ALGEBRA 1. PROBLEM SET 5

Notations: S_n is the group of permutations on n letters $\{1, \ldots, n\}$. For $1 \le i \le n-1$, $s_i = (i \ i+1)$ denotes the simple transposition.

Problem 1. Recall that we defined $\ell(\pi)$ for a permutation $\pi \in S_n$ as the smallest number ℓ such that π can be written as a product of ℓ simple transpositions. Prove that $\ell(\pi s_k) < \ell(\pi)$ if, and only if $\pi(k) > \pi(k+1)$.

Problem 2. Prove that $\ell(\pi)$ is same as the cardinality of the following set

 $\{(i, j) : 1 \le i < j \le n \text{ and } \pi(i) > \pi(j)\}$

Problem 3. Let G_n be the group given by the following presentation: G_n has n-1 generators g_1, \ldots, g_{n-1} and these generators satisfy the following list of relations:

- $g_i^2 = e \text{ for every } 1 \le i \le n-1$ $g_i g_j = g_j g_i \text{ for every } i, j \text{ such that } |i-j| > 1$ $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \text{ for every } 1 \le i \le n-2$
- Prove that there is a unique surjective group homomorphism $G_n \to S_n$ sending g_i to s_i .
- Let *H* be the subgroup of G_n generated by g_1, \ldots, g_{n-2} . Prove that the following is the list of all cosets G_n/H :

$$H_0 = H; \ H_1 = g_{n-1}H; \ H_2 = g_{n-2}H_1 = g_{n-2}g_{n-1}H; \cdots$$
$$H_{n-1} = g_1H_{n-1} = g_1 \cdots g_{n-1}H$$

• Prove by induction on n that $|G_n| \leq n!$. Hence $G_n \xrightarrow{\sim} S_n$.

Problem 4. Determine the conjugacy classes in S_5 and the number of elements in each class. Then determine all Sylow subgroups of S_5 .