ALGEBRA 1: PROBLEM SET 9

Problem 1. Let G be a finite group and H < G be a subgroup. Let $\{g_1, \ldots, g_\ell\}$ be the representatives of cosets in G/H (that is, $G = \bigsqcup_{i=1}^{\ell} g_i H$). The left action of G on the set G/H gives us a map $\sigma : G \to S_\ell$ as follows. For every $x \in G$ and $1 \leq i \leq \ell, \sigma(x)(i)$ is the unique element of $\{1, \ldots, \ell\}$ such that $g_{\sigma(x)(i)}^{-1} xg_i \in H$.

Let $\pi : H \to \operatorname{GL}(W)$ be a finite-dimensional representation of H. Define a representation of G on the vector space $W \otimes \mathbb{C}^{\ell}$ by the following formula, where $x \in G, w_1, \ldots, w_{\ell} \in W$ and $\{\varepsilon_1, \ldots, \varepsilon_{\ell}\}$ is the usual basis of \mathbb{C}^{ℓ} .

$$x \cdot \left(\sum_{i=1}^{\ell} w_i \otimes \varepsilon_i\right) = \sum_{i=1}^{\ell} \pi \left(g_{\sigma(x)(i)}^{-1} x g_i\right)(w_i) \otimes \varepsilon_{\sigma(x)(i)}$$

Verify that the above equation defines a representation of G on $W \otimes \mathbb{C}^{\ell}$. Prove that $\operatorname{Ind}_{H}^{G}(W) \xrightarrow{\sim} W \otimes \mathbb{C}^{\ell}$ as representations of G.

Problem 2. Let V be the standard irreducible 2-dimensional representation of S_3 and I be the 1-dimensional trivial representation of $S_2 \times S_2$. Compute the dimension of

$$\operatorname{Hom}_{G}\left(\operatorname{Ind}_{S_{2}\times S_{2}}^{S_{4}}(\mathbb{I}), \operatorname{Ind}_{S_{3}}^{S_{4}}(V)\right)$$

Problem 3. With the set up of the previous problem, let W be the representation of S_4 defined by pull-back of V under $S_4 \to S_4/(S_2 \times S_2) \xrightarrow{\sim} S_3$. Let \tilde{V} be the standard irreducible 3-dimensional representation of S_4 . Prove that

$$\operatorname{Ind}_{S_2 \times S_2}^{S_4}(\mathbb{I}) = \mathbb{I} \oplus \widetilde{V} \oplus W$$

Problem 4. Let G be a finite group and $f \in (\mathbb{C}G)_{\text{class}}$. Prove that f is a character of an irreducible finite-dimensional representation of G if, and only if the following three conditions are satisfied:

- f is a Z-linear combination of the characters of some finite-dimensional representations of G.
- (f, f) = 1.
- f(e) > 0 where e is the identity element of G.

Problem 5. For each partition λ of 5, let $\iota_{\lambda} \in (\mathbb{C}S_5)_{\text{class}}$ be the character of the induced representation $\text{Ind}_{S_{\lambda}}^{S_5}(\mathbb{I})$. Prove that the following class function is the character of some finite-dimensional irreducible representation of S_5 :

$$s_{(3,2)} := \iota_{(3,2)} - \iota_{(4,1)}$$