
THE R-MATRIX FORMALISM FOR QUANTIZED ENVELOPING
ALGEBRAS

SACHIN GAUTAM, MATTHEW RUPERT, AND CURTIS WENDLANDT

Abstract. Let Uℏg denote the Drinfeld–Jimbo quantum group associated to
a complex semisimple Lie algebra g. We apply a modification of the R-matrix
construction for quantum groups to the evaluation of the universal R-matrix
of Uℏg on the tensor square of any of its finite-dimensional representations.
This produces a quantized enveloping algebra UR(g) whose definition is given
in terms of two generating matrices satisfying variants of the well-known RLL

relations. We prove that UR(g) is isomorphic to the tensor product of the
quantum double of the Borel subalgebra Uℏb ⊂ Uℏg and a quantized poly-
nomial algebra encoded by the space of g-invariants associated to the semi-
classical limit V of the underlying finite-dimensional representation of Uℏg.
Using this description, we characterize Uℏg and the quantum double of Uℏb as
Hopf quotients of UR(g) and as fixed-point subalgebras with respect to certain
natural automorphisms. As an additional corollary, we deduce that UR(g) is
quasitriangular precisely when the irreducible summands of V are distinct.
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1. Introduction

1.1. Let g be a simple Lie algebra over the complex numbers, and let Uℏg be
its standard quantization over C[[ℏ]], as first defined in generality by Drinfeld [D1,
D2] and Jimbo [J1]; see Section 4.2. An important feature of Uℏg is that it is
quasitriangular, and thus possesses a universal R-matrix which can be evaluated
on the tensor square of any of its finite-dimensional representations V (see Section
4.7) to produce a solution R of the quantum Yang–Baxter equation associated to
V. In this article, we address the problem of rebuilding Uℏg uniformly from only
this data.
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This problem has a storied history closely tied to the remarkable foundational
paper [FRT] of Faddeev, Reshetikhin and Takhtajan, and the work of Faddeev
and his contemporaries on the quantum inverse scattering method that preceded
it; see [FST,FT1,F,KS2] in addition to [M4, §4.4] or [CP, §7.5], for example. To
elaborate, the article [FRT] laid the foundation for a general theory of quantum
groups centered around the two matrix equations

RL1L2 = L2L1R and R12R13R23 = R23R13R12,

which are the algebraic relations at the heart of the quantum inverse scattering
method. The latter equation is the aforementioned quantum Yang–Baxter equation,
while the former is often taken to be a defining relation for an algebra whose
generators are encoded as the coefficients of the matrix L. We refer the reader to
[FRT] and [D2, §10-11], for instance, for the general meaning of these equations;
our use of them shall be made transparent in Sections 1.2, 3.1 and 5.1.

The techniques developed in [FRT], which are now collectively referred to as
the R-matrix (or FRT ) formalism for quantum groups, output several examples
of concrete, well-known quantum algebras and have played an instrumental role
in the development of the representation theory of quantum groups over the last
four decades; we refer the reader to the textbooks [M4, §4], [CP, §7], [KS1, Parts
II–III] in addition to [M5] for an extensive overview. One of the key points stressed
in [FRT] is that this formalism is compatible with Drinfeld’s theory of quantized
enveloping algebras, in that it can be applied to recover the quantum groups Uℏg
introduced by Drinfeld and Jimbo. To illustrate this concretely, a solution to the
problem of rebuilding Uℏg from R and V (as in the first paragraph of §1.1) was
outlined in the special case where g is of classical type and V is taken to be the vector
representation of Uℏg; see Theorems 12 and 18 of [FRT], in addition to Theorem
33 of [KS1] and Section 7 below. Similar results have since been established in
other isolated cases; for instance, in [S, Thm. 11] this was extended to the case
where g is of type G2 and V is a quantization of its seven dimensional fundamental
representation.

In this article, we further intertwine the R-matrix techniques originating from
the quantum inverse scattering method with the theory of quantized enveloping
algebras in order to provide a uniform solution to the above reconstruction problem
for any g and non-trivial finite-dimensional representation V of Uℏg.

1.2. The quantum algebra UR(g). We now turn towards providing a more de-
tailed outline of our results. Let V be a finite-dimensional representation of Uℏg
(see Sections 4.7) with the property that its semiclassical limit V = V/ℏV has a
non-trivial composition factor as a representation of the Lie algebra g over C.

In Section 5.1, we apply the approach of Faddeev, Reshetikhin and Tahktajan
to introduce a C[[ℏ]]-algebra UR(g) associated to the evaluation R of the universal
R-matrix of Uℏg on the tensor square of V. The defining relations of UR(g) are
given in terms of two elements T+ and T− of End(V )⊗C UR(g) and are such that
the auxiliary matrices L± = I + ℏT± satisfy the familiar identities

RL±
1 L

±
2 = L±

2 L
±
1 R and RL+

1 L
−
2 = L−

2 L
+
1 R,

in addition to two natural relations encoded by the weight space decomposition
of the g-module gl(V ); see Definition 5.1. The algebra UR(g) plays a central role
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in this article. As is to be expected from the literature, it has several remarkable
properties. For instance, it comes with a large collection of natural automorphisms
and admits a Hopf algebra structure which is remarkably simple to describe in
terms of T± or L±; see Proposition 5.4 and Theorem 5.7.

Let us now explain how UR(g) relates to the quantized enveloping algebra Uℏg.
Let gl(V )g ⊂ gl(V ) be the Lie subalgebra of g-invariants, which we view as a
Lie bialgebra equipped with trivial Lie cobracket. Let z+V = (gl(V )g)∗ denote its
Lie bialgebra dual, which is commutative as a Lie algebra, but in general has a
non-trivial coalgebra structure. In Section 5.3, we follow a standard procedure to
introduce a quantization Sℏ(z

+
V ) of z+V , which coincides with the trivial deformation

S(z+V )[[ℏ]] of the symmetric algebra on z+V as an algebra. We then prove the following
theorem (see Theorem 5.7), where Sℏ(z−V ) is the co-opposite Hopf algebra to Sℏ(z

+
V ).

Theorem I. There is an isomorphism of topological Hopf algebras

Υ : UR(g)
∼−→ D(Uℏb)⊗ Sℏ(z

+
V )⊗ Sℏ(z

−
V ),

where D(Uℏb) is the quantum double of the Borel subalgebra Uℏb ⊂ Uℏg.

Here the symbol ⊗ denotes the topological tensor product of C[[ℏ]]-modules (see
Section 4.1) – we refer the reader to Theorem 5.7 for the precise statement of the
theorem, including the definition of Υ. Its proof makes crucial use of Theorem 3.6,
established earlier in Section 3, which shows that the Lie bialgebra gr quantized by
UR(g) decomposes as gr ∼= D(b)⊕ z+V ⊕ z−V , where D(b) is the Drinfeld double of b.

1.3. Recovering Uℏg. Theorem I has several consequences and, in particular,
yields two uniform solutions to the reconstruction problem for Uℏg stated at the
beginning of Section 1.1. The first solution describes Uℏg as a Hopf algebra quo-
tient of UR(g) by the ideal generated by a family of distinguished central elements.
Namely, if L±

0 denotes the zero weight component of L± then L+
0 L−

0 has coefficients
in the center of UR(g) and decomposes as a product of central factors

L+
0 L−

0 = qΘ · (I + ℏΣ+) · (I + ℏΣ−)−1.

The element qΘ = exp(ℏ2Θ) is defined in Lemma 5.13, while the matrices Σ+ and Σ−

lay in gl(V )g ⊗C Z(UR(g)) and appear earlier in Theorem 5.11 – their coefficients
are computed explicitly in Corollary 6.5 in the case where V has pairwise non-
isomorphic irreducible summands; see also Remarks 6.6 and 6.7. It is shown in
Theorem 5.14 that Uℏg is isomorphic to the quotient of UR(g) by the (Hopf) ideal
generated by the coefficients of Θ, Σ+ and Σ−.

The second solution, also given in Theorem 5.14, identifies Uℏg with the subalge-
bra of UR(g) consisting of all elements fixed by a natural family of automorphisms
indexed by h × GLI(V )g × GLI(V )g, where h is the Cartan subalgebra of g and
GLI(V )g is the group of g-invariant elements in I + ℏgl(V )[[ℏ]]. Namely, for each
triple (h,C+, C−) belonging to this direct product, there is an automorphism of
UR(g) uniquely determined by

L± 7→ q−π(h)/2L±q−π(h)/2 · C±,

where q = eℏ/2 and π : U(g)→ End(V ) defines the action of g on V . The Drinfeld–
Jimbo algebra Uℏg is then isomorphic to the subalgebra of UR(g) consisting of all
elements stable under each of these automorphisms.
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Both of the characterizations of Uℏg provided by Theorem 5.14 are deduced, in
part, using similar characterizations for the quantum double D(Uℏb) obtained in
Theorem 5.11 which follow more directly from Theorem I.

1.4. Quasitriangularity. As another consequence of Theorem I, we prove in Corol-
lary 5.16 that there is an isomorphism of topological Hopf algebras

UR(b) ∼= Uℏb⊗ Sℏ(z
+
V ),

where UR(b) is the Hopf subalgebra of UR(g) topologically generated by the coef-
ficients of T+. In all of the examples which have appeared in the literature, UR(g)
is itself quasitriangular and can be recovered as the quantum double of UR(b).
Given these examples, and the nature of the definition of UR(g), it is reasonable to
postulate that UR(g) is quasitriangular for any R and V and, in addition, can be
recovered as the quantum double of UR(b). However, Theorem I implies that both
these assertions are false in general.

A precise characterization of the quasitriangularity of UR(g) is given in Theorem
6.3: UR(g) is quasitriangular if and only if the irreducible summands of V are
pairwise non-isomorphic or, equivalently, the space of invariants gl(V )g is abelian.
In this case, UR(g) is indeed isomorphic to the quantum double of UR(b).

1.5. Remarks. A number of the results outlined above draw inspiration from his-
torical developments in the literature on quantum groups of affine type and, in par-
ticular, the structure theory of (extended) Yangians; see [AMR,D1,MNO,O,W1]
in addition to the monograph [M5]. Indeed, it was already known to Drinfeld in the
1980’s that the Yangian Yℏ(g) of an arbitrary simple Lie algebra g could be rebuilt
from any of its finite-dimensional irreducible representations V by following a pro-
cedure not so different from that outlined in Sections 1.2 and 1.3; see [D1, Thm. 6].
Namely, Yℏ(g) can be realized as the quotient of the so-called extended Yangian as-
sociated to V (the affine, degenerate analogue of UR(g)) by the ideal generated by
the coefficients of a distinguished central series. This description was generalized to
arbitrary finite-dimensional V in the third authors paper [W1], where the Yangian
analogues of Theorems 5.7 and 5.14 were also obtained in general: see Theorems
7.3 and 7.11 therein. This further extended earlier results obtained in the case
where V is the vector representation of the Yangian of a classical Lie algebra; see
[AMR,MNO] and [M5, §1]. Our proof of Theorem I (i.e., Theorem 5.7) is partly
based on the techniques used to prove the main results of [W1].

For the closely related quantum affine algebras Uℏ(ĝ), some of the results sum-
marized in the previous paragraph have been explored in general [RSTS], though
almost all attention has focused on the special cases alluded to above; see [DF,
FT2,GM, JLM3, JLM2, JLM1,MRS], for example, in addition to the forthcoming
paper [GRW]. In fact, the main results of the present paper are a prerequisite to
developing the R-matrix formalism for quantum loop/affine algebras in general.

Finally, it is worth emphasizing that the current article does not consider non-
trivial specializations of the quantized enveloping algebras UR(g) or Uℏg. Rather,
our results are written so as to be compatible with the general theory of Lie bialge-
bra quantizations over C[[ℏ]]. This is an important point that does not play a signif-
icant role in the Yangian picture summarized above. That being said, it would be
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interesting to further develop the results of this paper so as to incorporate rational
and integral forms of UR(g) and Uℏg.

