ALGEBRA 1: PROBLEM SET 12

A = a commutative ring in all the problems below. S = a multiplicatively closed subset of A (recall $1 \in S$ and $0 \notin S$). $j_S : A \to S^{-1}A$ the natural ring homomorphism.

Problem 1. Let *M* be an *A*-module. Prove that $S^{-1}A \otimes_A M \equiv S^{-1}M$.

Problem 2. Let $\mathfrak{a} \subset A$ be an ideal. Prove that $S^{-1}\mathfrak{a}$ is the ideal in $S^{-1}A$ generated by $j_S(\mathfrak{a})$.

Problem 3. Let B be another commutative ring which contains A as a subring. Assume that B is finitely generated (as a ring over A). Prove that, if A is Noetherian, then so is B.

Problem 4. Assume A[x] is Noetherian. Does it imply that A is Noetherian?

Problem 5. Consider the following sequence of *A*-linear maps between *A*-modules.

 $0 \to M' \to M \to M'' \to 0$

Prove that this sequence is exact if, and only if, for every maximal ideal $\mathfrak{m} \subsetneq A$, the following sequence of $A_{\mathfrak{m}}$ -modules is exact.

$$0 \to M'_{\mathfrak{m}} \to M_{\mathfrak{m}} \to M''_{\mathfrak{m}} \to 0$$

Problem 6. Assume that A is not Noetherian. Let S be the set of all ideals of A which are not finitely–generated. Prove that this set has a maximal element and any such maximal element is necessarily a prime ideal of A.

Problem 7. Assume that A is Noetherian. Prove that so is A[[x]].

Problem 8. Assume that $A_{\mathfrak{p}}$ is a Noetherian ring, for every prime ideal $\mathfrak{p} \subsetneq A$. Prove or disprove: A is Noetherian.

Problem 9. Let M be a Noetherian module over A. Prove that M[x] is a Noetherian module over A[x].

Problem 10. Let M be a Noetherian module over A. Let $f : M \to M$ be a surjective A-linear map. Prove that f is an isomorphism. Hint. – consider the chain of submodules $\operatorname{Ker}(u^n)$.