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1. Let G be a group and V be a representation of G. Prove that we have the following
decomposition as representations of G:
Sym?(V) & A2(V) 2V eV
Proof :
Since V is a G-representation, we have a map p : G — GL(V) which implies that we also have a
map (p® p) G — (Ve V)as (p®p)(g)(u®v)=p(En) @ p(g)(v) for all u,v € V, associated
with the G-representation (V ® V). Now let us define the map
o: (VeV)— (Ve V)as ¢ (udv) = (vu).
v is a G-intertwiner.
First we note that given any (u®@v) € (V ® V), we have ¢?(u®v) = p(p(u@v)) = p(veu) = u@v
implying that ¢? = Idygy.

Also, p o (p@p) o o~ (UBV) = p o (p®p) o @ (UBV) = ¢ o (p®@ p)(vEu) = ¢ (p(v) ® p(u))
= p(u) ® p(v) = (p ® p)(u®v) which implies that ¢ o (p@p) 0o ¢~ = (p@p)ie po (p@p) =
(p® p)o ¢ ie. pis a G-intertwiner.

We also note that since p? = Idy gy and ¢ # Idygy, its eigenvalues are +1 and -1. The respective

eigenspaces are:
E; = {u®v € (VaV) : p(u®v) = u®v) } = { u®v € (VeV): vau = u®v) } = Sym?(V) and
E_; = {u®v e (VaV) : p(uav) = - uxv) } = { u®v € (VaV): veu = - u®v) } = A%(V).

Since a vector space decomposes as a direct-sum of its eigenspaces, we conclude that V®V decom-

poses as:
(VeV) = (E_; @ E1) = (Sym?(V) @ A2(V)) as representations because ¢ is a G-intertwiner.

2. Let G be a group and V,W be two representations of G. Recall that we have a natural
map ¢: V¥ @ W — Hom¢ (V,W). We have to show ¢ is a G-intertwiner.
Proof:

Since V and W are representations of G, we have homomorphisms p;: G — GL(V) and p2: G
— GL(W). To show that ¢ is an intertwiner we have to show that, for any geG,

g p¢®w). gt =p(g( ®w)) forany ( € V* and w € W.

Now for any veV, we have g. p(( @ w) . g7 1(v) = g (¢ ® w)(g71v) = g.(C(gv)w) = (g7 V)
gw = (gC¢(v)) gw = ¢ (g ® gw) (v) = ¢(g(¢ ® w))(v) which is exactly what is required.

Therefore ¢ is a G-intertwiner.

3. Let V and W be two representations of a group G. We have to show that Hom¢(V,W)
= Hom¢(V,W)% i.e. the subspace of intertwiners is actually equal to the linear-maps

that are fixed under G (makes sense).
Proof:

Since V and W are representations we have associated maps p; : G — GL(V) and py : G —
GL(W). Then we know that G acts on f€ Hom¢(V,W) as: g.f = pa(g) o f o p1(g~!). Therefore,

fe Homc(V,W)9 < pa(g) o fo pi(g™) = f < pa(g) o f = fo (p(g ™)™ =fopi(g) & fe
Homg(V,W).

Hence we have that Homg(V,W) = Home(V,W)&.



4. We have to show that every finite-dimensional representation of a finite group G has

a G-invariant Hermitian inner product.
Proof :

Since V is a finite dimensional representation, we can obtain an orthonormal basis of V, say {e;

}m . via Gram-Schmidt-Orthogonalization-Algorithm, where dim(V) = m.

Then we can define a Hermitian-Inner-Product on V by defining (e; , ¢; ) = 6;; V 1<i,j<m. This
inner-product is Hermitian through basic facts of Linear Algebra.

Now we define another Hermitian-Inner-Product (, ) on V as: (u,v) = |—Cl” > geq (gugv), Vu,vev.

This can be done because |G| is finite.
Since the inner-product (,) was Hermitian (, ) will also be Hermitian — linearity extends by linearity
of the ( , ) and linearity of g action, non-negativity of ( , ) implies that of (, ). Now we have to

show that ( , ) is G-invariant.

Let heG and u,veV then (huhv) = ﬁ > gec (g(hu),g(hv)) = ﬁ > gec (gh(u).gh(v)) =
ﬁ > owea (Wuh’v) = (u,v). Therefore ( , ) is G-invariant.

5. We have to use the problem above to (re)prove the Maschke’s Theorem: Let V; C 'V
be a subrepresentation of a finite dimensional representation. Then 3 V, C V such
that V=2 V; ¢ Va.

Proof :
From the above problem, we know that V has a G-invariant Hermitian inner product ( , ). Given
a sub-representation V; of V, we define Vo = {ueV : (u,v) = 0V veVy }.

Then Vo C V as a vector space because we know that orthogonal-complement of a subspace is

another subspace, from elementary Linear Algebra.
V, is G-stable.

Let ueVy then (u,v) = 0 VveV;. Let g€G then we see that (g.u,v) = g~ !(g.u,v) since (, ) is
G-invariant. So, (g.u,v) = g7} (gu,v) = (g7 lgu, g7v) = (u, g~ 'v = 0 since u€V,. Therefore, ¥
ueVsy, g.ueVy implying that Vs is G-stable.

Now to show that V== V; @& V.

First of all we note that if ve(Vy N Va) then (v,v) = 0 implying that v = 0 and hence V; NV, =
{0}.

Now since V is a finite-dimensional representation, we can use Gram-Schmidt-Orthogonalization
to obtain a basis {e; }7,. Out of these basis- vectors some will form basis of V1 and others of V.
Let {e; };2; be the basis of Vi and {e; }j*,, ,; be that of V5. Then given any element of v& V we
have that v = Z:’;l a;e; = 2?21 ae; + Z;T;TYL1 a;e; where the first summand is in V; and second
in Vs.

Vi N Vo = {0} in conjunction with the fact that every vector in V can be written as a sum of
vectors in Vi and Vg implies that V &£ V; @ V, as representations because both of them are
G-Stable.