1.6. Outline. The article is, roughly speaking, divided into two parts. The first
part, which consists of Sections 2 and 3, is focused on establishing the classical
variant of Theorem I (see Theorem 3.6). We begin in Section 2 by recalling some
basic facts about the standard Lie bialgebra structure on g and its relation to the
Drinfeld double of the Borel subalgebra b ⊂ g. The classical counterpart gr of
UR(g) is then defined in Definition 3.1 and it is proven in Theorem 3.6 that it
admits the Lie bialgebra decomposition gr ∼= D(b)⊕ z+V ⊕ z−V .

The second part of the article is devoted to establishing the results outlined
in detail in Sections 1.2–1.4 above. We begin in Section 4 by surveying some
of the key properties of Uℏg and the quantum double D(Uℏb) which will play a
role throughout the remainder of the paper. This includes a brief overview of the
general definitions from the theory of quantized enveloping algebras in Section 4.1.
In Section 5, we introduce the R-matrix algebra UR(g), establish some of its basic
properties (see Lemma 5.3 and Proposition 5.4) and then prove Theorem I and the
main results outlined in Section 1.3; see Theorems 5.7, 5.11 and 5.14. The section
concludes with a study of the quantum Borel subalgebras UR(b) = UR(b

+) and
UR(b

−) of UR(g) in Section 5.7; see Corollaries 5.16 and 5.17. In Section 6, we
obtain the characterization of the quasitriangularity of UR(g) sketched in Section
1.4 and compute the central elements alluded to in Section 1.3 explicitly in the
case where V has no repeated composition factors; see Theorem 6.3, Corollary 6.5,
and Remarks 6.6 and 6.7. We conclude our paper in Section 7 by outlining how
our results specialize to well-known constructions in the case where V is the vector
representation of Uℏsln.

1.7. Acknowledgments. We are extremely grateful to Pavel Etingof for suggest-
ing that some of the ideas from [W1] could be applied to further develop the R-
matrix formalism for the standard quantizations of semisimple Lie algebras. These
preliminary remarks have motivated a large part of this article. SG was supported
through the Simons foundation collaboration grant 526947. MR was supported by
the Pacific Institute for the Mathematical Sciences (PIMS) Postdoctoral Fellowship
program. CW gratefully acknowledges the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC), provided via the Discovery Grants
Program (Grant RGPIN-2022-03298 and DGECR-2022-00440).

2. Recollections on g

2.1. Let g be a simple Lie algebra over the complex numbers and fix an invariant,
non-degenerate, symmetric bilinear form ( , ) on g. Let h ⊂ g be a Cartan subalge-
bra with {αi}i∈I ⊂ h∗ a basis of simple roots, and let Φ+ ⊂ h∗ be the associated
set of positive roots of g. We normalize ( , ), if necessary, so that the square length
of every short root is 2. In addition, we let Q+ =

⊕
i∈I Z≥0αi denote the positive

cone in the root lattice Q = ZΦ+ ⊂ h∗ of g. Let (aij)i,j∈I be the Cartan matrix of
g, so that diaij = (αi, αj), where {di}i∈I are the symmetrizing integers of g, defined
by di =

(αi,αi)
2 for all i ∈ I.
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We shall write Ωh ∈ S2(h) ⊂ h ⊗ h for the canonical element associated to
( , )|h⊗h. If ν : h ∼−→ h∗ is the isomorphism determined by ( , )|h⊗h, then we may
define {hi}i∈I ⊂ h by hi = ν−1(αi), and we have

Ωh =
∑
i∈I

ϖ∨
i ⊗ hi,

where {ϖ∨
i }i∈I ⊂ h are the fundamental coweights of g, determined by αj(ϖ

∨
i ) = δij

for all i, j ∈ I.

2.2. Lie bialgebra structure. Recall that a Lie bialgebra structure on a Lie
algebra a is given by the additional data of a linear map δ : a → a ∧ a satisfying
the cocycle and co-Jacobi identities

δ([x, y]) = [δ(x),∆(y)] + [∆(x), δ(y)] ∀ x, y ∈ a,

(id + (1 2 3) + (1 3 2)) · δ ⊗ id ◦ δ = 0,

respectively, where ∆(x) = x⊗ 1 + 1⊗ x for all x ∈ a.

If a = (a, [ , ]a, δa) is a finite-dimensional Lie bialgebra, then its dual a∗ is as well,
with bracket [ , ]a∗ and cobracket δa∗ given by the transposes δta : a∗ ∧ a∗ → a∗ and
[ , ]ta : a∗ → a∗ ∧ a∗, respectively. A Lie bialgebra (a, δ) is said to be quasitriangular
if there is r ∈ a⊗ a satisfying

δ(x) = [x⊗ 1 + 1⊗ x, r] = [∆(x), r] ∀ x ∈ a,

[r12, r13] + [r12, r23] + [r13, r23] = 0,

r + r21 ∈ (a⊗ a)a.

That is, r is a coboundary structure of (a, δ) satisfying the classical Yang–Baxter
equation (it is an r-matrix), whose symmetric part is a-invariant.

The Drinfeld double D(b) of a finite-dimensional Lie bialgebra b is a quasitrian-
gular Lie bialgebra containing (b, δb) and (b∗,−δb∗) as Lie sub-bialgebras, which
can be realized on the space b ⊕ b∗. It has cobracket δ given by δ = δb ⊕ (−δb∗),
and Lie bracket determined by the cross relations

[x, f ] = ad∗(x)(f) + f ⊗ idb ◦ δ(x) ∀ x ∈ b and f ∈ b∗.

The associated r-matrix is given by the canonical element r ∈ b ⊗ b∗ ⊂ D(b)⊗2.
Moreover, the natural pairing b⊗ b∗ → C extends to a symmetric, non-degenerate,
invariant bilinear form ⟨ , ⟩ on D(b) for which b and b∗ are isotropic subspaces.
Hence, the triple (D(b), b, b∗) forms a Manin triple; that is, a triple (a, p, q) con-
sisting of a Lie algebra a with a symmetric, non-degenerate invariant bilinear form,
and two isotropic Lie subalgebras p and q for which a = p⊕q as vector spaces. Every
finite-dimensional Manin triple can be realized via the Drinfeld double construction,
as above; see [ES, §4], for instance.

The simple Lie algebra g admits a quasitriangular Lie bialgebra structure with
r-matrix given by the element

(2.1) r =
∑

α∈Φ+

x+
α ⊗ x−

α +
1

2
Ωh,

where, for each α ∈ Φ+, x±
α ∈ g±α are fixed root vectors satisfying (x+

α , x
−
α ) = 1.

In particular, r + r 21 is the Casimir tensor Ω ∈ (g ⊗ g)g. This quasitriangular



THE R-MATRIX FORMALISM FOR QUANTIZED ENVELOPING ALGEBRAS 7

structure naturally arises by realizing g as a quotient of the Drinfeld double of its
positive Borel subalgebra. We now briefly review these facts, following [ES, §4.4].

Consider the external direct sum of Lie algebras g⊕ h. Let

ζ : h ↪→ g⊕ h

be the natural identification of h with the central copy of h in g⊕h. We equip g⊕h
with the invariant, non-degenerate, symmetric bilinear form ⟨ , ⟩ defined by

⟨x1 + ζ(h1), x2 + ζ(h2)⟩ := (x1, x2)− (h1, h2) ∀ xi ∈ g, hi ∈ h.

Next, we define n± =
⊕

α∈Φ+ g±α ⊂ g and set

h± = spanC{h± ζ(h) : h ∈ h} ⊂ g⊕ h.

Then the subspace h± ⊕ n± ⊂ g ⊕ h is a Lie subalgebra canonically isomorphic to
the Borel subalgebra b± = h⊕n± of g, and we have the vector space decomposition

g⊕ h = (h+ ⊕ n+)⊕ (h− ⊕ n−) ∼= b+ ⊕ b−.

In what follows, we shall identify b± with h± ⊕ n±, viewed as a Lie subalgebra of
g⊕ h. In addition, we set h± = h± ζ(h) for each h ∈ h.

Proposition 2.1. The triple (g ⊕ h, b+, b−) is a Manin triple. Consequently, b+
is a Lie bialgebra, and the canonical element

rD =
∑

α∈Φ+

x+
α ⊗ x−

α +
1

2

∑
i∈I

(ϖ∨
i )

+ ⊗ h−
i ∈ b+ ⊗ b−

associated to ⟨ , ⟩ defines a quasitriangular Lie bialgebra structure on g ⊕ h such
that D(b+) ∼= g⊕ h.

Since the central copy of h in D(b+) = g⊕h is killed by the cobracket δ, it defines
a Lie bialgebra ideal in D(b+), and hence the canonical Lie algebra homomorphism

ψ : D(b+) = g⊕ h ↠ g

defines a quasitriangular Lie bialgebra structure on g with r-matrix r = (ψ⊗ψ)(rD)
given by (2.1). The resulting Lie bialgebra structure is often called the standard
structure on g.

2.3. Chevalley involution. Let ω ∈ Aut(g) denote the Chevalley involution of g,
uniquely determined by

ω|h = −idh and ω(x±
i ) = −x

∓
i ∀ i ∈ I,

where x±
i := x±

αi
∈ g±αi , with x±

α as in (2.1). Then ω̇ := ω ⊕ idh is a Lie algebra
involution of g⊕h ∼= D(b+) satisfying ω̇(x±

i ) = −x
∓
i and ω̇(h±) = −h∓ for all i ∈ I

and h ∈ h. In particular, one has (ω̇ ⊗ ω̇)(rD) = rD21. It follows that ω̇ is a Lie
coalgebra anti-involution of D(b+):

(ω̇ ⊗ ω̇) ◦ δ = −δ ◦ ω̇.
We shall henceforth simply write ω for ω̇; as the latter restricts to the Chevalley
involution of g, this will not cause any ambiguity.
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3. The classical construction

3.1. Notation. Throughout Section 3, we take V to be a fixed finite-dimensional
g-module with associated algebra homomorphism

π : U(g)→ End(V ).

We further assume that V has a non-trivial irreducible summand or, equivalently,
that V is a faithful representation of g.

In addition, we shall make use of the following notation, frequently employed in
the literature (see, for example, [M5, §1.5]). Let U be a unital, associative algebra
over the complex numbers, and suppose that n and a are positive integer with
a ≤ n. Let ı

(a)
U,n : U→ U⊗n denote the algebra homomorphism

ı
(a)
U,n(x) = 1

⊗(a−1)
U ⊗ x⊗ 1

⊗(n−a)
U ∀ x ∈ U.

Given an element F ∈ End(V )⊗ U, we then set

Fi[j] = (ı
(i)
A,n ⊗ ı

(j)
U,m)(F ) ∈ End(V )⊗n ⊗ U⊗m,

where we have abbreviated A= End(V ), m is any auxiliary positive integer, and
i and j satisfy 1 ≤ i ≤ n and 1 ≤ j ≤ m. In the case where n = 1, we will write
F[j] for F1[j], and in the case where m = 1 we shall write Fi for Fi[1]. The positive
integers n and m will always be clear from context. We shall sometimes apply the
above notation when F ∈ End(V )⊗ a for some complex Lie algebra a. In this case,
it is implicitly understood that U= U(a), the universal enveloping algebra of a.

3.2. The g-module gl(V ). We view the Lie algebra gl(V ) = End(V ) as a g-module
with action given by restricting the adjoint action of gl(V ) on itself to g ∼= π(g).
This coincides with the standard action of g on End(V ) under the identification
End(V ) ∼= V ∗⊗V . The g-module gl(V ) then admits a weight space decomposition

gl(V ) =
⊕
µ∈h∗

gl(V )µ,

where the weight space gl(V )µ is given explicitly by

gl(V )µ = {X ∈ gl(V ) : [π(h), X] = µ(h)X ∀ h ∈ h} =
⊕
λ∈h∗

Hom(Vλ, Vλ+µ).

