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1. Let G be a group and V be a representation of G. Prove that we have the following

decomposition as representations of G:

Sym2(V) ⊕ ∧2(V) ∼= V ⊗ V

Proof :

Since V is a G-representation, we have a map ρ : G −→ GL(V) which implies that we also have a

map (ρ ⊗ ρ) G −→ (V ⊗ V) as (ρ ⊗ ρ)(g)(u ⊗ v) = ρ(g)(u) ⊗ ρ(g)(v) for all u,v ∈ V, associated

with the G-representation (V ⊗ V). Now let us define the map

ϕ: (V ⊗ V) −→ (V ⊗ V) as ϕ (u⊗v) = (v⊗u).

ϕ is a G-intertwiner.

First we note that given any (u⊗v) ∈ (V ⊗ V), we have ϕ2(u⊗v) = ϕ(ϕ(u⊗v)) = ϕ(v⊗u) = u⊗v

implying that ϕ2 = IdV⊗V .

Also, ϕ ◦ (ρ ⊗ ρ) ◦ ϕ−1 (u⊗v) = ϕ ◦ (ρ ⊗ ρ) ◦ ϕ (u⊗v) = ϕ ◦ (ρ ⊗ ρ)(v⊗u) = ϕ (ρ(v) ⊗ ρ(u))

= ρ(u) ⊗ ρ(v) = (ρ⊗ ρ)(u⊗v) which implies that ϕ ◦ (ρ⊗ ρ) ◦ ϕ−1 = (ρ⊗ ρ) i.e. ϕ ◦ (ρ⊗ ρ) =

(ρ⊗ ρ)◦ ϕ i.e. ϕ is a G-intertwiner.

We also note that since ϕ2 = IdV⊗V and ϕ 6= IdV⊗V , its eigenvalues are +1 and -1. The respective

eigenspaces are:

E1 = { u⊗v ∈ (V⊗V) : ϕ(u⊗v) = u⊗v) } = { u⊗v ∈ (V⊗V): v⊗u = u⊗v) } = Sym2(V) and

E−1 = { u⊗v ∈ (V⊗V) : ϕ(u⊗v) = - u⊗v) } = { u⊗v ∈ (V⊗V): v⊗u = - u⊗v) } = ∧2(V).

Since a vector space decomposes as a direct-sum of its eigenspaces, we conclude that V⊗V decom-

poses as:

(V⊗V) ∼= (E−1 ⊕ E1) ∼= (Sym2(V) ⊕ ∧2(V)) as representations because ϕ is a G-intertwiner.

2. Let G be a group and V,W be two representations of G. Recall that we have a natural

map ϕ: V∗ ⊗ W −→ HomC (V,W). We have to show ϕ is a G-intertwiner.

Proof:

Since V and W are representations of G, we have homomorphisms ρ1: G −→ GL(V) and ρ2: G

−→ GL(W). To show that ϕ is an intertwiner we have to show that, for any g∈G,

g. ϕ(ζ ⊗ w) . g−1 = ϕ(g.(ζ ⊗ w)) for any ζ ∈ V∗ and w ∈ W.

Now for any v∈V, we have g. ϕ(ζ ⊗ w) . g−1(v) = g. ϕ(ζ ⊗ w)(g−1v) = g.(ζ(g−1v)w) = ζ(g−1v)

g.w = (g.ζ(v)) g.w = ϕ ( gζ ⊗ gw) (v) = ϕ(g(ζ ⊗ w))(v) which is exactly what is required.

Therefore ϕ is a G-intertwiner.

3. Let V and W be two representations of a group G. We have to show that HomG(V,W)

= HomC(V,W)G i.e. the subspace of intertwiners is actually equal to the linear-maps

that are fixed under G (makes sense).

Proof:

Since V and W are representations we have associated maps ρ1 : G −→ GL(V) and ρ2 : G −→
GL(W). Then we know that G acts on f∈ HomC(V,W) as: g.f = ρ2(g) ◦ f ◦ ρ1(g−1). Therefore,

f∈ HomC(V,W)G ⇔ ρ2(g) ◦ f ◦ ρ1(g−1) = f ⇔ ρ2(g) ◦ f = f ◦ (ρ1(g−1))−1 = f ◦ ρ1(g) ⇔ f∈
HomG(V,W).

Hence we have that HomG(V,W) = HomC(V,W)G.



4. We have to show that every finite-dimensional representation of a finite group G has

a G-invariant Hermitian inner product.

Proof :

Since V is a finite dimensional representation, we can obtain an orthonormal basis of V, say {ei
}mi=1 via Gram-Schmidt-Orthogonalization-Algorithm, where dim(V) = m.

Then we can define a Hermitian-Inner-Product on V by defining 〈ei , ej 〉 = δij ∀ 1≤i,j≤m. This

inner-product is Hermitian through basic facts of Linear Algebra.

Now we define another Hermitian-Inner-Product ( , ) on V as: (u,v) = 1
|G|

∑
g∈G 〈gu,gv〉 , ∀ u,v∈V.

This can be done because |G| is finite.

Since the inner-product 〈,〉 was Hermitian ( , ) will also be Hermitian – linearity extends by linearity

of the 〈 , 〉 and linearity of g action, non-negativity of 〈 , 〉 implies that of ( , ). Now we have to

show that ( , ) is G-invariant.

Let h∈G and u,v∈V then (hu,hv) = 1
|G|

∑
g∈G 〈g(hu),g(hv)〉 = 1

|G|
∑

g∈G 〈gh(u),gh(v)〉 =
1
|G|

∑
h′∈G 〈h’u,h’v〉 = (u,v). Therefore ( , ) is G-invariant.

5. We have to use the problem above to (re)prove the Maschke’s Theorem: Let V1 ⊂ V

be a subrepresentation of a finite dimensional representation. Then ∃ V2 ⊂ V such

that V ∼= V1 ⊕ V2.

Proof :

From the above problem, we know that V has a G-invariant Hermitian inner product ( , ). Given

a sub-representation V1 of V, we define V2 = {u∈V : (u,v) = 0 ∀ v∈V1 }.

Then V2 ⊂ V as a vector space because we know that orthogonal-complement of a subspace is

another subspace, from elementary Linear Algebra.

V2 is G-stable.

Let u∈V2 then (u,v) = 0 ∀v∈V1. Let g∈G then we see that (g.u,v) = g−1(g.u,v) since ( , ) is

G-invariant. So, (g.u,v) = g−1(g.u,v) = (g−1g.u, g−1v) = (u, g−1v = 0 since u∈V2. Therefore, ∀
u∈V2, g.u∈V2 implying that V2 is G-stable.

Now to show that V ∼= V1 ⊕ V2.

First of all we note that if v∈(V1 ∩ V2) then (v,v) = 0 implying that v = 0 and hence V1 ∩ V2 =

{0}.

Now since V is a finite-dimensional representation, we can use Gram-Schmidt-Orthogonalization

to obtain a basis {ei }mi=1. Out of these basis- vectors some will form basis of V1 and others of V2.

Let {ei }m1
i=1 be the basis of V1 and {ei }mi=m1+1 be that of V2. Then given any element of v∈ V we

have that v =
∑m

i=1 aiei =
∑m1

i=1 aiei +
∑m

i=m1
aiei where the first summand is in V1 and second

in V2.

V1 ∩ V2 = {0} in conjunction with the fact that every vector in V can be written as a sum of

vectors in V1 and V2 implies that V ∼= V1 ⊕ V2 as representations because both of them are

G-Stable.


