Luke Andrejek Homework 7 6111 Algebra 1

Problem 1 Part 1

Recall that we have the following isomorphisms of vector spaces:

CG —Y— @ Ende (V) +—— P ViV,

AeAG A€AG

where Aq is the set of isomorphism classes of finite-dimensional irreducible representations

of G.

Let us be more explicit in our treatment of ¥ and ®. If {, € V¥ and wy € V), then
® is given by

@(@ fA(')®UJ,\) = P & () w,

AeAg AeAg

where “(-)” is a placeholder for the A coordinate of an element of @yep, V. As for U, we
know that (eg) . is a basis for CG if we define e, (z) = d,,, for all g,z € G. Also, for each
A € Ag, there is a map py : G — GL (Vy) corresponding to the irreducible representation of
G on V). With these conventions, ¥ is given by

v (Z Qg€q ()) = @ Z agpx (9) ()

geG AeAg g€G

7

where a, € C for every x € G, “(-)” is a placeholder for an element of G on the left-hand
side of the equation, and “(-)” is a placeholder for the A coordinate of an element of V' on
the right-hand side of the equation.

Given £ € V¥ and v € V), define ¢, : G — C by g — & (pa(g71) (v)). Prove

U (pen) = P <<diH|lG(|‘/)\)>£®v> .

Proof: We know that for any £ € V¥ and w € V), p3 (9) (§) ® pa (9) (w) € Vi @ V, for all
g € G, and thus > e 3 (9) (§) ® pa(9) (w) € Vi ® Vi. Next, observe that the restriction
of ® to a particular coordinate A € Ag is the natural map between Vi ® V) and Endc (V)),
which we know by problem 4 from problem set 6 is G-intertwining. Also, by Schur’s lemma,
every element of End¢ (V) is a constant multiple of the identity map Idy,. Therefore,

® (Z pi (9) (§) @ pa(9) (w)) = 21dy,

geG

for some constant z. Since ® is an isomorphism, we know that traces are preserved under ®.
In particular, since the trace of p5 (¢) (§) ® pa (g) (w) is precisely £ (w), the above equation
yields |G| £ (w) = zdim (V)). Evaluating both sides of this equation at any v € V) yields

N S < I DU
g;}&(m(g ) (@) - (g) (w) <dim(w>£( ) - v.
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But then
U (&(oa(g7") ) [or(9) (w)]) = > o (67") W) o (9) (w)
= 7|G| w)-v
? ((dim <vA>> ¢w) ®“> ’
as desired.

Problem 1 Part 2

Consider the G x G action on CG by the following formula, for every g¢i, 92,2 € G and
f e CG:

(91,92) - 1] () = [ (97" gs)
Prove that ® ! o ¥ is a G X G-intertwiner where G x G acts on Vi ® V) by
(91,92) - (§,0) = (g1 &) @ (g2 - v).

Proof: It is clear that the two actions stated in the problem statement are indeed
actions. To prove that ®~1 o ¥ is G x G-intertwining, using what we know from part 1, we
have

O loWo(g,g) (Ev) = 1oV (g -ERgr-v)
= 5(91_13392)?1
= (91.92) £ (- v)
= (91,92) - (970U (&) (2),

as desired.

Problem 1 Part 3
Define a map * : CG x CG — CG as follows: For every fi, fo € CG,
fixfa(@) =3 fi(zg7") f2(9)

geG

Prove that W (fy * fo) = W (f1) o ¥(f2) where the operation on the right-hand side is
composition of linear endomorphisms.

Proof: If we write f; = > cqageq and fo = 3 byey, then we can compute

U (fi*fo) = W(Zfl (xg_l)f2(9)>

geG
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- U (Z > ages (wg_l) > bey (9))

geG s€G teG
= ® Z agpx (g) © ® Z bepx (9)
AeA(G) geG AEAG g€G
= U (Z ageg) oW (Z bgeg>
geG geqG
= U(f1)oV(f).

This completes the proof.

Problem 3

Consider the action of the symmetric group S,, on V' C C" by permutation of coordinates,
where

:{Zaiei:al—i—---—l-an:O}
i=1

where (e;);_, is a basis for C". Prove that V' is an irreducible representation of S,,.

Proof: We should first confirm that S, does indeed act on V., though this is an
easy task. We already know that .S,, acts on C" by permuting the basis vectors e; through
en. Furthermore, given any o € S,, and v =37 ; a;e; € V, then > ; a; = 0, and

n n n
Po¥ = D WiPo€i = D Qi) = D Qo1
i—1 i=1 i=1

which belongs to V' since >71' a1 = >i;a; = 0. Thus V is S,-stable. Hence V is
indeed a representation of S,,.