Given an arbitrary C-vector space W and an element X ∈ End(V )⊗W , we define

Xµ := (1µ ⊗ id)X ∈ gl(V )µ ⊗W ∀ µ ∈ h∗,

where 1µ : gl(V )→ gl(V )µ is the natural projection onto the µ-weight space of the
g-module gl(V ).

3.3. The Lie algebra gr . We now introduce the classical structure at the heart
of the current section: the r-matrix Lie algebra gr . Let {vi}i∈I ⊂ V be any fixed
basis of V , and let {Eij}i,j∈I ⊂ End(V ) denote the associated elementary matrices,
defined by Eijvk = δjkvi for all i, j, k ∈ I.

Definition 3.1. Let gr be the Lie algebra generated by {l±ij}i,j∈I , subject to

L±
λ = 0 ∀ λ ∈ Q̇∓,(3.1)

[L±
1 , L

±
2 ] = −[r π, L±

1 + L±
2 ],(3.2)
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[L+
1 , L

−
2 ] = −[r π, L+

1 + L−
2 ],(3.3)

where r π = (π ⊗ π)r and L± is the generating matrix

L± =
∑
i,j∈I

Eij ⊗ l±ij ∈ End(V )⊗ gr .

Here we have set Q̇± = Q± \ {0}, where Q− = −Q+. The relation (3.1), which
we call the triangularity relation for L±, holds in End(V ) ⊗ gr , while (3.2) and
(3.3) are relations in the space End(V )⊗2 ⊗ gr and we have written r π for (r π)12.
Remark 3.2. The definition of gr of course depends on the underlying repre-
sentation V and, more precisely, the evaluation r π ∈ End(V )⊗2 of r on V ⊗ V .
However, since π is fixed throughout this section, the notation gr will not cause
any ambiguity.

Remark 3.3. We will see below that Equation (3.1) indeed implies that L+ and
L− are upper and lower triangular, respectively, in the sense that

L± ∈ (gl(V )0 ⊗ gr )⊕
⊕
α∈Φ+

(gl(V )±α ⊗ gr ).

In fact, we will establish a stronger assertion in Lemma 3.4.

3.4. Central elements and triangularity. Following [W1], we consider the g-
module decomposition

gl(V ) = π(g)⊕W = ad(g)⊕ (gl(V )g ⊕M),

where W = gl(V )g ⊕M with M a g-submodule of gl(V ) complimentary to π(g)⊕
gl(V )g, and ad(g) is the adjoint representation of g realized on the space π(g) ∼= g.
Note that the submodule of g-invariants gl(V )g is precisely the intertwiner space
Endg(V ). The generating matrices L± therefore decompose uniquely as

L± = L± +K± with L± ∈ π(g)⊗ gr , K± ∈W ⊗ gr .

Let c ∈ U(g) denote the central Casimir element. We shall write c(L±) for
(c ⊗ id)(L±), where the action of g (and thus U(g)) on gl(V ) is as in Section 3.2.
Let κ denote the eigenvalue of c on the adjoint representation of g, so that

c(x) = κ · x ∀ x ∈ π(g).

The following lemma provides an analogue of [W1, Lem. 4.2].

Lemma 3.4.

(1) The coefficients of K± belong to the center of gr .
(2) We have c(K±) = 0. In particular, K± ∈ gl(V )g ⊗ gr and

L± ∈ (π(b±)⊕ gl(V )g)⊗ gr .

(3) We have L± − 1
κ c(L

±) = K±.

Proof. We will prove the lemma by projecting the defining relations (3.2) and (3.3)
onto the summands of End(V )⊗2 ⊗ gr with respect to the decomposition

End(V )⊗2⊗gr = (π(g)⊗2⊗gr )⊕ (π(g)⊗W ⊗gr )⊕ (W ⊗π(g)⊗gr )⊕ (W⊗2⊗gr ).
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Substituting L± = L±+K± into the relation (3.2), and projecting onto each of the
four above summands yields the four relations

(3.4)
[L±1 , L

±
2 ] = −[r π, L±1 + L±2 ],

[K±
1 ,K±

2 ] = 0, [K±
1 , L±2 ] = −[r π,K±

1 ], [L±1 ,K
±
2 ] = −[r π,K±

2 ].

Applying the permutation operator (1 2) to [K±
1 , L±2 ] = −[r π,K±

1 ] yields

[L±1 ,K
±
2 ] = [r 21π ,K±

2 ],

and thus we must have [r 21π ,K±
2 ] = −[r π,K±

2 ]. Equivalently,

[Ωπ,K
±
2 ] = 0 = [Ωπ,K

±
1 ],

where we recall that Ω = r + r 21 ∈ g⊗ g is the Casimir tensor and Ωπ = (π⊗π)Ω.
One concludes from the above relation exactly as in the proof of [W1, Lem. 4.2]
that c(K±) = 0, and consequently that K± ∈ gl(V )g ⊗ gr and

L± = L± +K± ∈ (π(g)⊕ gl(V )g)⊗ gr .

The stronger assertion that L± ∈ (π(b±) ⊕ gl(V )g) ⊗ gr is an application of the
triangularity relation (3.1), the decomposition π(g) = π(n∓) ⊕ π(b±), and that
gl(V )g is contained in the zero weight space gl(V )0 of gl(V ). This proves Part (2)
of the Lemma, from which Part (3) follows immediately.

We are thus left to establish Part (1) of the lemma, which asserts that the
coefficients of K± belong to the center of gr . We first observe that, since K± ∈
gl(V )g ⊗ gr , we have [r π,K±

1 ] = 0 = [r π,K±
2 ]. Hence, (3.4) implies that

[K±
1 , L±2 ] = 0 = [L±1 ,K

±
2 ].

We are thus left to show that [L±
1 ,K

∓
2 ] = 0. Using again that [r π,K±

i ] = 0, we
deduce that the relation (3.3) is equivalent to

[L+1 , L
−
2 ] + [L+1 ,K

−
2 ] + [K+

1 , L−2 ] + [K+
1 ,K−

2 ] = −[r π, L+1 + L−2 ].

Projecting onto the four summands of End(V )⊗2⊗gr therefore yields the relations

[L+1 , L
−
2 ] = −[r π, L+1 + L−2 ],

[K+
1 ,K−

2 ] = 0, [L+1 ,K
−
2 ] = 0, [K+

1 , L−2 ] = 0.

The second line above yields the desired result. □

Remark 3.5. In the process of proving the above lemma we have shown that L±

satisfy the identities

L±λ = 0 ∀ λ ∈ Q̇∓,

[L±1 , L
±
2 ] = −[r π, L±1 + L±2 ], [L+1 , L

−
2 ] = −[r π, L+1 + L−2 ],

κL± = c(L±).

It will be established in Corollary 3.7 that these are in fact defining relations for
the Lie algebra D(b+).
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3.5. The Lie bialgebra dual to gl(V )g. Consider the Lie subalgebra gl(V )g ⊂
gl(V ). We may view it as a Lie bialgebra, equipped with trivial Lie cobracket
δ ≡ 0. Let z+V = (gl(V )g)∗ denote its Lie bialgebra dual; it is a commutative Lie
algebra, but when V is not a direct sum of distinct irreducible representations it
has a non-trivial cobracket δ. Indeed, if Z+ ∈ gl(V )g⊗ z+V is the canonical element,
then

δ(Z+) = [Z+
[1],Z

+
[2]] ∈ gl(V )g ⊗ (z+V ∧ z+V )

where δ is applied to the second tensor factor of Z+. We let z−V = (z+V ,−δ) denote
the opposite Lie bialgebra to z+V . Let Z− ∈ gl(V )g ⊗ z−V be the canonical element,
which is nothing but Z+, viewed as an element of gl(V )g ⊗ z−V . Note that z+V and
z−V are isomorphic as Lie bialgebras, with an isomorphism z+V

∼−→ z−V given by
Z+ 7→ −Z−.

3.6. From gr to the double of b+. Let us now turn to relating gr to the Lie
bialgebra double D(b+) of the Borel subalgebra b+ (see Section 2.2). We extend π
to a representation of D(b+) ∼= g ⊕ h by letting the central copy of h act trivially
(equivalently, we pull back π via the projection ψ : g ⊕ h ↠ g). Recall from
Proposition 2.1 that

rD =
∑

α∈Φ+

x+
α ⊗ x−

α +
1

2

∑
i∈I

(ϖ∨
i )

+ ⊗ h−
i

defines a quasitriangular structure on D(b+). In particular, it is an r-matrix:

(3.5) [rD12, rD13] + [rD12, rD23] + [rD13, rD23] = 0.

In addition, by definition of π, rD satisfies (π ⊗ π)rD = r π = (π ⊗ π)r . We now
introduce L± ∈ End(V )⊗D(b+) by

L+ = (π ⊗ ω)rD and L− = −(π ⊗ ω)rD21,
where we recall that ω is the Chevalley involution introduced in Section 2.3. We
then have the following result, which provides the first main theorem of this article.

Theorem 3.6. The assignment L± 7→ L±±Z± uniquely extends to an isomorphism
of Lie algebras

Φr : gr ∼−→ D(b+)⊕ z+V ⊕ z−V .

Moreover, the unique Lie cobracket δr : gr → gr ∧ gr satisfying Φ⊗2
r ◦ δr = δ ◦ Φr

is given by δr (L±) = [L±
[1], L

±
[2]].

Proof. First, observe that L± ∈ π(b±)⊗ b± and Z± ∈ gl(V )g ⊗ z±V . As gl(V )g and
π(h) are both subsets of the zero weight space gl(V )0 and π(gα) ⊂ gl(V )α for each
root α of g, it follows that L± ± Z± satisfy the triangularity relations:

(L± ± Z±)λ = L±
λ ± Z±

λ = 0 ∀λ ∈ Q̇∓.

Let us now argue that the stated assignment also preserves the defining relations
(3.2) and (3.3) of gr . Since the coefficients of Z± are central elements in D(b+)⊕
z+V ⊕ z−V , we have[

L±
1 ± Z±

1 ,L
±
2 ± Z±

2

]
= [L±

1 ,L
±
2 ],

[
L+
1 + Z+

1 ,L
−
2 − Z−

2

]
= [L+

1 ,L
−
2 ].

Moreover, since r π ∈ π(g)⊗ π(g) and Z± ∈ gl(V )g ⊗ z±V , we have

[r π,Z±
1 ] = 0 = [r π,Z±

2 ].
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It therefore suffices to show that L± satisfy the defining relations (3.2) and (3.3)
of gr . This is a consequence of the classical Yang–Baxter equation (3.5). Indeed,
after rewriting this relation as

[rD13, rD23] = −[rD12, rD13 + rD23],
we obtain the following, after applying π ⊗ π ⊗ ω:

[L+
1 ,L

+
2 ] = −[r π,L+

1 + L+
2 ].

Applying the permutation operator (1 2) ◦ (1 3) to (3.5), rearranging, and then
applying π ⊗ π ⊗ ω gives instead

[L−
1 ,L

−
2 ] = −[r π,L−

1 + L−
2 ].

Finally, after acting by (2 3) on (3.5) and then applying π ⊗ π ⊗ ω, we obtain

[L+
1 ,L

−
2 ] = −[r π,L+

1 + L−
2 ].

