Problem 1 Part 1

Recall that we have the following isomorphisms of vector spaces:

$$\mathbb{C}G \xrightarrow{\Psi} \bigoplus_{\lambda \in \Lambda_G} \operatorname{End}_{\mathbb{C}}(V_{\lambda}) \xleftarrow{\Phi} \bigoplus_{\lambda \in \Lambda_G} V_{\lambda}^* \otimes V_{\lambda}$$

where Λ_G is the set of isomorphism classes of finite-dimensional irreducible representations of G.

Let us be more explicit in our treatment of Ψ and Φ . If $\xi_{\lambda} \in V_{\lambda}^*$ and $w_{\lambda} \in V_{\lambda}$, then Φ is given by

$$\Phi\left(\bigoplus_{\lambda\in\Lambda_{G}}\xi_{\lambda}\left(\cdot\right)\otimes w_{\lambda}\right)=\bigoplus_{\lambda\in\Lambda_{G}}\xi_{\lambda}\left(\cdot\right)w_{\lambda},$$

where "(·)" is a placeholder for the λ coordinate of an element of $\bigoplus_{\lambda \in \Lambda_G} V_{\lambda}$. As for Ψ , we know that $(e_g)_{g \in G}$ is a basis for $\mathbb{C}G$ if we define $e_g(x) = \delta_{g,x}$ for all $g, x \in G$. Also, for each $\lambda \in \Lambda_G$, there is a map $\rho_{\lambda} : G \to GL(V_{\lambda})$ corresponding to the irreducible representation of G on V_{λ} . With these conventions, Ψ is given by

$$\Psi\left(\sum_{g\in G}a_{g}e_{g}\left(\cdot\right)\right) = \bigoplus_{\lambda\in\Lambda_{G}}\sum_{g\in G}a_{g}\rho_{\lambda}\left(g\right)\left(\cdot\right)$$

where $a_x \in \mathbb{C}$ for every $x \in G$, "(·)" is a placeholder for an element of G on the left-hand side of the equation, and "(·)" is a placeholder for the λ coordinate of an element of V on the right-hand side of the equation.

Given $\xi \in V_{\lambda}^*$ and $v \in V_{\lambda}$, define $\varphi_{\xi,v} : G \to \mathbb{C}$ by $g \mapsto \xi (\rho_{\lambda} (g^{-1}) (v))$. Prove

$$\Psi\left(\varphi_{\xi,v}\right) = \Phi\left(\left(\frac{|G|}{\dim\left(V_{\lambda}\right)}\right)\xi \otimes v\right).$$

Proof: We know that for any $\xi \in V_{\lambda}^*$ and $w \in V_{\lambda}$, $\rho_{\lambda}^*(g)(\xi) \otimes \rho_{\lambda}(g)(w) \in V_{\lambda}^* \otimes V_{\lambda}$ for all $g \in G$, and thus $\sum_{g \in G} \rho_{\lambda}^*(g)(\xi) \otimes \rho_{\lambda}(g)(w) \in V_{\lambda}^* \otimes V_{\lambda}$. Next, observe that the restriction of Φ to a particular coordinate $\lambda \in \Lambda_G$ is the natural map between $V_{\lambda}^* \otimes V_{\lambda}$ and $\operatorname{End}_{\mathbb{C}}(V_{\lambda})$, which we know by problem 4 from problem set 6 is *G*-intertwining. Also, by Schur's lemma, every element of $\operatorname{End}_{\mathbb{C}}(V_{\lambda})$ is a constant multiple of the identity map $\operatorname{Id}_{V_{\lambda}}$. Therefore,

$$\Phi\left(\sum_{g\in G}\rho_{\lambda}^{*}\left(g\right)\left(\xi\right)\otimes\rho_{\lambda}\left(g\right)\left(w\right)\right)=z\operatorname{Id}_{V_{\lambda}}$$

for some constant z. Since Φ is an isomorphism, we know that traces are preserved under Φ . In particular, since the trace of $\rho_{\lambda}^{*}(g)(\xi) \otimes \rho_{\lambda}(g)(w)$ is precisely $\xi(w)$, the above equation yields $|G| \xi(w) = z \dim(V_{\lambda})$. Evaluating both sides of this equation at any $v \in V_{\lambda}$ yields

$$\sum_{g \in G} \xi\left(\rho_{\lambda}\left(g^{-1}\right)(v)\right) \cdot \rho_{\lambda}\left(g\right)(w) = \left(\frac{|G|}{\dim\left(V_{\lambda}\right)}\right) \xi\left(w\right) \cdot v.$$

