |G| = pr11 · · · p
rl
l , where pi’s are pairwise relatively prime. By Sylow Theo-

rems, for each i, there exists a Sylow pi-subgroup Pi of order prii .
(1) =⇒ (2). If l = 1, then G is a p-group, and thus every Sylow subgroup of G is

normal.
Suppose l > 1. Recall the following lemma: ’if G is nilpotent and H is a proper subgroup

of G, then H � NG(H), where NG(H) is the normalizer of H in G.’ Let P be any Sylow
p-subgroup of G. Since G is nilpotent and P is a proper subgroup, we have P � NG(P )
by the lemma. If NG(P ) � G, then NG(P ) � NG(NG(P )), again by the lemma. However,
Problem 4 of Set 3 gives that NG(NG(P )) = NG(P ), which gives a contradiction. So we
must have N(P ) = G, i.e. P is normal in G.

(2) =⇒ (3). We prove this by induction. If l = 1, then G is a p-group. Suppose the
statement is true for l − 1. Let G′ be the subgroup of G generated by P1, · · · , Pl−1. For
i = 1, . . . , l− 1, any Sylow pi−subgroup of G′ is also a Sylow pi-subgroup of G. Since every
Sylow pi−subgroup of G′ is normal in G, it is also normal in G′ ⊂ G. Because G is nilpotent,
G′ < G is also nilpotent. By the hypothesis of induction, G′ is a direct product of its Sylow
p-groups. Say G′ = P1 × · · · × Pl−1. Note that G′ CG.

It follows from gcd(n, pl) = 1 that G′ ∩ Pl = {e}. And thus, |G′Pl| =
|G′||Pl|
|G′ ∩ Pl|

= nprll ,

which gives that G = G′Pl. Therefore, we get G = Pl o G′. Suppose Pl acts on G′ by φ.
Then for any p, p′ ∈ Pl, g, g

′ ∈ G′, we have

pgp′g′ = pp′φ(p′)(g)g′ =⇒ p′−1gp′ = φ(p′)(g).

Note that g−1p′−1gp′ = g−1φ(p′)(g) is in G′∩Pl, so φ(p′)(g) = g for any g and p′. Therefore,
φ(p′) = Id for all p′ ∈ Pl, which implies that G = G′ × Pl = P1 × · · · × Pl.
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(3) =⇒ (1). Claim: if G = H × K is a direct product of two nilpotent groups H
and K, then G is nilpotent. Then by induction, we know that the finite direct product of
nilpotent groups is nilpotent. Since every pi-group is nilpotent, G = P1×· · ·×Pl is nilpotent.

Now we prove the claim. Since H and K are nilpotent, so there exist integers m,n such
that Cm(H) = {e} and Cn(K) = {e}. Without loss of generality, we suppose m ≥ n. Let
Ci(K) = {e} for n+ 1 ≤ i ≤ m. Then for any i, ∀(h, k) ∈ H×K, (hi, ki) ∈ Ci(H)×Ci(K),

[(h, k), (hi, ki)] = (h, k)(hi, ki)(h
−1, k−1)(h−1i , k−1i )

= (hhih
−1h−1i , kkik

−1k−1i )

= ([h, hi], [k, ki]) ∈ Ci+1(H)× Ci+1(K).

This implies that

Cm(H ×K) = [H ×K,Cm−1(H ×K)] ⊂ Cm(H)× Cm(K) = {e},

and hence H ×K is nilpotent. So the claim is true.

Problem 8.

Proof. Suppose G has a Jordan-Hölder series Σ : G = G0 BG1 B · · ·BGn = {e}. In other
words, Σ is a strictly decreasing composition series with Gj+1 BGj for 0 ≤ j ≤ n− 1, and
there is no strictly decreasing composition series finer than Σ.

Consider the composition series Σ′ : GBNB{e}. Then there exists a common refinement
Σ′′ of Σ and Σ′. But Σ is a Jordan-Hölder series, so Σ′′ is either the same as Σ or obtained
from Σ by repeating some terms. In both cases, since N appears in Σ′′, we know that
N appears in Σ too. Suppose N = Gl for some 0 ≤ l ≤ n. Then we claim ΣN : N =
Gl B Gl−1 B · · · B Gn = {e} forms a Jordan-Hölder series of H. Indeed, if there is a
strictly decreasing composition series finer than ΣN , then this induces a strictly decreasing
composition series of G finer than Σ.

Recall that there is a one-one correspondence

{the normal subgroups of G/N} ↔ { normal subgroups of G containing N}.

Therefore, Gi/N 6= Gi+1/N iff Gi 6= Gi+1, and Gi/N BGi+1/N iff GiBGi+1. It follows that
ΣG/N : N = G0/N BG1/N B · · ·BGl/N = {N} forms a Jordan-Hölder series of G/N .

Now suppose that N has a Jordan-Hölder series ΣN : N = N0BN1B· · ·BNm = {e}, and
G/N has a Jordan-Hölder series ΣG/N : N = G0/NBG1/NB· · ·BGl/N = {N} (here we used
the one-one correspondence between the normal subgroups of G/N and normal subgroups
of G containing N). Then Σ : G = G0 B · · ·BGl = N = N0 BN1 B · · ·BNm = {e} forms
a Jordan-Hölder series of G.

In addition, we get that l(Σ) = l +m = l(ΣN) + l(ΣG/N).
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