This completes the proof that the assignment L± 7→ L± ± Z± extends to a Lie
algebra homomorphism Φr , as in the statement of the theorem. As L± ∈ π(g) ⊗
D(b+), Z± ∈ gl(V )g ⊗ z±V , and the sum π(g) + gl(V )g is direct, the image of Φr
contains the coefficients of L± and the coefficients of Z±. As the coefficients of
L± span n± ⊕ h± and the coefficents of Z± span z±V , we can conclude that Φr
is surjective. In order to conclude that Φr is an isomorphism, it is sufficient to
establish that dim gr ≤ dim(D(b+)⊕ z+V ⊕ z−V ).

To this end, note that the defining relations (3.2) and (3.3) imply that the
coefficients of L+ and L− span gr . Moreover, by Part (2) of Lemma 3.4, L± ∈
(π(b±)⊕gl(V )g)⊗gr . It follows that the span of the coefficients of L± has dimension
at most dim(b±) + dim gl(V )g, and hence that

dim gr ≤ dim(b+) + dim(b−) + 2 dim gl(V )g = dim(D(b+)⊕ z+V ⊕ z−V ).

Therefore, Φr is an isomorphism of Lie algebras.

Consider now the second statement of the theorem, concerning the Lie cobracket
δr = (Φ−1

r )⊗2 ◦ δ ◦ Φr on gr . To see that δr (L±) = [L±
[1], L

±
[2]], we must show that

δ(L± ± Z±) = [L±
[1] ± Z±

[1],L
±
[2] ± Z±

[2]].

By definition of the Lie cobracket on z±V (see Section 3.5), the left-hand side is
δ(L±)+[Z±

[1],Z
±
[2]]. On the other hand, since L± ∈ π(g)⊗D(b+) and Z± ∈ gl(V )g⊗

z±V , the right-hand side is

[L±
[1] ± Z±

[1],L
±
[2] ± Z±

[2]] = [L±
[1],L

±
[2]] + [Z±

[1],Z
±
[2]].

We are thus left to establish that δ(L±) = [L±
[1],L

±
[2]]. As D(b+) is quasitriangular

with associated r-matrix rD, we have

δ(L±) = [L±
[1] + L±

[2], rD23] = (π ⊗ ω⊗2)([r±12 + r±13, rD32]),
where we have set r+ = rD and r− = −rD21 and used that (ω ⊗ ω)rD = rD21.
The right-hand side will equal [L±

[1],L
±
[2]] provided [r±12, r±13] = [r±12 + r±13, rD32] or,

equivalently, provided

[rD12, rD13] = [rD12 + rD13, rD32] and [rD21, rD31] = [rD32, rD21 + rD31].
Each of these relations is independently equivalently to the classical Yang–Baxter
equation (3.5), and are thus satisfied. □
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The above theorem implies that the Drinfeld double D(b+) can be recovered as
both a subalgebra and a quotient of gr . In more detail, let z±r be Lie ideal of gr
spanned by the coefficients of

K± = L± − κ−1c(L±).

Note that Φr (K±) = L± ± Z± − κ−1c(L± ± Z±) = ±Z±. In particular, z±r is a
Lie bialgebra ideal of gr = (gr , δr ), and one has Φr (z±r ) = z±V . As an immediate
consequence of Theorem 3.6, we obtain the following corollary.

Corollary 3.7. The composition of Φr with the natural projection D(b+) ⊕ z+V ⊕
z−V ↠ D(b+) induces an isomorphism of Lie bialgebras

gr /(z+r + z−r )
∼−→ D(b+).

Moreover, the subspace gr ,L of gr spanned by the coefficients of L+ and L− is a Lie
sub-bialgebra and Φr restricts to an isomorphism

Φr |gr ,L : gr ,L ∼−→ D(b+).

Remark 3.8. Since D(b+) ∼= g ⊕ h (see Proposition 2.1), g itself can be realized
both as Lie subalgebra of gr and as a Lie bialgebra quotient. As a Lie subalgebra,
it is spanned by the coefficients of F := L−−L+, which satisfy the defining relations
of g spelled out in [W1, Prop. 4.4]. Similarly, it is the quotient of gr by the ideal
spanned by the coefficients of the (central) matrices

K± = L± − 1
κ c(L

±), L+
0 + L−

0 ,

where L±
0 = 10(L

±) is the projection of L± onto its weight zero component. The
quantum analogues of these observations will be established in Theorem 5.14.

3.7. The Borel subalgebras b±r . We conclude this section by noting that the
above results naturally output matrix presentations of (central extension of) the
Borel subalgebras b± of g.

Definition 3.9. Let b+r and b−r be the Lie algebras generated by {l+ij}i,j∈I and
{l−ij}i,j∈I , respectively, subject to the relations

L±
λ = 0 ∀ λ ∈ Q̇∓,(3.6)

[L±
1 , L

±
2 ] = −[r π, L±

1 + L±
2 ],(3.7)

where L± is the generating matrix

L± =
∑
i,j∈I

Eij ⊗ l±ij ∈ End(V )⊗ b±r .

Here we emphasize that each symbol ± and ∓ only takes its upper value for b+r ,
and its lower value for b−r . It follows from this definition that, for each choice of
the symbol ±, there is a Lie algebra homomorphism

ı±r : b±r → gr , ı±r (L
±) = L±.

Our choice of notation for the generators of b±r is justified by the following corollary.
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Corollary 3.10. The composite Φ±
r = Φr ◦ ı±r is an isomorphism of Lie algebras

Φ±
r : b±r

∼−→ b± ⊕ z±V .

In particular, ı±r is injective and identifies b±r with the Lie sub-bialgebra of gr
generated by the coefficients of L±.

Proof. That Φ±
r is surjects onto b± ⊕ z±V follows by the same argument as used to

establish the surjectivity of Φr in the proof of Theorem 3.6. Next, note that the
generating matrix L± of b±r satisfies

L± ∈ (π(b±)⊕ gl(V )g)⊗ b±r .

Indeed, this is proven identically to Part (2) of Lemma 3.4. It follows from this
fact and the same type of dimension argument as given in the proof of Theorem
3.6 that Φ±

r is injective, and thus an isomorphism. □

4. Recollections on Uℏg

4.1. Topological Hopf algebras and quantizations. For the remainder of this
article, we will mostly be concerned with topological modules, algebras and Hopf
algebras defined over the formal power series ring C[[ℏ]]. In this section we briefly
summarize a number of facts about these structures, without proof, which are
pertinent to our main results. We will follow the exposition given in [W2, §2]
closely, though we refer the reader to [K, §XVI], for example, for a more complete
background.

To begin, recall that a C[[ℏ]]-module V is said to be topologically free if V ∼= V [[ℏ]]
for some complex vector space V . This is equivalent to the requirement that V is
separated, complete and torsion free as a C[[ℏ]]-module. The former two conditions
mean precisely that the C[[ℏ]]-linear map

V → lim←−
n

(V/ℏnV)

is injective and surjective, respectively. The semiclassical limit of a C[[ℏ]]-module
V is the space V/ℏV. Note that if V is topologically free with V ∼= V [[ℏ]], then
the underlying space V can naturally be identified with this limit. Similarly, if V
and W are two C[[ℏ]]-linear maps and φ : V → W is a C[[ℏ]]-linear map, then the
semiclassical limit of φ is the C-linear map φ̄ : V/ℏV → W/ℏW uniquely determined
by the commutativity of the diagram

V W

V/ℏV W/ℏW

φ

φ̄

where the vertical arrows represent the canonical quotient maps. We note the
following useful facts:

(L1) Suppose that V is separated and W is torsion free. Then φ is injective
provided φ̄ is.

(L2) Suppose that V is complete and W is separated. Then φ is surjective
provided φ̄ is.
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These properties are explicitly stated in Lemma 2.1 of [W2], and are relatively
straightforward applications of the relevant definitions.

The topological tensor product V ⊗̂W of the C[[ℏ]]-modulesW and V is the ℏ-adic
completion of their algebraic tensor product:

V ⊗̂W := lim←−
n

(V ⊗C[[ℏ]]W)/ℏn(V ⊗C[[ℏ]]W).

The tensor product ⊗̂ endows the category of separated and complete C[[ℏ]]-modules
with a symmetric monoidal structure. Moreover, if V and W are topologically free
with V ∼= V [[ℏ]] and W ∼= W [[ℏ]], then V ⊗̂W is topologically free with V ⊗̂W ∼=
(V ⊗CW )[[ℏ]]. We refer the reader to [K, §XVI.3], for example, for a comprehensive
and elementary exposition to ⊗̂ and its key properties.

We will say that A is a topological algebra over C[[ℏ]] if it is an algebra over
C[[ℏ]] which is both separated and complete as a C[[ℏ]]-module. For instance, all
unital associative C[[ℏ]]-algebras defined via (topological) generators and relations
are understood as topological algebras; see [K, §XVII.2]. Similarly, a topological
Hopf algebra H over C[[ℏ]] is a topological algebra equipped with a coproduct ∆ :
H → H ⊗̂H, a counit ε : H → C[[ℏ]] and an antipode S : H → H, which satisfy the
axioms of a Hopf algebra with all tensor products given by ⊗̂.

Let us now recall a few standard definitions from the theory of quantum groups,
following [ES, §9].

Definition 4.1. A topological Hopf algebra H over C[[ℏ]] is called a quantized en-
veloping algebra if it satisfies the following two conditions:

(1) H has semiclassical limit H/ℏH isomorphic to the enveloping algebra U(a)
of a complex Lie algebra a as a Hopf algebra.

(2) H is topologically free, and thus isomorphic to U(a)[[ℏ]] as a C[[ℏ]]-module.

A quantized enveloping algebra Uℏa with semiclassical limit U(a) automatically
induces a Lie bialgebra structure on a with cobracket given by

δ(x) :=
∆(ẋ)−∆op(ẋ)

ℏ
mod ℏUℏa ⊗̂Uℏa ∀ x ∈ a,

where ẋ ∈ Uℏa is any lift of x. Conversely, if (a, δ) is any Lie bialgebra, then a
quantization of (a, δ) is a quantized enveloping algebra Uℏa with semiclassical limit
U(a), for which δ is recovered by the above formula.

Remark 4.2. For the remainder of this article, we will shall denote the topological
tensor product ⊗̂ by ⊗. More generally, the use of this symbol will always be clear
from the underlying context.

4.2. The quantized enveloping algebra Uℏg. Throughout the rest of this paper,
it is understood that q = eℏ/2 ∈ 1+ℏC[[ℏ]]. In addition, we shall employ the standard
notation for Gaussian integers and binomial coefficient. Namely, if m,n, r ∈ Z with
n ≥ r ≥ 0, then we set[

n
r

]
q

=
[n]q!

[r]q![n− r]q!
, [m]q! = [m]q[m− 1]q · · · [1]q,
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[m]q =
qm − q−m

q − q−1
.

In the following definition, {hi}i∈I ⊂ h and {di}i∈I ⊂ Z>0 are as in Section 2.1.

Definition 4.3. The Drinfeld–Jimbo algebra Uℏg is the unital, associative C[[ℏ]]-
algebra topologically generated by h∪{Ei, Fi}i∈I, subject to the following relations
for all h, h′ ∈ h and i, j ∈ I:

[h, h′] = 0,

[h,Ej ] = αj(h)Ej , [h, Fj ] = −αj(h)Fj ,

[Ei, Fj ] = δij
qhi − q−hi

qi − q−1
i

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

Eb
iEjE

1−aij−b
i = 0,

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

F b
i FjF

1−aij−b
i = 0,

where qi = qdi = eℏdi/2 and in the last two relations i ̸= j.

Remark 4.4. Here we note that if Hi ∈ h is defined by diHi = hi = ν−1(αi) (see
Section 2.1), then {Hi, Ei, Fi}i∈I generates Uℏg as a topological C[[ℏ]]-algebra and
one has the familiar relations

[Hi, Ej ] = aijEj , [Hi, Fj ] = −aijFj , [Ei, Fj ] = δij
qHi
i − q−Hi

i

qi − q−1
i

.