But then

$$\begin{split} \Psi\left(\xi\left(\rho_{\lambda}\left(g^{-1}\right)\left(v\right)\right)\left[\rho_{\lambda}\left(g\right)\left(w\right)\right]\right) &= \sum_{g\in G}\rho_{\lambda}\left(g^{-1}\right)\left(v\right)\rho_{\lambda}\left(g\right)\left(w\right) \\ &= \left(\frac{|G|}{\dim\left(V_{\lambda}\right)}\right)\xi\left(w\right)\cdot v \\ &= \Phi\left(\left(\frac{|G|}{\dim\left(V_{\lambda}\right)}\right)\xi\left(w\right)\otimes v\right), \end{split}$$

as desired.

Problem 1 Part 2

Consider the $G \times G$ action on $\mathbb{C}G$ by the following formula, for every $g_1, g_2, x \in G$ and $f \in \mathbb{C}G$:

$$[(g_1, g_2) \cdot f](x) = f(g_1^{-1}xg_2).$$

Prove that $\Phi^{-1} \circ \Psi$ is a $G \times G$ -intertwiner where $G \times G$ acts on $V_{\lambda}^* \otimes V_{\lambda}$ by $(g_1, g_2) \cdot (\xi, v) = (g_1 \cdot \xi) \otimes (g_2 \cdot v).$

<u>Proof:</u> It is clear that the two actions stated in the problem statement are indeed actions. To prove that $\Phi^{-1} \circ \Psi$ is $G \times G$ -intertwining, using what we know from part 1, we have

$$\Phi^{-1} \circ \Psi \circ (g_1, g_2) \cdot (\xi, v) = \Phi^{-1} \circ \Psi (g_1 \cdot \xi \otimes g_2 \cdot v)$$

= $\xi (g_1^{-1} x g_2) v$
= $(g_1, g_2) \cdot \xi (x \cdot v)$
= $(g_1, g_2) \cdot (\Phi^{-1} \circ \Psi (\xi, v)) (x),$

as desired.

Problem 1 Part 3

Define a map $* : \mathbb{C}G \times \mathbb{C}G \to \mathbb{C}G$ as follows: For every $f_1, f_2 \in \mathbb{C}G$,

$$f_1 * f_2(x) = \sum_{g \in G} f_1(xg^{-1}) f_2(g).$$

Prove that $\Psi(f_1 * f_2) = \Psi(f_1) \circ \Psi(f_2)$ where the operation on the right-hand side is composition of linear endomorphisms.

Proof: If we write $f_1 = \sum_{g \in G} a_g e_g$ and $f_2 = \sum_{g \in G} b_g e_g$, then we can compute

$$\Psi\left(f_1 * f_2\right) = \Psi\left(\sum_{g \in G} f_1\left(xg^{-1}\right) f_2\left(g\right)\right)$$

$$= \Psi\left(\sum_{g \in G} \sum_{s \in G} a_s e_s \left(xg^{-1}\right) \sum_{t \in G} b_t e_t \left(g\right)\right)$$
$$= \bigotimes_{\lambda \in \Lambda(G)} \sum_{g \in G} a_g \rho_\lambda \left(g\right) \circ \bigotimes_{\lambda \in \Lambda_G} \sum_{g \in G} b_g \rho_\lambda \left(g\right)$$
$$= \Psi\left(\sum_{g \in G} a_g e_g\right) \circ \Psi\left(\sum_{g \in G} b_g e_g\right)$$
$$= \Psi\left(f_1\right) \circ \Psi\left(f_2\right).$$

This completes the proof.

Problem 3

Consider the action of the symmetric group S_n on $V \subset \mathbb{C}^n$ by permutation of coordinates, where

$$V := \left\{ \sum_{i=1}^{n} a_i e_i : a_1 + \dots + a_n = 0 \right\}$$

where $(e_i)_{i=1}^n$ is a basis for \mathbb{C}^n . Prove that V is an irreducible representation of S_n .