Next, I claim that {e; —e;};_, is a basis for V. Certainly e; —¢; € V for all 2 < i < n.

For linear independence, suppose Y. ,a;(e; —e;) = 0 for some constants as through
an. Then (X0 ,a;)er — > a;e; = 0. Since the e;’s are independent, we know that
Yo =—ay=--+=—a,=0. Sothenay=---=a, =0and 0=3"",a,; Therefore, the

e1 — ¢;’s are linearly independent. To prove that {e; —e;} spans V, let v = Y1 | a;e; € V.
Then

v o= Zazez = aq1e; + Zazez = aq1e; + Z )+ aeq)

= CL161+<Z el—el>—|—2azel (12 >—|—Z —a; (e1 — e;)
i=1

=2 =2

n
= Z —a; 61—6Z .
=2

Thus {e; — e;} spans V. Hence {e; — ¢;} is a basis for V.
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I now claim that, by an argument similar to the one from the above paragraph, that
{e; — ei+1};:11 is a basis for V. Certainly e; —e;y; € V for all 1 < i < n — 1. For linear
independence, suppose Z?:_f a; (e; — e;11) = 0 for some constants a; through a,_;. Then

aje; + Z?:_Ql (a; —a;—1)e; — ap_1e, = 0. Since the e;’s are independent, we know that
a; = (ag —ay) =+ = (@1 — @p_2) = a1 = 0. So then a; = a,_; = 0, which combined
with as — a1 = a,_1 — a,_o = 0 yield ay = a,_» = 0, and continuing this procedure yields
a; = --- = a,_1 = 0. Therefore, the e; — e;,1’s are linearly independent. To prove that

{e; —eis1} spans V let v =37 | a;e; € V. Then

n—1 n—1

n
Vo= Z a;€; = Ap€p + Z (aje; + aieip1 — aieip1) = apep + Z lai (e; — €i—1) + a;€iy1]
i=1 i=1 i=1

n—1 n—1 n—1
= (anen + Z aiei—i-l) + Z a; (e; — €i—1) = Z a;(e; —ei—1) .
i=1 i=1 i=1

The final inequality above holds since the sum of the coefficients of a,e, + Z?;ll a;i€;y1 1S
precisely >-7 ; a;e; = 0. Thus {e; — e;11} spans V. Hence {e; — e;41} is a basis for V.

Proceeding to the given problem, suppose W is a nonzero irreducible subrepresenta-
tion of V. We must prove that W = V. Let w € W\ {0}, and write w = > , a; (e1 — ¢€;),
which we know is possible by our previous paragraphs. Let s; = (i,i+1) € S, for
1 <7 <mn—1. Assume for contradiction that p,,w = w for all 1 <7 <n — 1. So for each

n

doailer—e) =w=pyw=aj(er—¢) +ajler—epm)+ D ailer —e).

=2 2<i<n,
1#7,7+1

Canceling terms from both sides of the above equation yields —aje; — ajy1€j41 = —aj11€; —
ajej+1, and so (aj+1 — a;) ej+1 = (aj41 — a;) ej, which implies a; = a;41. Since this holds for
all 2 < j<n-—1, we have ap = - -- = a,,. Writing w as a sum of e; through e, then yields

n

w = (ZaZ) €1 — gy — +++ — ape, = (N — 1) age; — ages — - -+ — ase,.
=2

It is apparent that {e, — ei}?;ll is a basis for V', and the proof of this is identical to the
proof of the fact that {e; — e;};_, is a basis for V up to appropriate changes in subscripts.
Writing w = Y77 b; (e, — ;) for constants b; through b,_; and following the procedure of
the above paragraph then yields b; = --- = b,,_1, and writing w as a sum of e; through e,
then yields

n—1

w = —b161 — s — bn_len_l -+ <Z bfL) €np = —b1€1 L blen_l — (n — 1) blen.
i=1

The only way to reconcile our two expressions of w involving as and b, is if a; = by = 0.
But then ay = -+ = a,, = 0, which implies w = 0. This which contradicts the fact that we
chose w € W\ {0}. Therefore, there is some 1 < j <n — 1 such that p,,w = w.
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Let 1 <j <n —1 be such that p,,w # w. Then
w = ps,w = aj(e1 =€) + a1 (€1 — €;) — aj (€1 — ;) —a; (61 — €j41) = —a; (€ — €j11).