The C[[ℏ]]-algebra Uℏg admits the structure of a topological Hopf algebra over
C[[ℏ]], with coproduct ∆, antipode S, and counit ε uniquely determined by the
requirement that the image of h in Uℏg is primitive and {Ei, Fi}i∈I satisfy

∆(Ei) = Ei ⊗ qhi + 1⊗ Ei, S(Ei) = −Eiq
−hi , ε(Ei) = 0,

∆(Fi) = Fi ⊗ 1 + q−hi ⊗ Fi, S(Fi) = −qhiFi, ε(Fi) = 0.

These formulas, together with Definition 4.3, imply that Uℏg is a Hopf algebra
deformation of U(g) over C[[ℏ]]. Namely, if di, hi and x±

i := x±
αi

are as in Sections
2.1 and 2.3, then the assignment hi 7→ hi, Ei 7→

√
dix

+
i , Fi 7→

√
dix

−
i gives rise to

a surjective Hopf algebra morphism Uℏg ↠ U(g) (where ℏ operates as 0 in U(g))
which induces an isomorphism

Uℏg/ℏUℏg
∼−→ U(g)

of Hopf algebras over C. In addition, it is well-known that Uℏg is topologically free
over C[[ℏ]], and thus a quantized enveloping algebra with semiclassical limit U(g).
Furthermore, it is quasitriangular and the Lie bialgebra structure it quantizes is
the so-called standard structure recalled below Proposition 2.1. As we shall review
in Section 4.4, this is best captured by realizing Uℏg as a Hopf quotient of the
quantum double D(Uℏb) of its Borel subalgebra Uℏb, in complete analogy with the
classical story summarized in Section 2.2.
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To conclude this subsection, we recall that the adjoint action of h ⊂ Uℏg on Uℏg
gives rise to a Q-graded topological Hopf algebra structure on Uℏg with homoge-
neous components

Uℏgβ = {x ∈ Uℏg : [h, x] = β(h)x ∀ h ∈ h} ∀ β ∈ Q.

Equivalently, each subspace Uℏgβ is a closed C[[ℏ]]-submodule of Uℏg and

UℏgQ =
⊕
β∈Q

Uℏgβ

is a dense, Q-graded C[[ℏ]]-subalgebra of Uℏg with induced topology that coincides
with its ℏ-adic topology, and the structure maps ∆, S and ε are all Q-graded.

4.3. The Borel subalgebra Uℏb and its dual. Now let Uℏh, Uℏb and Uℏn be
the C[[ℏ]]-subalgebras of Uℏg topologically generated by h, h∪{Ei}i∈I and {Ei}i∈I,
respectively. Then Uℏh and Uℏb are topological Hopf subalgebras of Uℏg which
provide quantizations of h and b (viewed as Lie sub-bialgebras of g), with Uℏh
isomorphic to the trivial deformation U(h)[[ℏ]] ∼= S(h)[[ℏ]] as a topological Hopf
algebra. Furthermore, both Uℏb and Uℏn inherit Q+-gradings from the Q-grading
on Uℏg, and the multiplication map

m : Uℏh⊗ Uℏn→ Uℏb

provides an isomorphism of Q+-graded topological C[[ℏ]]-modules. In particular,

(Uℏn)αi
= C[[ℏ]]Ei ∀ i ∈ I.

We shall also set Uℏb
− = ωℏ(Uℏb) and Uℏn

− = ωℏ(Uℏn), where ωℏ is the Chevalley
involution on Uℏg. That is, it is the involutive C[[ℏ]]-algebra automorphism of Uℏg
uniquely determined by ωℏ(h) = −h for all h ∈ h ⊂ Uℏg, while

ωℏ(Ei) = −Fi and ωℏ(Fi) = −Ei ∀ i ∈ I.

When discussing Uℏb and Uℏb
− (resp. Uℏn and Uℏn

−) we will sometimes write
Uℏb

+ (resp. Uℏn
+) for the former.

Let us now recall the definition of the quantized enveloping algebra dual of Uℏb,
following [D2, §7], [EK, §4.4] and [G1]; see also [CP, §6.3C]. We first consider
the more general situation where we are given a quantization Uℏa of an arbitrary
finite-dimensional Lie bialgebra a. Consider the C[[ℏ]]-module

Uℏa
′ = {x ∈ Uℏa : (id− ε)⊗n∆n(x) ∈ ℏnUℏa

⊗n ∀ n ≥ 0} ⊂ Uℏa,

where ε and ∆ are the counit and coproduct on Uℏa, and ∆n : Uℏa → Uℏa
⊗n is

defined recursively by ∆0 = ε, ∆1 = id, and

∆n = (∆⊗ id⊗(n−2)) ◦∆n−1 ∀ n ≥ 2.

Then, by [D2, §7] (see [G1, Prop. 3.6] for a detailed proof), Uℏa
′ is a quantized

formal series Hopf algebra. In particular, it is a topological Hopf algebra with
respect to the subspace topology, which coincides with the Ja-adic topology, where

Ja = ℏUℏa ∩ Uℏa
′ = ε−1

Uℏa′(ℏC[[ℏ]]).

Moreover, its semiclasical limit is isomorphic, as an algebra, to the completion Ŝ(a)
of the symmetric algebra S(a) =

⊕
n≥0 S

n(a) with respect to its standard grading.
In the present article, we call Uℏa

′ the Drinfeld–Gavarini subalgebra of Uℏa.
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The quantized enveloping algebra dual Uℏa
• to Uℏa is then the subspace of the

C[[ℏ]]-linear dual (Uℏa
′)
∗

= HomC[[ℏ]](Uℏa
′,C[[ℏ]]) consisting of continuous linear

forms with respect to the aforementioned topology. The general theory dictates
that it is a quantized enveloping algebra which quantizes the Lie bialgebra dual a∗
of a.

Now let us narrow our focus to the particular case where a = b. Our present aim
is to identify a collection of elements in Uℏb

• which will play an important role in
Section 4.4. To this end, note that the formulas for ∆ and ε given in Section 4.2
imply that ℏh and ℏEi belong to1 Uℏb

′, for each i ∈ I. Let

1αi : Uℏn→ (Uℏn)αi = C[[ℏ]]Ei

be the projection onto (Uℏn)αi
, arising from the Q+-grading on Uℏn. Let ∂i be the

C[[ℏ]]-linear derivative with respect to Ei on (Uℏn)αi
: ∂i(Ei) = 1. We then define

fi, χi ∈ Uℏb
∗ by

fi := ∂i ◦ 1αi
◦ (ε⊗ id) : Uℏb ∼= Uℏh⊗ Uℏn→ C[[ℏ]],

χi := ωi ◦ (id⊗ ε) : Uℏb ∼= Uℏh⊗ Uℏn→ C[[ℏ]],

where ωi ∈ h∗ ⊂ S(h)∗ is the i-th fundamental weight of g, and is extended by
C[[ℏ]]-linearity to an element of S(h)[[ℏ]]∗ ∼= Uℏh

∗.

Since ℏh+ ℏ
⊕

i∈I(Uℏn)αi ⊂ Uℏb
′, we may then define ξi and ηi in Uℏb

• by

ξi = ℏ−1χi|Uℏb′ and ηi = ℏ−1fi|Uℏb′ ∀ i ∈ I.

Though we shall not need this fact in what follows, it is worth pointing out that
the above elements generate Uℏb

• as a topological C[[ℏ]]-algebra, and that the co-
opposite Hopf algebra Uℏb

‹ := (Uℏb
•
)cop is isomorphic to Uℏb

−, as is readily re-
covered from Theorem 4.6 below and the relations above (4.1).

4.4. The quantum double D(Uℏb). In this subsection, we briefly review the
definition of the quantum double D(Uℏb) and its realization as Uℏg⊗ S(h)[[ℏ]]. We
begin by recalling Drinfeld’s original definition (see [D2, §13]) for the quantum
double of an arbitrary quantized enveloping algebra of finite type, following the
summary given in [W2, §8.1].

Let a be a finite-dimensional Lie bialgebra, and let Uℏa be a quantization of a,
as in Section 4.3. Following the notation of Section 4.3, we set Uℏa

‹ := (Uℏa
•
)cop,

where Uℏa
• is the quantized enveloping algebra dual of Uℏa. Given this data,

there exists a unique topological Hopf algebra D(Uℏa) over C[[ℏ]] with the following
properties:

(1) There are embeddings of topological Hopf algebras

ı+ :Uℏa ↪→ D(Uℏa) and ı− : Uℏa

‹ ↪→ D(Uℏa).

(2) Let m be the product on D(Uℏa). Then the composition m ◦ (ı− ⊗ ı+) is
an isomorphism of C[[ℏ]]-modules:

m ◦ (ı− ⊗ ı+) : Uℏa

‹ ⊗ Uℏa
∼−→ D(Uℏa).

1They do not, however, generate it as topological algebra; we refer the reader to [G1, §3.5] for
an explicit description of Uℏb

′.
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(3) The canonical element

R ∈ Uℏa⊗ Uℏa
∗ ⊂ Uℏa⊗ Uℏa

‹ ∼= ı+(Uℏa)⊗ ı−(Uℏa

‹) ⊂ D(Uℏa)
⊗2

defines a quasitriangular structure on D(Uℏa). That is, one has

∆op(x) = R∆(x)R−1 ∀ x ∈ D(Uℏa),

∆⊗ id(R) = R13R23 and id⊗∆(R) = R13R12.

The uniquely defined topological Hopf algebra D(Uℏa) is called the quantum double
of Uℏa, and the above characterization implies that it provides a quantization of
the Lie bialgebra double of a. It can be explicitly realized on the space Uℏa

‹⊗Uℏa
as the double cross product Hopf algebra

D(Uℏa) = Uℏa

‹ ▷◁ Uℏa,

with respect to the left and right coadjoint actions ▷ and ◁ of Uℏa on Uℏa

‹ and
Uℏa

‹ on Uℏa, respectively. We refer the reader to [ATL, §A] for the relevant details,
adapted to the setting of quantized enveloping algebras.

Now let us return to the particular case a = b ⊂ g. Our present goal is to recall
the identification of the quantum double D(Uℏb) with the C[[ℏ]]-algebra Uℏg ⊗
S(h)[[ℏ]]. Following Section 2.2, we will denote the natural inclusion of S(h)[[ℏ]] into
Uℏg⊗ S(h)[[ℏ]] by ζ. That is, one has

ζ(h) := 1⊗ h ∀ h ∈ S(h)[[ℏ]].
We shall need the following preliminary lemma, whose proof is straightforward.

Lemma 4.5. Uℏg ⊗ S(h)[[ℏ]] is isomorphic to the unital, associative C[[ℏ]]-algebra
topologically generated by {h±

i , X
±
i }i∈I, subject to the relations

[h±
i , h

∓
j ] = 0 = [h±

i , h
±
j ],

[hϵ
i , X

±
j ] = ±(αi, αj)X

±
j ,

[X+
i , X−

j ] = δij
qh

+
i − q−h−

i

qi − q−1
i

,

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

(X±
i )bX±

j (X±
i )1−aij−b = 0,

where ϵ takes value + or − and in the last relation we assume that i ̸= j. Explicitly,
an isomorphism from this algebra into Uℏg⊗ S(h)[[ℏ]] is given by

h±
i 7→ hi ± ζ(hi), X+

i 7→ qζ(hi)/2Ei, X−
i 7→ qζ(hi)/2Fi ∀ i ∈ I.

Henceforth, we shall assume the above realization of Uℏg⊗ S(h)[[ℏ]] without fur-
ther mention of the underlying isomorphism. With this in mind, the following well-
known result, originally due to Drinfeld [D2, §13], provides the desired identification
of D(Uℏb) with Uℏg⊗ S(h)[[ℏ]]; see also [CP, §8.3] and [R2, §II] (for g = sln+1).