Proof: We should first confirm that S_n does indeed act on V, though this is an easy task. We already know that S_n acts on \mathbb{C}^n by permuting the basis vectors e_1 through e_n . Furthermore, given any $\sigma \in S_n$ and $v = \sum_{i=1}^n a_i e_i \in V$, then $\sum_{i=1}^n a_i = 0$, and

$$\rho_{\sigma}v = \sum_{i=1}^{n} a_i \rho_{\sigma} e_i = \sum_{i=1}^{n} a_i e_{\sigma(i)} = \sum_{i=1}^{n} a_{\sigma^{-1}(i)} e_i,$$

which belongs to V since $\sum_{i=1}^{n} a_{\sigma^{-1}(i)} = \sum_{i=1}^{n} a_i = 0$. Thus V is S_n -stable. Hence V is indeed a representation of S_n .

Next, I claim that $\{e_1 - e_i\}_{i=2}^n$ is a basis for V. Certainly $e_1 - e_i \in V$ for all $2 \leq i \leq n$. For linear independence, suppose $\sum_{i=2}^n a_i (e_1 - e_i) = 0$ for some constants a_2 through a_n . Then $(\sum_{i=2}^n a_i) e_1 - \sum_{i=2}^n a_i e_i = 0$. Since the e_i 's are independent, we know that $\sum_{i=2}^n a_i = -a_2 = \cdots = -a_n = 0$. So then $a_2 = \cdots = a_n = 0$ and $0 = \sum_{i=2}^n a_i$. Therefore, the $e_1 - e_i$'s are linearly independent. To prove that $\{e_1 - e_i\}$ spans V, let $v = \sum_{i=1}^n a_i e_i \in V$. Then

$$v = \sum_{i=1}^{n} a_i e_i = a_1 e_1 + \sum_{i=2}^{n} a_i e_i = a_1 e_1 + \sum_{i=2}^{n} (-a_i (e_1 - e_i) + a_i e_1)$$

= $a_1 e_1 + \left(\sum_{i=2}^{n} -a_i (e_1 - e_i)\right) + \sum_{i=2}^{n} a_i e_1 = \left(e_1 \sum_{i=1}^{n} a_i\right) + \sum_{i=2}^{n} -a_i (e_1 - e_i)$
= $\sum_{i=2}^{n} -a_i (e_1 - e_i).$

Thus $\{e_1 - e_i\}$ spans V. Hence $\{e_1 - e_i\}$ is a basis for V.

I now claim that, by an argument similar to the one from the above paragraph, that $\{e_i - e_{i+1}\}_{i=1}^{n-1}$ is a basis for V. Certainly $e_i - e_{i+1} \in V$ for all $1 \leq i \leq n-1$. For linear independence, suppose $\sum_{i=1}^{n-1} a_i (e_i - e_{i+1}) = 0$ for some constants a_1 through a_{n-1} . Then $a_1e_1 + \sum_{i=2}^{n-1} (a_i - a_{i-1})e_i - a_{n-1}e_n = 0$. Since the e_i 's are independent, we know that $a_1 = (a_2 - a_1) = \cdots = (a_{n-1} - a_{n-2}) = a_{n-1} = 0$. So then $a_1 = a_{n-1} = 0$, which combined with $a_2 - a_1 = a_{n-1} - a_{n-2} = 0$ yield $a_2 = a_{n-2} = 0$, and continuing this procedure yields $a_1 = \cdots = a_{n-1} = 0$. Therefore, the $e_i - e_{i+1}$'s are linearly independent. To prove that $\{e_i - e_{i+1}\}$ spans V, let $v = \sum_{i=1}^n a_i e_i \in V$. Then

$$v = \sum_{i=1}^{n} a_i e_i = a_n e_n + \sum_{i=1}^{n-1} (a_i e_i + a_i e_{i+1} - a_i e_{i+1}) = a_n e_n + \sum_{i=1}^{n-1} [a_i (e_i - e_{i-1}) + a_i e_{i+1}]$$

= $\left(a_n e_n + \sum_{i=1}^{n-1} a_i e_{i+1}\right) + \sum_{i=1}^{n-1} a_i (e_i - e_{i-1}) = \sum_{i=1}^{n-1} a_i (e_i - e_{i-1}).$

The final inequality above holds since the sum of the coefficients of $a_n e_n + \sum_{i=1}^{n-1} a_i e_{i+1}$ is precisely $\sum_{i=1}^{n} a_i e_i = 0$. Thus $\{e_i - e_{i+1}\}$ spans V. Hence $\{e_i - e_{i+1}\}$ is a basis for V.

