ALGEBRA 1: PROBLEM SET 10

A = a commutative ring in all the problems below.

Problem 1. [Nilradical of a ring] Let $\mathfrak{n} \subset A$ consist of all nilpotent elements. Prove that

$$\mathfrak{n} = \bigcap_{oldsymbol{\mathfrak{p}}\subset A \ ext{prime ideal}} \mathfrak{p}$$

Problem 2. Let $\mathfrak{a} \subset A$ be the set of all zero-divisors of A. Is \mathfrak{a} an ideal of A?

Problem 3. Let $n \in A$ be a nilpotent element and $u \in A$ be a unit (that is, u has a multiplicative inverse). Prove that u + n is again a unit.

Problem 4. Let $S \subset A$ be a set such that $0 \notin S$ and $r, s \in S$ implies $rs \in S$ (multiplicatively closed set). Let $\mathfrak p$ be an ideal which is maximal among the ideals not intersecting S. That is, maximal with respect to inclusion, from the following set:

$$I_S = {\mathfrak{a} \subset A \text{ an ideal such that } \mathfrak{a} \cap S = \emptyset}$$

Prove that \mathfrak{p} is prime.

Problem 5. If for every $x \in A$ there exists an $n \ge 2$ such that $x^n = x$, then prove that every prime ideal in A is maximal.

Problem 6. Let B be another commutative ring and let $f: A \to B$ be a ring homomorphism. Let $\mathfrak{p} \subset A$ be a prime ideal and define $\mathfrak{b} \subset B$ to be the ideal generated by $f(\mathfrak{p})$. Prove or disprove: \mathfrak{b} is a prime ideal.

Problem 7. Let K be a field and R = K[[x]] be the ring of formal power series in a variable x with coefficients from K. Prove that R is a local ring, with unique maximal ideal $\mathfrak{m} = (x)$.

Problem 8. Prove that the set of prime ideals in A has a minimal element with respect to inclusion.

Problem 9. [Jacobson radical] Consider the following subset of A:

$$\mathfrak{J} := \{x \in A \text{ such that for every } y \in A, 1 - xy \text{ is a unit}\}$$

Prove that \mathfrak{J} is an ideal of A. Further prove that

$$\mathfrak{J} = \bigcap_{\substack{\mathfrak{m} \subset A \\ ext{maximal ideal}}} \mathfrak{m}$$

Problem 10. Consider the ring $R = \mathbb{C}[x]/(f)$ where $f \in \mathbb{C}[x]$ is a non-zero polyno-

mial. Let us write
$$f(x) = \prod_{i=1}^{\ell} (x - a_i)^{n_i}$$
 where $a_1, \dots, a_{\ell} \in \mathbb{C}$ and $n_1, \dots, n_{\ell} \in \mathbb{Z}_{\geq 1}$.
Prove that $R \stackrel{\sim}{\to} \prod_{i=1}^{\ell} \mathbb{C}[x]/(x - a_i)^{n_i}$.

Prove that
$$R \stackrel{\sim}{\to} \prod_{i=1}^{\ell} \mathbb{C}[x]/(x-a_i)^{n_i}$$

Problem 11. Let $R := \mathbb{Z}[x]/(x^2 + 1)$.

- (a) Prove or disprove: R is a principal ideal domain.
- (b) Let $p \in \mathbb{Z}$ be a prime number such that $p \equiv 3 \pmod{4}$. Prove that the ideal generated by p in R is a prime ideal.

Problem 12. [Radical of an ideal] Given an ideal $\mathfrak{a} \subset A$, define $r(\mathfrak{a}) := \{a \in A : a \in A : a$ $a^n \in \mathfrak{a}$. Prove the following statements for two ideals $\mathfrak{a}, \mathfrak{b}$ in A.

- (a) $r(\mathfrak{a})$ is an ideal containing \mathfrak{a} .
- (b) $r(r(\mathfrak{a})) = r(\mathfrak{a}).$
- (c) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$
- (d) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$

Problem 13. Let \mathfrak{p} be a prime ideal of A. Prove that $r(\mathfrak{p}^n) = \mathfrak{p}$ for every $n \ge 1$.

Problem 14. [Ideal quotients] Let \mathfrak{a} and \mathfrak{b} be two ideals in A. Define

$$(\mathfrak{a} : \mathfrak{b}) := \{ a \in A \text{ such that } a\mathfrak{b} \subset \mathfrak{a} \}$$

Prove that $(\mathfrak{a} : \mathfrak{b})$ is an ideal in A.

Problem 15. With the definition given in the previous problem, take A to be \mathbb{Z} . Compute the ideal quotient (n):(m) for two positive integers $n,m\in\mathbb{Z}$.