Theorem 4.6. There is an isomorphism of C[[ℏ]]-algebras
Ψ : Uℏg⊗ S(h)[[ℏ]] ∼−→ D(Uℏb)

uniquely determined by the requirement that, for each i ∈ I, one has

Ψ(h+
i ) = hi, Ψ(X+

i ) = Ei,
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Ψ(h−
i ) = 2

∑
j∈I

ajiξj and Ψ(X−
i ) =

ℏ
qi − q−1

i

ηi.

With respect to the above identification, the coproduct ∆, antipode S, and
counit ε of D(Uℏb) are determined by the requirement that {h±

i }i∈I are primitive
elements and that X±

i satisfy

∆(X+
i ) = X+

i ⊗ qh
+
i + 1⊗X+

i , S(X+
i ) = −X+

i q−h+
i , ε(X+

i ) = 0,

∆(X−
i ) = X−

i ⊗ 1 + q−h−
i ⊗X−

i , S(X−
i ) = −qh

−
i X−

i , ε(X−
i ) = 0,

for all i ∈ I. In particular, if ϵh = ε|S(h)[[ℏ]], then the projection

(4.1) ψℏ := idUℏg ⊗ ϵh : D(Uℏb) ∼= Uℏg⊗ S(h)[[ℏ]] ↠ Uℏg

is an epimorphism of Hopf algebras which quantizes the Lie bialgebra surjection
ψ : D(b+) ↠ g defined below Proposition 2.1.

4.5. Automorphisms of D(Uℏb). Before discussing in more detail the quasitri-
angularity of the quantum double D(Uℏb), we apply the results of the above section
to study certain automorphisms D(Uℏb), beginning with the following corollary.

Corollary 4.7. For each h ∈ h, the assignment

γDh (h±
i ) = h±

i ± αi(h), γDh (X±
i ) = qαi(h)/2X±

i ∀ i ∈ I

uniquely extends to a C[[ℏ]]-algebra automorphism of D(Uℏb). Moreover, the natural
embedding Uℏg ↪→ Uℏg⊗ S(h)[[ℏ]] ∼= D(Uℏb) identifies Uℏg with the subalgebra fixed
by all all automorphisms γDh :

Uℏg = {x ∈ D(Uℏb) : γ
D
h (x) = x ∀ h ∈ h}.

Proof. For each h ∈ h, the assignment hi 7→ hi + αi(h), for all i ∈ I, uniquely
extends to a C[[ℏ]]-algebra automorphism γSh of S(h)[[ℏ]]. Moreover, it is easy to
see that an element x ∈ S(h)[[ℏ]] is fixed by all γSh precisely when x ∈ C[[ℏ]]. It
follows readily that the subalgebra of Uℏg⊗ S(h)[[ℏ]] fixed by all automorphisms of
the form γDh := idUℏg ⊗ γSh coincides with Uℏg. Moreover, by working through the
isomorphism of Lemma 4.5, one sees that γDh is indeed given as in the statement of
the corollary. □

Another consequence of Theorem 4.6 is that the Chevalley involution ωℏ of Uℏg,
defined in Section 4.3, extends to an involutive automorphism ω̇ℏ of D(Uℏb) ∼=
Uℏg⊗ S(h)[[ℏ]] by setting ω̇ℏ = ωℏ ⊗ idS(h)[[ℏ]]. In terms of the generators of Lemma
4.5, one has

ω̇ℏ(h
±
i ) = −h

∓
i and ω̇ℏ(X

±
i ) = −X∓

i ∀ i ∈ I.

Note that ω̇ℏ quantizes the Chevalley involution ω̇ on the Lie bialgebra double
D(b+) introduced in Section 2.3. In keeping with the notation of that section, we
shall henceforth write ωℏ for ω̇ℏ.

The involution ωℏ of D(Uℏb) is also a coalgebra anti-automorphism intertwining
S and S−1. More precisely, one has the following lemma, which follows easily from
the formulas above (4.1).
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Lemma 4.8. The Chevalley involution ωℏ is an isomorphism of topological Hopf
algebras D(Uℏb)

∼−→ D(Uℏb)
cop. In particular, it satisfies

(ωℏ ⊗ ωℏ) ◦∆op = ∆ ◦ ωℏ, ωℏ ◦ S−1 = S ◦ ωℏ, ε ◦ ωℏ = ε.

4.6. The universal R-matrix. By property (3) in the characterization of the
quantum double recalled at the beginning of Section 4.4, D(Uℏb) is a quasitriangular
Hopf algebra, with universal R-matrix given by the canonical element

RD ∈ Uℏb⊗ Uℏb
∗ ⊂ Uℏb⊗ Uℏb

‹ ∼= Uℏb
+ ⊗ Uℏb

− ⊂ D(Uℏb)
⊗2.

Consequently, Uℏg is quasitriangular with universal R-matrix given by the image

R = (ψℏ ⊗ψℏ)(R
D),

where ψℏ is as in (4.1). Both of these R-matrices have been computed explicitly
and studied extensively; for instance, explicit factorizations of R were obtained
over thirty years ago in the work of Kirillov–Reshetikhin [KR] and Levendorskii–
Soibelman [LS]; see also [CP, §8.3]. We shall not need this level of precision in
the present paper. Rather, for our purposes it will be sufficient to note that RD

quantizes the classical universal r-matrix rD ∈ D(b+)⊗2 defined in Proposition 2.1:

(4.2) rD = ℏ−1
(
RD − 1

)
mod ℏ,

and, in addition, admits a multiplicative decomposition consistent with the C[[ℏ]]-
module isomorphism Uℏb ∼= Uℏh ⊗ Uℏn and the Q+-grading on Uℏn. Namely, one
has

(4.3) RD = qΩ̇h ·
∑
β∈Q+

R+
β ,

where R+
β ∈ (Uℏn

+)β ⊗ (Uℏn
−)−β with R+

0 = 1, and Ω̇h is the natural image of the
element Ωh ∈ h⊗ h in Uℏb

+ ⊗ Uℏb
− ⊂ D(Uℏb)

⊗2:

Ω̇h =
∑
i∈I

(ϖ∨
i )

+ ⊗ h−
i ∈ Uℏb

+ ⊗ Uℏb
− ⊂ D(Uℏb)

⊗2.

We refer the reader to [CP, §8.3C], for instance, for a proof of the above assertion.
We now define auxiliary elements R±

ω ∈ Uℏb
± ⊗ Uℏb

± by setting

(4.4) R+
ω := (id⊗ ωℏ)(R

D) and R−
ω = (id⊗ ωℏ)((R

D
21)

−1).

In addition, we set Ω+
h = −(id⊗ ωℏ)(Ω̇h) and Ω−

h = −(ωℏ ⊗ id)(Ω̇h).

Proposition 4.9. The elements R+
ω and R−

ω have the following properties:

(1) They admit multiplicative decompositions

R+
ω = q−Ω+

h R+ and R−
ω = R−qΩ

−
h ,

where R± =
∑

β∈Q+
R±
β ∈ (Uℏn

±)⊗2 with R±
β ∈ (Uℏn

±
±β)

⊗2 and R±
0 = 1.

(2) They satisfy the following in D(Uℏb)
⊗3:

RD
12(R

±
ω )13(R

±
ω )23 = (R±

ω )23(R
±
ω )13R

D
12,

RD
12(R

+
ω )13(R

−
ω )23 = (R−

ω )23(R
+
ω )13R

D
12.
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(3) They satisfy the Hopf algebraic relations

(id⊗∆)(R±
ω ) = (R±

ω )12(R
±
ω )13,

(id⊗ S)(R±
ω ) = (R±

ω )
−1 and (id⊗ ε)(R±

ω ) = 1.

(4) Their images under (id⊗ γDh ) are given by

(id⊗ γDh )(R±
ω ) = q

−h/2
1 R±

ω q
−h/2
1 ∀ h ∈ h.

Proof. The factorizations of Part (1) follow from the multiplicative decomposition
(4.3) for RD, using that ωℏ((Uℏn

±)±β) = (Uℏn
∓)∓β for all β ∈ Q±. Parts (2) and

(3) both follow from standard arguments; see [KS1, Prop. 8.27], for example. For
the sake of completeness, we note that the former is a consequence of the fact that
RD necessarily satisfies the quantum-Yang Baxter equation

RD
12R

D
13R

D
23 = RD

23R
D
13R

D
12,

while Part (3) follows from Lemma 4.8 and that RD satisfies

(∆⊗ id)(RD) = RD
13R

D
23, (id⊗∆)(RD) = RD

13R
D
12,

(S ⊗ id)(RD) = (RD)−1 = (id⊗ S−1)(RD), (ε⊗ id)(RD) = 1 = (id⊗ ε)(RD).

Consider now Part (4). The definition of γDh (see Corollary 4.7) implies that
γDh |Uℏn

±
β

= qβ(h)/2idUℏn
±
β

for each β ∈ Q±. Letting R± be as in Part (1), we
then have

(id⊗ γDh )(R±) =
∑
β∈Q+

q
β(h)/2
2 R±

β =
∑
β∈Q+

Ad(q
±h/2
2 )R±

β = q
±h/2
2 R±q

∓h/2
2 ,

(id⊗ γDh )(q∓Ω±
h ) = q

−
∑

i∈I αi(h)(ϖ
∨
i )±

1 q∓Ω±
h = q−h

1 q∓Ω±
h = q∓Ω±

h q−h
1 .

Since q
±h/2
2 R±q

∓h/2
2 = q

±h/2
1 R±q

∓h/2
1 , it follows by Part (1) that (id⊗ γDh )(R±

ω ) =

q
−h/2
1 R±

ω q
−h/2
1 . □

4.7. Finite-dimensional representations. A representation V of Uℏg is said to
be finite-dimensional if it is a free C[[ℏ]]-module of finite rank, and thus realized on
a space of the form V [[ℏ]], where V is a finite-dimensional complex vector space. If
V = V [[ℏ]] is such a Uℏg-module with action given by

πℏ : Uℏg→ EndC[[ℏ]](V) ∼= End(V )[[ℏ]],
then the semiclassical limit π = π̄ℏ : Uℏg→ End(V ) equips V with the structure of
a finite-dimensional g-module.

The (exact, but non-abelian) category of finite-dimensional representations of
Uℏg is well-understood, having been characterized by Tanisaki [T] and Drinfeld
[D3, §4]; see also [R1]. In particular, every finite-dimensional representation of
Uℏg decomposes as a direct sum of indecomposable representations, each of which
is uniquely characterized up to isomorphism by its semi-classical limit, which is a
finite-dimensional irreducible representation of g.

More generally, every finite-dimensional representation V [[ℏ]] of Uℏg is uniquely
determined, up to isomorphism, by its semiclassical limit V . Indeed, the action of
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Uℏg on V [[ℏ]] can be recovered from π : U(g) → End(V ), up to equivalence, as the
composite

Uℏg
φ−→ U(g)[[ℏ]] π−→ End(V )[[ℏ]] ∼= EndC[[ℏ]]V [[ℏ]],

where φ : Uℏg
∼−→ U(g)[[ℏ]] is a fixed C[[ℏ]]-algebra isomorphism with semiclassical

limit φ̄ = idU(g), which exists (and is unique up to conjugation by an element of
1+ ℏU(g)[[ℏ]]) by the rigidity of semisimple Lie algebras; see [D3, §4], [K, §XVIII.2]
and [G2]. Moreover, this correspondence respects h-weight spaces. That is, V
decomposes as V =

⊕
µ Vµ[[ℏ]] where Vµ is the µ ∈ h∗ weight space of V , and one

has the equality

Vµ[[ℏ]] = {v ∈ V : h · v = µ(h) · v ∀ h ∈ h ⊂ Uℏg} ∀ µ ∈ h∗.