Proceeding to the given problem, suppose W is a nonzero irreducible subrepresentation of V. We must prove that W = V. Let $w \in W \setminus \{0\}$, and write $w = \sum_{i=2}^{n} a_i (e_1 - e_i)$, which we know is possible by our previous paragraphs. Let $s_i = (i, i+1) \in S_n$ for $1 \leq i \leq n-1$. Assume for contradiction that $\rho_{s_i}w = w$ for all $1 \leq i \leq n-1$. So for each $2 \leq j \leq n-1$,

$$\sum_{i=2}^{n} a_i \left(e_1 - e_i \right) = w = \rho_{s_j} w = a_{j+1} \left(e_1 - e_j \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_i \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_j \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_j \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_j \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_j \right) + a_j \left(e_1 - e_{j+1} \right) + \sum_{\substack{2 \le i \le n, \\ i \ne j, j+1}} a_i \left(e_1 - e_j \right) + a_j \left(e_1 - e_j \right)$$

Canceling terms from both sides of the above equation yields $-a_je_j - a_{j+1}e_{j+1} = -a_{j+1}e_j - a_je_{j+1}$, and so $(a_{j+1} - a_j)e_{j+1} = (a_{j+1} - a_j)e_j$, which implies $a_j = a_{j+1}$. Since this holds for all $2 \le j \le n-1$, we have $a_2 = \cdots = a_n$. Writing w as a sum of e_1 through e_n then yields

$$w = \left(\sum_{i=2}^{n} a_i\right) e_1 - a_2 e_2 - \dots - a_n e_n = (n-1) a_2 e_1 - a_2 e_2 - \dots - a_2 e_n.$$

It is apparent that $\{e_n - e_i\}_{i=1}^{n-1}$ is a basis for V, and the proof of this is identical to the proof of the fact that $\{e_1 - e_i\}_{i=2}^n$ is a basis for V up to appropriate changes in subscripts. Writing $w = \sum_{i=1}^{n-1} b_i (e_n - e_i)$ for constants b_1 through b_{n-1} and following the procedure of the above paragraph then yields $b_1 = \cdots = b_{n-1}$, and writing w as a sum of e_1 through e_n then yields

$$w = -b_1 e_1 - \dots - b_{n-1} e_{n-1} + \left(\sum_{i=1}^{n-1} b_i\right) e_n = -b_1 e_1 - \dots - b_1 e_{n-1} - (n-1) b_1 e_n.$$

The only way to reconcile our two expressions of w involving a_2 and b_1 is if $a_1 = b_1 = 0$. But then $a_2 = \cdots = a_n = 0$, which implies w = 0. This which contradicts the fact that we chose $w \in W \setminus \{0\}$. Therefore, there is some $1 \leq j \leq n-1$ such that $\rho_{s_i}w = w$. Let $1 \leq j \leq n-1$ be such that $\rho_{s_i} w \neq w$. Then

$$w - \rho_{s_j}w = a_j \left(e_1 - e_j\right) + a_{j+1} \left(e_1 - e_j\right) - a_{j+1} \left(e_1 - e_j\right) - a_j \left(e_1 - e_{j+1}\right) = -a_j \left(e_j - e_{j+1}\right).$$

Since $w - \rho_{s_j} w \neq 0$, $a_j \neq 0$. Therefore $-a_j$ is invertible, and since $w, \rho_{s_j} w \in W$, we know that W contains $(-a_j)^{-1} (w - \rho_{s_j} w) = e_j - e_{j+1}$. Then since $\rho_{s_i} (e_j - e_{j+1}) \in W$ for all $1 \leq i \leq n-1$, W contains $e_i - e_{i+1}$ for $1 \leq i \leq n-1$. We have proven that $\{e_i - e_{i+1}\}_{i=1}^{n-1}$ is a basis for V, and thus W contains a basis for V, which means that W = V. Thus V is the only nonzero irreducible subrepresentation of V. Hence V is irreducible. This completes the proof.

Problem 4

Recall that D_n is the group generated by two elements s_1, s_2 , subject to the relations $s_1^2 = s_2^2 = (s_1 s_2)^n = 1$. Consider the action of the dihedral group D_n on \mathbb{C}^2 given by the group homomorphism $D_n \to GL_2(\mathbb{C})$:

$$s_1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad s_2 \mapsto \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

where $\theta = 2\pi/n$. Prove that for $n \ge 3$, the resulting representation is irreducible.