Since w — ps;w # 0, a;j # 0. Therefore —a; is invertible, and since w, ps,w € W, we know
that W contains (—a;)”" (w — psjw) = e; — ej41. Then since pg, (e; —ej11) € W for all
1 <i<n-—1, W contains e¢; — ;11 for 1 < i <mn — 1. We have proven that {e; — eiﬂ}?:_ll
is a basis for V', and thus W contains a basis for V', which means that W = V. Thus V is

the only nonzero irreducible subrepresentation of V. Hence V' is irreducible. This completes
the proof.

Problem 4

Recall that D, is the group generated by two elements si, 5o, subject to the relations s =
s2 = (s182)" = 1. Consider the action of the dihedral group D, on C? given by the group
homomorphism D,, = G L, (C):

o 1 0 . cosf@ sinf
51 0 —1 52 sinf@ —cosf

where 6 = 27 /n. Prove that for n > 3, the resulting representation is irreducible.

Proof: We must first check confirm that the given action of D, on C? is indeed a
group homomorphism, which we will call p. Since we have defined p on a generating set for
D,,, p is automatically defined on all of D,, so as to satisty pg, = pypp for all g,h € D,.
Since the generators s; and sy for D,, are subject to the relations s = s3 = (s152)" = 1, it
suffices to prove that the images of s; and sy under p satisfy the same relations that s; and
sy satisfy, i.e. p2 = p2, = (ps,ps,)" = I where I is the identity map on C?. To this end, we
simply compute

1 0 1 0
Ps2 = pr=1= 0 —1 0 —1 = Ps1Ps1s

cosf sinf ][cos@ sin 6

sinf —cos@ sin 6 —cosﬁlzpszp”'

P = m:I:[

For the final relation, first observe that

110 cosf) sind - cosf sind
PsiPs2 = | o _q sinfd —cosf | | —sinf cosfO |-

Let us to use Ay to denote the above matrix for ps, ps,. Now observe that for any two angles

0 and 1,

ApAy = [ cos 6 sin@]l cos sinzb]

—sinf cosf —siny cosy
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cos 6 cos 1 — sin 6sin cos 0 sin ) + sin # cos 1
| —sinfcosy —cosfsiny  —sinfsing + cosf cos

(cos(0+)+cos(6—1))/2 (sin(0+1)—sin(0—1))/2
—(cos(6—1)—cos(6+))/2 (sin(0+1)+sin(0—1)) /2

—(sin(0+)+sin(0—v))/2  —(cos(—1)—cos(6+v))/2
L —(sin(0+¢)—sin(0—¢))/2  +(cos(0+y)+cos(0—1))/2
B cos (0 +1) sin(0+ )

| —sin(0+¢) cos(0+) |

Using this fact, I claim that (ps, ps,)™ = Aem for all m € N(Z 0). This is clear by induction:
for m = 1, we've already proven that pg, ps, = Ag, and if (ps,ps,)”" = Aem, then by the above
fact, (p51p52)m+1 = AgmAg = Agim+1). Hence (ps, ps,)” = Agy, for all m € N. In particular,

(p81p52)n - AGn = A27rn/n = A27r = [ cos <27T) Sl (27T) ‘| =1.

—sin (27) cos (27)

Thus ps, and p,, satisfy the same relations as s; and sy, which confirms that p is well-
defined. Combining this with the fact that pg, = pgps for all g, h € D,, confirms that p is a
group homomorphism. Hence D,, does indeed act on GLs (C) as described in the problem
statement.

To prove that p is irreducible, assume for contradiction that p is not irreducible.
This means that C? has some G-invariant subspace V C C2. Since dimC? = 2, dimV = 1.
So for any v € V'\ {0}, V' = Span (v), which means that for all g € D,,, p;u € V' = Span (v),
so pgv = Av for some A € C. Thus v is an eigenvector for p, for all g € D,,. One one hand,
this means that v is an eigenvector for ps,. Since p;, is a diagonal matrix, we can easily see
that it has eigenvalues 1 and —1. Since we have

wlo) = 1o Sfe]-Lol=[6)
SRR B IRREEER]

we see that 1 and —1 have corresponding eigenvectors (1,0) and (0, 1). Since V' = Span (v),
we can conclude that V' = C x {0} or V' = {0} x C. On the other hand, the fact that v is an
eigenvector for p, for all g € D,, implies that p,,v = Av for some A € C. Writing v = (vy, v2),
this means

27 . (27 2T 27
cos () sin () [ " ] V1 COS <n) -+ vy sin <n) \ [ " ]
n n _ _
2 2 - 2 2 - :
sin <W> — cos (W> V2 v1 sin (W> — V9 COS (W> V2
n n n n