This follows from [D3, Prop. 4.3], which dictates that φ may be chosen so that
φ|h = idh.

5. The R-matrix construction

5.1. The R-matrix algebra UR(g). As in Section 3, we let V be an arbitrary
faithful representation of the finite-dimensional simple Lie algebra g, with associated
algebra homomorphism π : U(g) → End(V ). Then, by the results recalled in
Section 4.7, there is a unique, up to isomorphism, Uℏg-module structure on V [[ℏ]]
deforming the g-module structure on V . Moreover, the associated action can be
chosen so as to be given by an algebra homomorphism

πℏ : Uℏg→ EndC[[ℏ]](V [[ℏ]]) ∼= End(V )[[ℏ]]
satisfying πℏ|h = π|h and πℏ(Uℏg) ⊂ π(U(g))[[ℏ]]. We henceforth fix πℏ with these
properties, keeping in mind that any finite-dimensional representation of Uℏg can
be realized in this way. In addition, we extend πℏ to a representation of D(Uℏb) by
pulling back via the surjection ψℏ defined in (4.1), and set

Rπ = (πℏ ⊗ πℏ)(R) = (πℏ ⊗ πℏ)(R
D).

Since EndC[[ℏ]](V [[ℏ]]) is torsion free and RD is equal to 1 modulo ℏ, we may define
Ṙπ ∈ EndC[[ℏ]](V [[ℏ]])⊗2 ∼= End(V )⊗2[[ℏ]] by

Ṙπ = ℏ−1 (Rπ − 1) .

In particular, this definition and (4.2) imply that Ṙπ reduces to r π modulo ℏ.

With the above notation at our disposal, we are now prepared to introduce the
main object of study of the remainder of this article.

Definition 5.1. Let UR(g) denote the unital, associative C[[ℏ]]-algebra topologically
generated by {t±ij}i,j∈I , subject to the relations

T±
λ = 0 ∀ λ ∈ Q̇∓,(5.1)

[T±
2 ,T

±
1 ] = [Ṙπ,T

±
1 +T±

2 ] + ℏ
(
ṘπT

±
1 T

±
2 − T±

2 T
±
1 Ṙπ

)
,(5.2)

[T−
2 ,T

+
1 ] = [Ṙπ,T

+
1 +T−

2 ] + ℏ
(
ṘπT

+
1 T

−
2 − T−

2 T
+
1 Ṙπ

)
,(5.3)

where T± is the generating matrix

T± =
∑
i,j∈I

Eij ⊗ t±ij ∈ End(V )⊗C UR(g).
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Remark 5.2. The relation (5.1) should be viewed as an identity in End(V ) ⊗C
UR(g), while (5.2) and (5.3) are relations in End(V )⊗2⊗C UR(g), with both tensor
products taken over C. Here we note that, since V = V [[ℏ]] satisfies EndC[[ℏ]](V) ∼=
End(V )[[ℏ]] and V is a finite-dimensional complex vector space, one has

EndC[[ℏ]](V)⊗ EndC[[ℏ]](V) ∼= End(V )⊗2 ⊗C C[[ℏ]].

Hence, Ṙπ = (Ṙπ)12 may be naturally viewed as an element in End(V )⊗2⊗CUR(g).
In addition, we emphasize that, just as gr depends on the evaluation r π of r
(see Remark 3.2), the algebra UR(g) takes as input the evaluation Rπ of R on
the underlying finite-dimensional representation V [[ℏ]]. As this representation will
remain fixed, suppressing the subscript π in the notation UR(g) shall not cause any
ambiguity.

Since Ṙπ reduces to r π modulo ℏ, it follows from the above definition that UR(g)
is a C[[ℏ]]-algebra deformation of the enveloping algebra U(gr ) (see Definition 3.1).
In more detail, the assignment T± 7→ L± induces an epimorphism of C[[ℏ]]-algebras
UR(g) ↠ U(gr ) (where ℏ operates as 0 in U(gr )) which descends to an isomorphism
of C-algebras

(5.4) UR(g)/ℏUR(g)
∼−→ U(gr ).

We will prove in Section 5.4 that UR(g) is a quantization of the Lie bialgebra
(gr , δr ) introduced in Theorem 3.6. In particular, it is topologically free and thus
isomorphic to U(gr )[[ℏ]] as a C[[ℏ]]-module.

We note that L± = I + ℏT± satisfy the more familiar matrix relations

L±
λ = 0 ∀ λ ∈ Q̇∓,(5.5)

RπL
±
1 L

±
2 = L±

2 L
±
1 Rπ, RπL

+
1 L

−
2 = L−

2 L
+
1 Rπ.(5.6)

Indeed, the first relation is a direct consequence of (5.1), while the second and third
are consequences of the sequence of equalities

(5.7)

RπL
ϵ1
1 Lϵ2

2 − Lϵ2
2 Lϵ1

1 Rπ

= ℏRπT
ϵ1
1 + ℏRπT

ϵ2
2 + ℏ2RπT

ϵ1
1 Tϵ2

2 − ℏTϵ1
1 Rπ − ℏTϵ2

2 Rπ − ℏ2Tϵ2
2 Tϵ1

1 Rπ

= ℏ[Rπ,T
ϵ1
1 +Tϵ2

2 ] + ℏ2 (RπT
ϵ1
1 Tϵ2

2 − Tϵ2
2 Tϵ1

1 Rπ) ,

where (ϵ1, ϵ2) takes value (±,±) or (+,−). It is the relations (5.5) and (5.6), rather
than (5.2) and (5.3), which have primarily featured in the literature; see [FRT],
[KS1, §8.5], [M4, §4.1] and references therein. The coefficients of L+ and L− do
not, however, generate UR(g) as a topological C[[ℏ]]-algebra. Rather, they naturally
arise as a system of topological generators for the Drinfeld–Gavarini subalgebra of
UR(g); see Remark 5.8. Nonetheless, we have the following useful lemma.

Lemma 5.3. Let A be a topologically free C[[ℏ]]-algebra, and suppose that T+ and
T− belong to End(V ) ⊗C A. Then the assignment T± 7→ T± extends to a C[[ℏ]]-
algebra homomorphism UR(g)→ A if and only if L± = I+ℏT± satisfy the relations

L±
λ = 0 ∀ λ ∈ Q̇∓,(5.8)

RπL
±
1 L

±
2 = L±

2 L
±
1 Rπ, RπL

+
1 L

−
2 = L−

2 L
+
1 Rπ.(5.9)

Proof. This is a consequence of the computation (5.7) with L± and T± replaced by
L± and T±, respectively. □
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5.2. Automorphisms of UR(g). Consider the group GLI(V ) of invertible trans-
formations in End(V )[[ℏ]] based at I:

GLI(V ) = I + ℏgl(V )[[ℏ]] ⊂ End(V )[[ℏ]].
Let GLI(Rπ) and GLI(V )g be the subgroups of GLI(V ) defined by

GLI(Rπ) = {D ∈ GLI(V ) : Ad(D ⊗D)(Rπ) = Rπ} ∩ gl(V )h[[ℏ]],
GLI(V )g = GLI(V ) ∩ gl(V )g[[ℏ]].

Here gl(V )h is the centralizer of h ∼= π(h) in End(V ), which is nothing but the zero
weight space gl(V )0 ⊂ gl(V ) with respect to to the adjoint action of g ∼= π(g) on
gl(V ).

Note that, since GLI(V )g ⊂ gl(V )g[[ℏ]], the group GLI(V )g is contained in the
centralizer of πℏ(Uℏg) = π(U(g))[[ℏ]] in End(V )[[ℏ]].

Proposition 5.4. Let C and D belong to GLI(Rπ), and C∈ GLI(V )g×GLI(V )g.
Then there exists unique C[[ℏ]]-algebra automorphisms θDC and χC of UR(g) satisfy-
ing

θDC (L±) = CL±D and χC(L
±) = L±C±,

where C+ and C− are the first and second components of C, respectively.

Proof. It is a consequence of Theorem 5.7, proven below, that UR(g) is a torsion
free C[[ℏ]]-module. In what follows we shall make use of this fact.

Since UR(g) is torsion free, to see θDC and χC extend to C[[ℏ]]-algebra endomor-
phisms of UR(g), it is enough to show that the matrices θDC (L±) and χC(L

±) satisfy
the relations (5.8) and (5.9) of Lemma 5.3. Since each of the matrices C,D,C+

and C− belong to gl(V )h[[ℏ]], one has θDC (L±)λ = CL±
λD and χC(L

±)λ = L±
λC

± for
any λ ∈ h∗, from which we see that

θDC (L±)λ = 0 = χC(L
±)λ ∀λ ∈ Q̇∓.

Let us now verify that θDC (L±) and χC(L
±) both satisfy the relations of (5.9),

beginning with the former. Using that RπC1C2 = C1C2Rπ (as C ∈ GLI(Rπ)) and
applying (5.9) for L±, we obtain

Rπθ
D
C (Lϵ1)1θ

D
C (Lϵ2)2 = RπC1C2L

ϵ1
1 Lϵ2

2 D1D2

= C1C2RπL
ϵ1
1 Lϵ2

2 D1D2

= C1C2L
ϵ2
2 Lϵ1

1 RπD1D2,

where (ε1, ε2) takes value (±,±) or (+,−). Since RπD1D2 = D1D2Rπ, this gives

Rπθ
D
C (Lϵ1)1θ

D
C (Lϵ2)2 = C1C2L

ϵ2
2 Lϵ1

1 D1D2Rπ = θDC (Lϵ2)2θ
D
C (Lϵ1)1Rπ.

Consider now χC(L
±). Using (5.9) for L±, we obtain

(5.10) RπχC(L
ϵ1)1χC(L

ϵ2)2 = RπL
ϵ1
1 Lϵ2

2 Cϵ1
1 Cϵ2

2 = Lϵ2
2 Lϵ1

1 RπC
ϵ1
1 Cϵ2

2 .

Since Rπ ∈ πℏ(Uℏg) ⊗ πℏ(Uℏg) and C± ∈ GLI(V )g, we have C±
i Rπ = RπC

±
i .

Hence, the right-hand side above is just χC(L
ϵ2)2χC(L

ϵ1)1Rπ, as desired.

To complete the proof of the lemma, we are left to explain why θDC and χC

are invertible. Letting C−1 denote the inverse of C in the direct product group
GLI(V )g ×GLI(V )g, we have

(θDC ◦ θD
−1

C−1 )(L±) = (θD
−1

C−1 ◦ θDC )(L±) = L± = (χC ◦ χC−1)(L±) = (χC−1 ◦ χC)(L
±).
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As UR(g) is torsion free, it follows that θD
−1

C−1 = (θDC )−1 and χC−1 = χ−1
C . □

A particularly important subgroup of GLI(Rπ) consists of the ℏ-formal torus

G := exp(ℏπ(h)) = {qπ(h) : h ∈ h}.
If C = qπ(h) with h ∈ h and D = I, we shall write ϑh for θDC . Similarly, if C = qπ(h)

and D = C−1, we will write ϑAdh for θDC . In summary, we have

(5.11) ϑh := θIqπ(h) and ϑAdh := θq
−π(h)

qπ(h) ∀ h ∈ h.

5.3. Quantizing z±V . We now shift our attention towards establishing quantum
analogues of the main results from Section 3. The goal of this particular subsection
is to introduce a quantization of the Lie bialgebra z±V from Section 3.5.

To this end, recall that z+V denotes the Lie bialgebra dual to the Lie algebra
of g-invariants gl(V )g, equipped with trivial Lie cobracket, and z−V denotes the
opposite Lie bialgebra to z+V . As in Section 3, we let Z± ∈ gl(V )g ⊗ z±V denote the
canonical element. In what follows we shall view Z± as a generating matrix for the
C[[ℏ]]-algebra S(z±V )[[ℏ]], where S(z±V )

∼= U(z±V ) is the symmetric algebra on z±V .

