Algebra Homework 9

Scott Newton

October 26, 2017

Problem 3. With the set up of the previous problem, let W be the representation of S_4 defined by pullback of V under $S_4 \to S_4/(S_2 \times S_2) \to S_3$. Let \tilde{V} be the standard irreducible 3-dimensional representation of S_4 . Prove that

$$Ind_{S_2 \times S_2}^{S_4}(I) = I \oplus \tilde{V} \oplus W.$$

Proof. We can calculate $\chi_{Ind_{S_2 \times S_2}^{S_4}I}$ by $\chi_{Ind_{S_2 \times S_2}^{S_4}I}(g) = |(S_4/S_2 \times S_2)^g|$. So, counting fixed points for the cycle types in S_4 we see that the identity fixes every coset, of which there are $|S_4|/|S_2 \times S_2| = \frac{24}{4} = 6$.

Instead of considering the action on cosets, we can consider the action on 2 element subsets of $\{1, 2, 3, 4\}$ given by $\sigma.\{i, j\} = \{\sigma(i), \sigma(j)\}$ since there is an isomorphism between these actions.

A transposition (12) fixes both {1,2} and {3,4}, so $\chi_{Ind_{S_2 \times S_2}^{S_4}I}((12)) = 2$. For the element (123), no two element subsets are fixed, so $\chi_{Ind_{S_2 \times S_2}^{S_4}I}((123)) = 0$. For the lement (12)(34), both {1,2} and {3,4} are fixed, so $\chi_{Ind_{S_2 \times S_2}^{S_4}I}((12)(34)) = 2$. For an element (1234), no two element subsets are fixed, so $\chi_{Ind_{S_2 \times S_2}^{S_4}I}((1234)) = 0$. Thus, we get the following character:

conj. class	e	(12)	(12)(34)	(123)	(1234)
# elts	1	6	3	8	6
$\chi_{Ind_{S_2\times S_2}^{S_4}I}$	6	2	2	0	0

Recall,

conj. class	e	(12)	(12)(34)	(123)	(1234)
# elts	1	6	3	8	6
$\chi_{ ilde{V}}$	3	1	-1	0	-1
χ_{triv}	1	1	1	1	1

Taking the following inner products, we confirm the decomposition into irreducibles: $\begin{aligned} &(\chi_{Ind_{S_2 \times S_2}^{S_4}I}, \chi_{triv}) = \frac{1}{24}(6 + 6 \cdot 2 \cdot 1 + 3 \cdot 2 \cdot 1) = 1. \\ &(\chi_{Ind_{S_2 \times S_2}^{S_4}I}, \chi_{\tilde{V}}) = \frac{1}{24}(6 \cdot 3 + 6 \cdot 2 \cdot 1 + 3 \cdot 2 \cdot (-1)) = 1. \end{aligned}$ This leaves the final character,

conj. class	e	(12)	(12)(34)	(123)	(1234)
# elts	1	6	3	8	6
$\overline{\chi_{Ind_{S_2 \times S_2}^{S_4}I} - \chi_{\tilde{V}} - \chi_{triv}}$	2	0	2	-1	0

We see that this is irreducible because $(\chi_{Ind_{S_2 \times S_2}^{S_4}I} - \chi_{\tilde{V}} - \chi_{triv}, \chi_{Ind_{S_2 \times S_2}^{S_4}I} - \chi_{\tilde{V}} - \chi_{triv}) = 1$. We identify $S_2 \times S_2$ with the normal subgroup $\{e, (12)(34), (13)(24), (14)(23)\} < S_4$ in order to define W as the pullback of the standard 2-dim irreducible representation of S_3 via $S_4 \rightarrow S_4/(S_2 \times S_2) \xrightarrow{\sim} S_3$.

Recall,

conj. class	е	(12)	(123)
χ_{std}	2	0	-1

So, pulling back to S_4 and considering its conjugacy classes, we find $\chi_W(e) = 2$, $\chi_W((12)) = \chi_W((12)(34)) = 0$, and $\chi_W((123)) = -1$. Hence, we have the decomposition $Ind_{S_2 \times S_2}^{S_4}(I) = I \oplus \tilde{V} \oplus W$.

Problem 4. Let G be a finite group and $f \in (CG)_{class}$. Prove that f is a character of an irreducible finite-dimensional representation of G if, and only if the following three conditions are satised:

(i) f is a Z-linear combination of the characters of some finite-dimensional representations of G.

(ii) (f, f) = 1.

(iii) f(e) > 0 where e is the identity element of G.

Proof. Let f be a character of an irreducible finite-dimensional representation of G. Then f is trivially a \mathbb{Z} -linear combination of characters of finite-dimensional representations of G. Also, we know that (f, f) = 1 because f is the character of an irreducible finite-dimensional representation. Lastly, irreducible finite dimensional representations have positive dimension and f(e) is the dimension of the irreducible whose character is f, so f(e) > 0.