Since V' =C x {0} or V = {0} x C, either v; = 0 or vy = 0. If v; = 0, then v cos (27/n) +
vg sin (27 /n) = Avy becomes vy sin (27r/n) = 0. Since n > 3, this implies v, = 0, and so v = 0,
which contradicts that v € V'\{0}. If instead vy = 0, then v; sin (27/2) — v, cos (27/n) = Avg
becomes vy sin (27/2) = 0, which implies v; = 0, and so v = 0, which contradicts that
v € V\ {0}. We have thus arrived at contradictions in all scenarios. Therefore, it cannot be
the case that p is not irreducible. Hence p is irreducible.
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Problem 6

Let G be a group action on a finite nonempty set X. Let .%# (X) be the corresponding
representation of GG on the vector space of complex-valued functions on X. Prove that
Z (X) contains the one-dimensional trivial representation of G with multiplicity |G \ X],
which is the number of G-orbits in X.

Proof: We know by part 1 of problem 7 from problem set 6 that .%# (X) has basis
(€x),cy Where e, : X — C is given by e, (y) = d,, for all y € X. Furthermore, If we let
p be the representation of G on Z (X), then we know from that same problem that for
all g € G and = € X, pge, = ey, where the multiplication in the subscript of ey, is given
by the group action of G on X. Now let n = |X|, and let x1,...,x, be any numbering of
the elements of X. Since pge, = ey, for all g € G and z € X, we know that pse; = e; iff
ge; = ej. Therefore, given any g € G, if we express p, as a matrix A with entries a;;, then
the entries satisfy a;; = 1 if pge; = €;, and a;; = 0 otherwise. This observation allows us to
compute

Xo(9) = trpy) = Za”— Hl1<i<n:a; =1} =NH1<i<n:pe =e}
= |{1<z<n gxz—xz}] | X9].

Thus for all g € G, x, (9) = |X7|.

Next, write .Z (X) = @yea V™, and let py be the irreducible representation corre-
sponding to the subspace V). Recall that for any irreducible representation p’, (x,,, x,) =1
if py ~ p' as representations, and (x,,,X,) = 0 otherwise. Therefore, (x,,Xx,) = ma
if py ~ p/, and (x,, xy) = 0 if p' is not isomorphic to py for any A € A. Also, by
Burnside’s lemma, |G\ X| = |G| > gec | X?]. Next, note that the one-dimensional trivial
representation pqy is such that for all ¢ € G, py(g) is given by the 1 x 1 matrix whose
only entry is 1. Thus the character of the one-dimensional trivial representation satisfies
x1(g9) = 1 for all ¢ € G. For ease of notation, if py ~ p, for some A € A, then define
my = my, and otherwise define my = 0. Thus mq is precisely the number of irreducible
subrepresentations of p which are isomorphic to py. Combining all of these facts with our
result from the previous paragraph allows us to compute

G\ X| = ‘G,Z\ mzxp ‘Glzxp xt (97) = (o xa)

geG geG geG

= (Z m)\Xp)\7X1> = Zm)\ (XmeIL) =y

A€A AEA

Hence myq, which is the number of times that the representation p of G on % (X) contains
the one-dimensional trivial representation 1 of GG as a subrepresentation, is precisely equal
to |G\ X|. This completes the proof.
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Problem 8

Let A be a partition of n, written as A = (1,...,1,2,...,2,...) where the index i is written
l; times for ¢ € N(#0). Thus Y ;cnil; = n. Prove that the number of elements in the
conjugacy class of S, of cycle type A\ is given by

n!
[ien i (1)

Proof: Suppose o € S, has cycle type A. Since each index between 1 and n appears in
precisely one cycle of o, we know that there are n! possible ways of writing ¢. However,
many of these ways of writing ¢ will yield the same permutation. To determine how many
distinct choices exist for o, fix some i € N. For any i-cycle (aq, ..., a;), we know that

(CL17...,CLZ') = (ag,...,ai,al) :---:(ai,al,...,ai_l).

Therefore, the number of ways of writing any particular ¢-cycle is 7. So for each i-cycle, we
must divivde the number of choices for o by i to account for the equivalent ways of writing
each i-cycle. Since o contains [; i-cycles, we must divide the number of choices for o by 7.
Furthermore, since the ¢-cycles are disjoint, reordering the ¢-cycles will have no impact on
the value of . Since o contains [; i-cycles, there are [;! possible orderings of the i-cycles. To
account for these reorderings, we must divide the number of choices for ¢ by 7. Therefore,
for each i € N, we must divide the number of choices for o by 4’ (I;!). Once we do this for
every ¢ € N, we arrive at a final number of possible choices for o given by

n!
HieN ili (li!) '

Hence the above value is the number of elements in the conjugacy class of S, consisting of
elements of cycle type A. This completes the proof.
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