Proof: We must first check confirm that the given action of D_n on \mathbb{C}^2 is indeed a group homomorphism, which we will call ρ . Since we have defined ρ on a generating set for D_n , ρ is automatically defined on all of D_n so as to satisfy $\rho_{gh} = \rho_g \rho_h$ for all $g, h \in D_n$. Since the generators s_1 and s_2 for D_n are subject to the relations $s_1^2 = s_2^2 = (s_1 s_2)^n = 1$, it suffices to prove that the images of s_1 and s_2 under ρ satisfy the same relations that s_1 and s_2 satisfy, i.e. $\rho_{s_1}^2 = \rho_{s_2}^2 = (\rho_{s_1} \rho_{s_2})^n = I$ where I is the identity map on \mathbb{C}^2 . To this end, we simply compute

$$\rho_{s_1^2} = \rho_1 = I = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \rho_{s_1} \rho_{s_1},$$

$$\rho_{s_2^2} = \rho_1 = I = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} = \rho_{s_2} \rho_{s_2}.$$

For the final relation, first observe that

$$\rho_{s_1}\rho_{s_2} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}.$$

Let us to use A_{θ} to denote the above matrix for $\rho_{s_1}\rho_{s_2}$. Now observe that for any two angles θ and ψ ,

$$A_{\theta}A_{\psi} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & \sin\psi \\ -\sin\psi & \cos\psi \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta\cos\psi - \sin\theta\sin\psi & \cos\theta\sin\psi + \sin\theta\cos\psi \\ -\sin\theta\cos\psi - \cos\theta\sin\psi & -\sin\theta\sin\psi + \cos\theta\cos\psi \\ -\sin\theta\cos\psi - \cos\theta\sin\psi & -\sin\theta\sin\psi + \cos\theta\cos\psi \end{bmatrix}$$
$$= \begin{bmatrix} (\cos(\theta+\psi)+\cos(\theta-\psi))/2 & (\sin(\theta+\psi)-\sin(\theta-\psi))/2 \\ -(\cos(\theta-\psi)-\cos(\theta+\psi))/2 & (\sin(\theta+\psi)+\sin(\theta-\psi))/2 \\ -(\sin(\theta+\psi)+\sin(\theta-\psi))/2 & +(\cos(\theta-\psi)-\cos(\theta+\psi))/2 \\ -(\sin(\theta+\psi)-\sin(\theta-\psi))/2 & +(\cos(\theta+\psi)+\cos(\theta-\psi))/2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta+\psi) & \sin(\theta+\psi) \\ -\sin(\theta+\psi) & \cos(\theta+\psi) \end{bmatrix}.$$

Using this fact, I claim that $(\rho_{s_1}\rho_{s_2})^m = A_{\theta m}$ for all $m \in \mathbb{N} (\not \supseteq 0)$. This is clear by induction: for m = 1, we've already proven that $\rho_{s_1}\rho_{s_2} = A_{\theta}$, and if $(\rho_{s_1}\rho_{s_2})^m = A_{\theta m}$, then by the above fact, $(\rho_{s_1}\rho_{s_2})^{m+1} = A_{\theta m}A_{\theta} = A_{\theta(m+1)}$. Hence $(\rho_{s_1}\rho_{s_2})^m = A_{\theta m}$ for all $m \in \mathbb{N}$. In particular,

$$(\rho_{s_1}\rho_{s_2})^n = A_{\theta n} = A_{2\pi n/n} = A_{2\pi} = \begin{bmatrix} \cos(2\pi) & \sin(2\pi) \\ -\sin(2\pi) & \cos(2\pi) \end{bmatrix} = I.$$

Thus ρ_{s_1} and ρ_{s_2} satisfy the same relations as s_1 and s_2 , which confirms that ρ is welldefined. Combining this with the fact that $\rho_{gh} = \rho_g \rho_h$ for all $g, h \in D_n$ confirms that ρ is a group homomorphism. Hence D_n does indeed act on $GL_2(\mathbb{C})$ as described in the problem statement.