Now assume that f satisfies properties (i), (ii), and (iii). Then, $f = \sum_{i=1}^{k} a_i \chi_i$ is a \mathbb{Z} -linear combination of characters. If these character are not irreducible, then we can decompose them further until we have a linear combination of characters of irreducibles. Hence, without loss of generality, we may assum that the χ_i are characters of irreducible representations. Thus,

$$1 = (f, f) = (\sum_{i=1}^{k} a_i \chi_i, \sum_{j=1}^{k} a_j \chi_j)$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j (\chi_i, \chi_j)$$
$$= \sum_{i=1}^{k} a_i^2,$$

Hence, exactly one a_i has magnitude exactly 1. Let's call this a_1 without loss of generality. Since f(e) > 0, and $\chi_1(e) > 0$, we must have $a_1 = 1$. Therefore, $f = \sum_{i=1}^k a_i \chi_i = \chi_1$, so f is the character of an irreducible finite-dimensional representation of G.

Problem 5. For each partition λ of 5, let $\iota_{\lambda} \in (CS_5)_{class}$ be the character of the induced representation $Ind_{S_{\lambda}}^{S_5}(I)$. Prove that the following class function is the character of some finite-dimensional irreducible representation of S_5 :

$$s_{(3,2)} := \iota_{(3,2)} - \iota_{(4,1)}$$

Proof. We previously computed the following character table for S_5 :

conj. class	#	χ_{triv}	χ_{sign}	χ_{std}	$\chi_{std\otimes sign}$	$\chi_{V-std-triv}$	$\chi_{(V-std-triv)\otimes sign}$	χ_{last}
(1^5)	1	1	1	4	4	5	5	6
$(1^3, 2^1)$	10	1	-1	2	-2	1	-1	0
$(1^1, 2^2)$	15	1	1	0	0	1	1	-2
$(1^2, 3^1)$	20	1	1	1	1	-1	-1	0
$(2^1, 3^1)$	20	1	-1	-1	1	1	-1	0
$(1^1, 4^1)$	30	1	-1	0	0	-1	1	0
(5^1)	24	1	1	-1	-1	0	0	1

Restricting to $S_3 \times S_2 < S_5$, we get the following characters:

conj. class	#	χ_{triv}	χ_{sign}	χ_{std}	$\chi_{std\otimes sign}$	$\chi_{V-std-triv}$	$\chi_{(V-std-triv)\otimes sign}$	χ_{last}
e	1	1	1	4	4	5	5	6
$(12) \times e$	3	1	-1	2	-2	1	-1	0
$e \times (45)$	1	1	-1	2	-2	1	-1	0
$(12) \times (45)$	3	1	1	0	0	1	1	-2
$(123) \times e$	2	1	1	1	1	-1	-1	0
$(123) \times (45)$	2	1	-1	-1	1	1	-1	0

Thus, we can compute the character of $\iota_{(3,2)} = Ind_{S_3 \times S_2}(I)$ via Frobenius Reciprocity: $(\iota_{(3,2)}, \chi_i) = (\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_i))$ for each character χ_i of an irreducible . $(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{triv})) = \frac{1}{12}(1+3\cdot 1+1+3\cdot 1+2\cdot 1+2\cdot 1) = 1.$

$$\begin{aligned} &(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{sign})) = \frac{1}{12}(1 - 3 \cdot 1 - 1 + 3 \cdot 1 + 2 \cdot 1 - 2 \cdot 1) = 0. \\ &(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{std})) = \frac{1}{12}(4 + 3 \cdot 2 + 2 + 3 \cdot 0 + 2 \cdot 1 - 2 \cdot 1) = 1. \\ &(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{std \otimes sign})) = \frac{1}{12}(4 - 3 \cdot 2 - 2 + 3 \cdot 0 + 2 \cdot 1 + 2 \cdot 1) = 0. \\ &(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{V-std-triv})) = \frac{1}{12}(5 + 3 \cdot 1 + 1 + 3 \cdot 1 - 2 \cdot 1 + 2 \cdot 1) = 1. \\ &(\chi_{triv}, Res_{S_3 \times S_2}^{S_5}(\chi_{(V-std-triv) \otimes sign})) = \frac{1}{12}(5 - 3 \cdot 1 - 1 + 3 \cdot 1 - 2 \cdot 1 - 2 \cdot 1) = 0. \end{aligned}$$

So, $\iota_{(3,2)} = (\chi_{triv}) \oplus \chi_{std} \oplus \chi_{V-std-triv}$, so:

conj. class	#	$\iota_{(3,2)}$
(1^5)	1	10
$(1^3, 2^1)$	10	4
$(1^1, 2^2)$	15	2
$(1^2, 3^1)$	20	1
$(2^1, 3^1)$	20	1
$(1^1, 4^1)$	30	0
(5^1)	24	0

Next, we calculate $\iota_{(4,1)}$ as the number of fixed points $\iota_{(4,1)}(g) = |(S_5/S_4)^g|$:

conj. class	#	$l_{(4,1)}$
(1^5)	1	5
$(1^3, 2^1)$	10	3
$(1^1, 2^2)$	15	1
$(1^2, 3^1)$	20	2
$(2^1, 3^1)$	20	0
$(1^1, 4^1)$	30	1
(5^1)	24	0

Thus, $s_{(3,2)} = \iota_{(3,2)} - \iota_{(4,1)}$:

conj. class	#	$s_{(3,2)}$
(1^5)	1	5
$(1^3, 2^1)$	10	1
$(1^1, 2^2)$	15	1
$(1^2, 3^1)$	20	-1
$(2^1, 3^1)$	20	1
$(1^1, 4^1)$	30	-1
(5^1)	24	0

This is indeed a character of one of the irreducibles of S_5 from the table above.