ALGEBRA 1. PROBLEM SET 7

Unless otherwise stated, the groups considered below are finite, and vector spaces are over \mathbb{C} .

Problem 1. Recall that we have the following isomorphisms of vector spaces:

where Λ_G is the set of isomorphism classes of finite-dimensional irreducible representations of G.

(1) Prove that the map $V_{\lambda}^* \otimes V_{\lambda} \to \mathbb{C}G$ given by restricting the composition $\Psi^{-1} \circ \Phi$ to the λ^{th} summand, is given by the matrix coefficients:

$$\xi \otimes v \mapsto \{g \mapsto \xi(g \cdot v)\}$$

(2) Consider the $G \times G$ action on $\mathbb{C}G$ given by the following formula, for every $g_1, g_2, x \in G$ and $f \in \mathbb{C}G$:

$$[(g_1, g_2) \cdot f](x) = f(g_1^{-1}xg_2)$$

Prove that $\Phi^{-1} \circ \Psi$ is a $G \times G$ -intertwiner; where $G \times G$ acts on $V_{\lambda}^* \otimes V_{\lambda}$ by $(g_1, g_2) \cdot (\xi \otimes v) = (g_1 \cdot \xi) \otimes (g_2 \cdot v)$.

(3) Define a map $*: \mathbb{C}G \times \mathbb{C}G \to \mathbb{C}G$ as follows. For every $f_1, f_2 \in \mathbb{C}G$:

$$f_1 * f_2(x) = \sum_{g \in G} f_1(xg^{-1})f_2(g)$$

Prove that $\Psi(f_1 * f_2) = \Psi(f_1) \circ \Psi(f_2)$ where the operation on the right-hand side is composition of linear endomorphisms.

Problem 2. Prove that a finite group is abelian if, and only if all its irreducible finite–dimensional representations are one–dimensional.

Problem 3. Consider the action of the symmetric group S_n on $V \subset \mathbb{C}^n$ by permutation of coordinates, where,

$$V := \left\{ \sum_{i=1}^{n} a_i \varepsilon_i : a_1 + \dots + a_n = 0 \right\}$$

Prove that V is an irreducible S_n -representation.

Problem 4. Recall that D_n is the group generated by two elements s_1, s_2 subject to the relations: $s_1^2 = s_2^2 = (s_1 s_2)^n = 1$. Consider the action of the dihedral group D_n on \mathbb{C}^2 given by the group homomorphism $D_n \to GL_2(\mathbb{C})$:

$$s_1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad s_2 \mapsto \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$$

where $\theta = \frac{2\pi}{n}$. Prove that for $n \ge 3$ the resulting representation is irreducible.

Problem 5. Let G and H be two groups and let $\{V_{\lambda}\}_{\lambda \in \Lambda_G}$ and $\{W_{\mu}\}_{\mu \in \Lambda_H}$ be the sets of all finite-dimensional irreducible representations of G and H respectively. Prove that $\{V_{\lambda} \otimes W_{\mu}\}_{\lambda \in \Lambda_G, \mu \in \Lambda_H}$ is the complete list of finite-dimensional irreducible representations of $G \times H$.

Problem 6. Let G be a group acting on a finite (non-empty) set X. Let $\operatorname{Fun}(X)$ be the corresponding representation of G on the vector space of complex-valued functions on X. Prove that $\operatorname{Fun}(X)$ contains the one-dimensional trivial representation of G with multiplicity $|G \setminus X|$ (the number of G-orbits in X).

Problem 7. Let V be a finite-dimensional representation of G such that $\chi_V(g) = 0$ for every $g \neq 1$ (g is not the identity element of G). Prove that |G| divides dim(V).

Problem 8. Let λ be a partition of n, written as

$$\lambda = (\underbrace{1, \dots, 1}_{\ell_1 \text{ times}}, \underbrace{2, \dots, 2}_{\ell_2 \text{ times}}, \dots)$$

(thus $\sum_{i\geq 1} i.\ell_i = n$). Prove that the number of elements in the conjugacy class of S_n of cycle–type λ is given by $\frac{n!}{\prod_{i\geq 1} i^{\ell_i}(\ell_i!)}$.

Problem 9. Let H < G be an *abelian* subgroup. Let V be an irreducible finitedimensional representation of G. Prove that $\dim(V) \leq |G/H|$.

Problem 10. Compute the character table of the dihedral group D_4 .

Problem 11. Let Q_8 be the group with 8 elements $\{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by

$$i^2 = j^2 = k^2 = 1$$

$$i \cdot j = k; j \cdot i = -k; j \cdot k = i; k \cdot j = -i; k \cdot i = j; i \cdot k = -j$$

Compute the character table of Q_8 and verify that both D_4 and Q_8 have the same character table (up to reordering conjugacy classes).