To prove that ρ is irreducible, assume for contradiction that ρ is not irreducible. This means that \mathbb{C}^2 has some *G*-invariant subspace $V \subset \mathbb{C}^2$. Since dim $\mathbb{C}^2 = 2$, dim V = 1. So for any $v \in V \setminus \{0\}$, V = Span(v), which means that for all $g \in D_n$, $\rho_g v \in V = \text{Span}(v)$, so $\rho_g v = \lambda v$ for some $\lambda \in \mathbb{C}$. Thus v is an eigenvector for ρ_g for all $g \in D_n$. One one hand, this means that v is an eigenvector for ρ_{s_1} . Since ρ_{s_1} is a diagonal matrix, we can easily see that it has eigenvalues 1 and -1. Since we have

$$\rho_{s_1} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} 1&0\\0&-1\\1 \end{bmatrix} \begin{bmatrix} 1\\0\\0&-1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\1 \end{bmatrix},$$
$$\rho_{s_1} \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\-1\\1 \end{bmatrix} = -1 \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

we see that 1 and -1 have corresponding eigenvectors (1,0) and (0,1). Since V = Span(v), we can conclude that $V = \mathbb{C} \times \{0\}$ or $V = \{0\} \times \mathbb{C}$. On the other hand, the fact that v is an eigenvector for ρ_g for all $g \in D_n$ implies that $\rho_{s_2}v = \lambda v$ for some $\lambda \in \mathbb{C}$. Writing $v = (v_1, v_2)$, this means

$$\begin{bmatrix} \cos\left(\frac{2\pi}{n}\right) & \sin\left(\frac{2\pi}{n}\right) \\ \sin\left(\frac{2\pi}{n}\right) & -\cos\left(\frac{2\pi}{n}\right) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \cos\left(\frac{2\pi}{n}\right) + v_2 \sin\left(\frac{2\pi}{n}\right) \\ v_1 \sin\left(\frac{2\pi}{n}\right) - v_2 \cos\left(\frac{2\pi}{n}\right) \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}.$$

Since $V = \mathbb{C} \times \{0\}$ or $V = \{0\} \times \mathbb{C}$, either $v_1 = 0$ or $v_2 = 0$. If $v_1 = 0$, then $v_1 \cos(2\pi/n) + v_2 \sin(2\pi/n) = \lambda v_1$ becomes $v_2 \sin(2\pi/n) = 0$. Since $n \ge 3$, this implies $v_2 = 0$, and so v = 0, which contradicts that $v \in V \setminus \{0\}$. If instead $v_2 = 0$, then $v_1 \sin(2\pi/2) - v_2 \cos(2\pi/n) = \lambda v_2$ becomes $v_1 \sin(2\pi/2) = 0$, which implies $v_1 = 0$, and so v = 0, which contradicts that $v \in V \setminus \{0\}$. We have thus arrived at contradictions in all scenarios. Therefore, it cannot be the case that ρ is not irreducible. Hence ρ is irreducible.

Problem 6

Let G be a group action on a finite nonempty set X. Let $\mathscr{F}(X)$ be the corresponding representation of G on the vector space of complex-valued functions on X. Prove that $\mathscr{F}(X)$ contains the one-dimensional trivial representation of G with multiplicity $|G \setminus X|$, which is the number of G-orbits in X.

Proof: We know by part 1 of problem 7 from problem set 6 that $\mathscr{F}(X)$ has basis $(e_x)_{x\in X}$ where $e_x: X \to \mathbb{C}$ is given by $e_x(y) = \delta_{x,y}$ for all $y \in X$. Furthermore, If we let ρ be the representation of G on $\mathscr{F}(X)$, then we know from that same problem that for all $g \in G$ and $x \in X$, $\rho_g e_x = e_{gx}$, where the multiplication in the subscript of e_{gx} is given by the group action of G on X. Now let n = |X|, and let x_1, \ldots, x_n be any numbering of the elements of X. Since $\rho_g e_x = e_{gx}$ for all $g \in G$ and $x \in X$, we know that $\rho_g e_i = e_j$ iff $ge_i = e_j$. Therefore, given any $g \in G$, if we express ρ_g as a matrix A with entries a_{ij} , then the entries satisfy $a_{ij} = 1$ if $\rho_g e_j = e_i$, and $a_{ij} = 0$ otherwise. This observation allows us to compute

$$\chi_{\rho}(g) = tr(\rho_g) = tr(A) = \sum_{i=1}^{n} a_{ii} = |\{1 \le i \le n : a_{ii} = 1\}| = |\{1 \le i \le n : \rho_g e_i = e_i\}|$$

= $|\{1 \le i \le n : gx_i = x_i\}| = |X^g|.$

Thus for all $g \in G$, $\chi_{\rho}(g) = |X^g|$.

