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Problem 1. Prove `(πsk) < `(π) ⇐⇒ π(k) > π(k + 1).

Solution. Suppose π(k) > π(k+1) and π = si1 ...sil is a minimal expression
of π in terms of the generators si. By the exchange property, there exists
j such that sijsij+1

...sjl = sij+1
...sjlsk so π = si1 ...sij−1

sij+1
...silsk is also a

minimal expression for π. It follows πsk = si1 ...sij−1
sij+1

...sil and `(πsk) ≤
`(π)− 1.

In fact we have equality. If we had an expression for πsk that used fewer
than `(π) − 1 simple transpositions, πsk = sj1 ...sjm , then π = sj1 ...sjmsk
would have fewer than `(π) transpositions. I point this out because it will
come in handy in the next problem.

Conversely, suppose π(k) < π(k + 1). Then π ◦ sk(k) > π ◦ sk(k + 1).
From the previous part we may conclude `(πsksk) < `(πsk). But πsksk = π.
There is no equality case because π is a bijection so we are done. �

Problem 2. Prove that `(π) is the same as the cardinality of the set,

Inv(π) = {(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}.

Solution. A Quick Lemma: If (k, k+ 1) ∈ Inv(π) then there is a bijection,

Inv(πsk)→ Inv(π) \ {(k, k + 1)}
(i, j) 7→ (sk(i), sk(j)).

We have π(i) = π ◦ sk(sk(i)) and π(j) = π ◦ sk(sk(j)). Additionally i < j
iff sk(i) < sk(j) or (exclusive) (i, j) = (k, k + 1). So the order relations on
(i, j) only change for exactly (k, k + 1) which is not an element of Inv(πsk).
It follows the map is a bijection.
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Preceding to the problem, the statement is clear for `(π) = 0. Only e has
`(e) = 0 and e fixes all elements so it has no crossings.

Assume we have the equality for n and say `(π) = n + 1. Write π =
si1 ...sin+1 . If we multiply on the right by sin+1 we get a permutation with
shorter length because by canceling the sin+1 ’s we get an expression written
with n simple transpositions. Therefore by the previous part (in+1, 1 + in+1)
is in the set. By our inductive hypothesis the set Inv(πsin+1) has n elements.
By our quick lemma, Inv(π) has n+ 1 elements. �

Problem 3. Let Gn be the group given by the following presentation: Gn

has n − 1 generators, g1, ...gn−1 and these generators satisfy the following
relations:

g2i = e for every 1 ≤ i ≤ n

gigj = gjgi for every i, j such that |i− j| > 1

gigi+1gi = gi+1gigi+1 for every 1 ≤ i ≤ n− 2

• Prove there is a unique surjective homomorphism Gn → Sn sending gi
to si.

• Let H be the subgroup of Gn generated by g1, ..., gn−2. Prove the follow-
ing is the list of all cosets of Gn/H:

H0 = H;H1 = gn−1H0;H2 = gn−2H1; ...

Hn−1 = g1Hn−2.

• Prove by induction on n that |Gn| ≤ n!. Hence Gn ' Sn.

Solution.

• Let ϕ : Gn → Sn be a map which takes gi to si extended by linearity
to be defined on all of Gn. We need to show that or any two ways of
writing an element g ∈ Gn, gi1 ...gin = gj1 ...gjm then si1 ...sin = sj1 ...sjm .
Equality of the two products of gi implies they are related in some way
through our list of relations. But the si satisfy the same relations so
we can see they must also be equal.

The map is unique because it is defined on a set which generates Gn.
It is surjective because the si generate Sn. It is a homomorphism by
its definition.
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• The homomorphism of the previous part sends an element in Hi to an
element of Sn which sends n to n− i so the cosets are all distinct.

It is comparatively harder to see every element of Gn is in one of these
cosets. It suffices to show that if we take an element in one of these
cosets and multiply it by some gi then it remains in one of the cosets.
This is sufficient because e ∈ H0 and every element of G is a finite
product of gi’s. For g ∈ H0, j > i, we have,

gjgigi+1...gn−1g = gigi+1...(gjgj−1gj)...gn−1g

= gigi+1...(gj−1gjgj−1)...gn−1g

= gigi+1...(gj−1gjgj+1)...gn−1gj−1g

which is in the same coset. If i = j then the leading gjgi cancels. If
j = i − 1 then it shifts up to the next coset. If j < i − 1 then we can
commute it to the end. This covers all the cases of coset and generator
so these cosets must capture all elements of Gn.

• G2 has one generator and the relation that it has order 2 so |G2| = 2.
The subgroup H0 introduced in the previous part is isomorphic to Gn−1

and has index n so |Gn| = n|Gn−1| and by induction |Gn| = n!. Our
surjective homomorphism from the first part is therefore a bijection.

�

Problem 4. Determine the conjugacy classes in S5 and the number of ele-
ments in each class. Then determine all Sylow subgroups of S5.

Solution. Conjugacy classes in S5 are determined by cycle type. For each
conjugacy class the number of elements can be determined by simple count-
ing arguments. A representative for each class and the number of elements
conjugate to it are:

e 1

(1 2)
(
5
2

)
= 10

(1 2 3) 2
(
5
2

)
= 20

(1 2 3 4) 5!/4 = 30

(1 2 3 4 5) 4! = 24

(1 2)(3 4) 1
2

(
5
2

)(
3
2

)
= 15

(1 2)(3 4 5) 2
(
5
2

)
= 20
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The Sylow subgroups of order 5 are generated by a 5 cycle and contain 4
nontrivial elements so there are 24/4 = 6 of them.

Similarly the Sylow subgroups of order 3 are generated by a 3 cycle and
contain 2 nontrivial elements so there are 20/2 = 10 of them.

A Sylow 2 group is determined by a 4 cycle and a transposition moving
only element moved by the 4 cycle. We know this because all subgroups of
order dividing 23 in S5 must be contained in a Sylow subgroup. Transposi-
tions define a subgroup of order 2 and 4 cycles define a subgroup of order 4.
Because all Sylow subgroups are conjugate to each other all Sylow 2 groups
must therefore contain a 4 cycle and a transposition. If the transposition
moves elements other than those moved by the 4 cycle, the subgroup would
contain a 5 cycle.

It is also the case that if the 4 cycle in the Sylow subgroup is given by,

(1 2 3 4)

then the transposition cannot be (1 2) because (1 2)(1 2 3 4) = (2 3 4), a 3
cycle. But if it contains (1 3) then it also contains (2 4) because (1 2 3 4)2 =
(1 3)(2 4). So once a 4 cycle is chosen, the transpositions that are in the
Sylow subgroup containing it are determined.

All that’s left to do is count the number of 4 cycles in a Sylow 2 subgroup.
From the above we can see a Sylow 2 group contains at least 2 transpositions.
It must also contain a copy of the Klein group we saw two problem sets ago
because it has order 4 and is therefore contained in a Sylow 2 subgroup.
That’s 6 total elements so there is only room 2. There must be at least two
because a 4 cycle’s inverse is also a 4 cycle. So we see there are 30/2 = 15
Sylow 2 groups. �
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