Next, write $\mathscr{F}(X) = \bigoplus_{\lambda \in \Lambda} V_{\lambda}^{\oplus m_{\lambda}}$, and let ρ_{λ} be the irreducible representation corresponding to the subspace V_{λ} . Recall that for any irreducible representation ρ' , $(\chi_{\rho_{\lambda}}, \chi_{\rho'}) = 1$ if $\rho_{\lambda} \simeq \rho'$ as representations, and $(\chi_{\rho_{\lambda}}, \chi_{\rho'}) = 0$ otherwise. Therefore, $(\chi_{\rho}, \chi_{\rho'}) = m_{\lambda}$ if $\rho_{\lambda} \simeq \rho'$, and $(\chi_{\rho}, \chi_{\rho'}) = 0$ if ρ' is not isomorphic to ρ_{λ} for any $\lambda \in \Lambda$. Also, by Burnside's lemma, $|G \setminus X| = |G|^{-1} \sum_{g \in G} |X^g|$. Next, note that the one-dimensional trivial representation ρ_1 is such that for all $g \in G$, $\rho_1(g)$ is given by the 1 × 1 matrix whose only entry is 1. Thus the character of the one-dimensional trivial representation satisfies $\chi_1(g) = 1$ for all $g \in G$. For ease of notation, if $\rho_1 \simeq \rho_{\lambda}$ for some $\lambda \in \Lambda$, then define $m_1 = m_{\lambda}$, and otherwise define $m_1 = 0$. Thus m_1 is precisely the number of irreducible subrepresentations of ρ which are isomorphic to ρ_1 . Combining all of these facts with our result from the previous paragraph allows us to compute

$$|G \setminus X| = \frac{1}{|G|} \sum_{g \in G} |X^g| = \frac{1}{|G|} \sum_{g \in G} \chi_\rho(g) = \frac{1}{|G|} \sum_{g \in G} \chi_\rho(g) \chi_1(g^{-1}) = (\chi_\rho, \chi_1)$$
$$= \left(\sum_{\lambda \in \Lambda} m_\lambda \chi_{\rho_\lambda}, \chi_1\right) = \sum_{\lambda \in \lambda} m_\lambda(\chi_{\rho_\lambda}, \chi_1) = m_1.$$

Hence m_1 , which is the number of times that the representation ρ of G on $\mathscr{F}(X)$ contains the one-dimensional trivial representation 1 of G as a subrepresentation, is precisely equal to $|G \setminus X|$. This completes the proof.

Problem 8

Let λ be a partition of n, written as $\lambda = (1, \ldots, 1, 2, \ldots, 2, \ldots)$ where the index i is written l_i times for $i \in \mathbb{N} (\not \supseteq 0)$. Thus $\sum_{i \in \mathbb{N}} i l_i = n$. Prove that the number of elements in the conjugacy class of S_n of cycle type λ is given by

$$\frac{n!}{\prod_{i\in\mathbb{N}}i^{l_i}\left(l_i!\right)}.$$

Proof: Suppose $\sigma \in S_n$ has cycle type λ . Since each index between 1 and *n* appears in precisely one cycle of σ , we know that there are *n*! possible ways of writing σ . However, many of these ways of writing σ will yield the same permutation. To determine how many distinct choices exist for σ , fix some $i \in \mathbb{N}$. For any *i*-cycle (a_1, \ldots, a_i) , we know that

$$(a_1,\ldots,a_i) = (a_2,\ldots,a_i,a_1) = \cdots = (a_i,a_1,\ldots,a_{i-1}).$$

Therefore, the number of ways of writing any particular *i*-cycle is *i*. So for each *i*-cycle, we must divide the number of choices for σ by *i* to account for the equivalent ways of writing each *i*-cycle. Since σ contains l_i *i*-cycles, we must divide the number of choices for σ by i^{l_i} . Furthermore, since the *i*-cycles are disjoint, reordering the *i*-cycles will have no impact on the value of σ . Since σ contains l_i *i*-cycles, there are l_i ! possible orderings of the *i*-cycles. To account for these reorderings, we must divide the number of choices for σ by i^{l_i} . Therefore, for each $i \in N$, we must divide the number of choices for σ by i^{l_i} . Once we do this for every $i \in \mathbb{N}$, we arrive at a final number of possible choices for σ given by

$$\frac{n!}{\prod_{i\in\mathbb{N}}i^{l_i}\left(l_i!\right)}.$$

Hence the above value is the number of elements in the conjugacy class of S_n consisting of elements of cycle type λ . This completes the proof.