Lemma 5.5. S(z+V )[[ℏ]] is a quantized enveloping algebra with coproduct ∆, counit
ε and antipode S uniquely determined by

∆(Z+) = Z+
[1] + Z+

[2] + ℏZ+
[1]Z

+
[2], S(Z+) =

∑
b>0

ℏb−1(−Z+)b, ε(Z+) = 0.

Proof. It is clear that the formulas for ∆(Z+), S(Z+) and ε(Z+) given in the state-
ment of the lemma uniquely detetermine C[[ℏ]]-algebra homomorphisms

∆ : S(z+V )[[ℏ]]→ S(z+V )[[ℏ]]⊗ S(z+V )[[ℏ]], S : S(z+V )[[ℏ]]→ S(z+V )[[ℏ]],
ε : S(z+V )[[ℏ]]→ C[[ℏ]].

Note that on Z̊+ := I + ℏZ+, one has the more familiar matrix formulas

∆(̊Z+) = Z̊+
[1]Z̊

+
[2], S(̊Z+) = (̊Z+)−1, ε(̊Z+) = I.

In particular, (∆ ⊗ id)∆(̊Z+) and (id ⊗ ∆)∆(̊Z+) both take value Z̊+
[1]Z̊

+
[2]Z̊

+
[3] and

(ε ⊗ id)∆(̊Z+) and (id ⊗ ε)∆(̊Z+) both take value Z̊+, where we work through
the canonical identifications C[[ℏ]] ⊗ S(z+V )[[ℏ]] ∼= S(z+V )[[ℏ]] ∼= S(z+V )[[ℏ]] ⊗ C[[ℏ]]. As
S(z+V )[[ℏ]] is torsion free, it follows that ∆ is both coassociative and counital. By
similar reasoning, to check that S is indeed an antipode it is enough to see that the
identity

m ◦ (S ⊗ id) ◦∆ = ι ◦ ε = m ◦ (id⊗ S) ◦∆
is satisfied on Z̊+, where m is the product on S(z+V )[[ℏ]] and ι : C[[ℏ]] ↪→ S(z+V )[[ℏ]] is
the unit map. This is a consequence of the relations (S ⊗ id)∆(Z+) = (̊Z+

[1])
−1Z̊+

[2]

and (id⊗ S)∆(Z+) = Z̊+
[1](̊Z

+
[2])

−1.

The above argument proves that S(z+V )[[ℏ]] is a topological Hopf algebra over
C[[ℏ]], which is a trivially topologically free. As the coefficients of Z± are primitive
modulo ℏ, it is a flat Hopf algebra deformation of S(z+V )

∼= U(z+V ), and thus a
quantized enveloping algebra with semiclasical limit U(z+V ). □
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Remark 5.6. We note that the Lie bialgebra structure on z+V induced by the
coproduct ∆ from the above lemma coincides with that from Section 3.5, referred
to at the beginning of the section. Indeed, this follows immediately from the relation

ℏ−1(∆−∆op)(Z+) = [Z+
[1],Z

+
[2]].

Henceforth, we shall denote the topological Hopf algebra introduced in Lemma
5.5 by Sℏ(z

+
V ). That is, one has

(5.12) Sℏ(z
+
V ) = S(z+V )[[ℏ]]

as an algebra, with coproduct, antipode, and counit as defined in Lemma 5.5.
This notation is intended to avoid confusing Sℏ(z

+
V ) with the trivial Hopf algebra

deformation of the symmetric algebra S(z+V ), which will always be denoted S(z+V )[[ℏ]].
In general, these two structures on S(z+V )[[ℏ]] are not equivalent, though this is always
the case when the underlying representation V of g has no repeated composition
factors; see Section 6.

Similarly, the notation Sℏ(z
−
V ) will be used to denote the topological Hopf algebra

which coincides with S(z−V )[[ℏ]] as a C[[ℏ]]-algebra and has coproduct, counit and
antipode determined by the requirement that the algebra isomorphism S(z−V )[[ℏ]] ∼−→
Sℏ(z

+
V )

cop, Z− 7→ Z+, is a homomorphism of Hopf algebras. In particular, Sℏ(z−V )
is a quantization of the Lie bialgebra z−V . Henceforth, we shall set Ż+ = Z+ and
Ż− = S(Z−), so that

Ż− =
∑
b>0

ℏb−1(−Z−)b ∈ gl(V )g ⊗C Sℏ(z
−
V ).

In particular, one has I + ℏŻ− = (I + ℏZ−)−1 and Ż± = ±Z± modulo ℏ.

5.4. UR(g) as a quantization of gr . In this section we prove the first main result
of Section 5, which provides a quantization of Theorem 3.6; see Theorem 5.7 below.

As the universal R-matrix RD of D(Uℏb) is equal to 1 modulo ℏ and D(Uℏb) is
torsion free, there are unique matrices T±

ω ∈ End(V )⊗C D(Uℏb) such that

(5.13) L±ω := (πℏ ⊗ id)(R±
ω ) = I + ℏT±

ω ,

where we recall from (4.4) that R+
ω = (id ⊗ ω)(RD) and R−

ω = (id ⊗ ω)((RD
21)

−1).
In the following theorem, we equip D(Uℏb) ⊗ Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) with the standard

tensor product of Hopf algebras structure.

Theorem 5.7. The assignment T± 7→ T±
ω + Ż± + ℏT±

ω Ż
± uniquely extends to an

isomorphism of C[[ℏ]]-algebras
Υ : UR(g)

∼−→ D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V ).

Moreover, the unique topological Hopf algebra structure on UR(g) compatible with
Υ has coproduct ∆R, antipode SR and counit εR uniquely determined by

∆R(L
±) = L±

[1]L
±
[2], SR(L

±) = (L±)−1, εR(L
±) = I

and realizes UR(g) as a quantization of the Lie bialgebra (gr , δr ).
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Proof. As D(Uℏb) ⊗ Sℏ(z
+
V ) ⊗ Sℏ(z

−
V ) is topologically free, to prove that T± 7→

T±
ω + Ż± + ℏT±

ω Ż
± extends to a C[[ℏ]]-algebra homomorphism, it is sufficient to

show that the matrices
L± := L±ω · (I + ℏŻ±)

satisfy the relations (5.8) and (5.9). Let us set Z̊± = I + ℏŻ± = (I + ℏZ±)±1, so
that L± = L±ω Z̊

±. As gl(V )g is contained in the zero weight component of gl(V ),
to see that the triangularity relations (5.8) hold, it suffices to prove that (L±ω )λ = 0

for λ ∈ Q̇∓. As L±ω ∈ Uℏb
±⊗Uℏb

± and the notion of Uℏg-weights and g-weights for
V [[ℏ]] are compatible (see Section 4.7), πℏ(Uℏb

±) ⊂
⊕

µ∈Q±
gl(V )µ[[ℏ]], and therefore

(L±ω )λ = 0 for λ ∈ Q̇∓, as desired.

Let us now turn to establishing that L± satisfy the quadratic matrix relations
(5.9). Applying πℏ⊗ πℏ⊗ id to the relations of (2) in Proposition 4.9, we find that

Rπ(L
±
ω )1(L

±
ω )2 = (L±ω )2(L

±
ω )1Rπ and Rπ(L

+
ω )1(L

−
ω )2 = (L−ω )2(L

+
ω )1Rπ.

That L± = L±ω Z̊
± satisfy the relations of (5.9) now follows by repeating the compu-

tation used in the proof of Proposition 5.4 to show that χC(L
±) = L±C± satisfy the

same set of relations, with L± replaced by L±ω and C± replaced by Z̊±; see (5.10).
We may thus conclude that the assignment from the statement of the theorem
uniquely extends to a C[[ℏ]]-algebra homomorphism

Υ : UR(g)→ D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V ).

As the codomain is a topologically free C[[ℏ]]-module and UR(g) is separated and
complete (by definition), to see that Υ is an isomorphism it suffices to prove that its
semiclassical limit Ῡ is (see (L1) and (L2) of Section 4.1). As UR(g) and D(Uℏb)⊗
Sℏ(z

+
V )⊗ Sℏ(z

−
V ) are C[[ℏ]]-algebra deformations of U(gr ) and U(D(b+)⊕ z+V ⊕ z−V ),

respectively, we may view Ῡ as a C-algebra homomorphism

Ῡ : U(gr )→ U(D(b+)⊕ z+V ⊕ z−V ).

As the semiclassical limits of πℏ and ωℏ are the underlying representation π :
U(g) → End(V ) and the Chevalley involution ω on D(b+) (see Section 2.3), re-
spectively, and RD − 1 = ℏrD modulo ℏ, the images of T+

ω and T−
ω in End(V ) ⊗

U(D(b+)⊕ z+V ⊕ z−V ) are given by (π ⊗ ω)rD and −(π ⊗ ω)rD21. Hence, Ῡ satisfies

(5.14) Ῡ(L+) = (π ⊗ ω)rD + Z+ and Ῡ(L−) = −(π ⊗ ω)rD21 − Z−.

It follows that Ῡ is the algebra homomorphism obtained from the Lie algebra iso-
morphism gr ∼−→ D(b+)⊕ z+V ⊕ z−V of Theorem 3.6 by taking enveloping algebras,
which is necessarily an isomorphism by the Poincaré–Birkhoff–Witt Theorem. This
completes the proof of the first assertion of the theorem.

Consider now the second assertion of the Theorem, regarding the topological
Hopf structure on UR(g) inherited from D(Uℏb) ⊗ Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) via Υ. Since

D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V ) is a topologically free C[[ℏ]]-module, UR(g) is also topo-

logically free. This observation implies that the structure maps ∆R, SR and εR are
uniquely determined by their values on L+ and L−; see Lemma 5.3. Let us now
prove that these values are as given in the statement of the theorem.

By Lemma 5.5 and the definition of the Hopf algebra structure on Sℏ(z
−
V ), we

have ∆(̊Z±) = Z̊±
[1]Z̊

±
[2], S(̊Z

±) = (̊Z±)−1 and ε(̊Z±) = I. Since πℏ(Uℏg) is contained
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in the centralizer of gl(V )g in End(V )[[ℏ]], (L±ω )[2] and Z̊±
[1] commute. It thus suffices

to show that in D(Uℏb) one has the relations

∆(L±ω ) = (L±ω )[1](L
±
ω )[2], S(L±ω ) = (L±ω )

−1 and ε(L±ω ) = I.

These relations are immediately obtained by applying πℏ to the first tensor factor
of each identity in Part (3) of Proposition 4.9.

To complete the proof of the theorem, we are left to esablish that the topological
Hopf algebra UR(g) is a quantization of (gr , δr ). To this end, note that the formulas
for ∆R(L

±) imply that the coefficients of T± are primitive modulo ℏ. Explicitly,
one has

∆R(T
±) = T±

[1] + L±
[1]T

±
[2] = T±

[2] +T±
[1]L

±
[2] = T±

[1] +T±
[2] + ℏT±

[1]T
±
[2].

It follows that (5.4) is an isomorphism of Hopf algebras over C. As UR(g) is
topologically free, we may conclude that it is a quantized enveloping algebra with
semiclassical limit U(gr ). Moreover, the Lie bialgebra structure it induces on gr
has Lie cobracket determined by

δ(L±) = ℏ−1(∆−∆op)(T±) mod ℏUR(g)⊗UR(g).

As (∆ − ∆op)(T±) = ℏ[T±
[1],T

±
[2]], this coincides with [L±

[1], L
±
[2]], which is exactly

δr (L±). Therefore, UR(g) is a quantization of the Lie bialgebra (gr , δr ). □

Remark 5.8. We now give a few remarks pertinent to the Hopf structure on UR(g)
defined in the above theorem.

(1) From the formula for ∆R(L
±), we obtain that ∆n

R(L
±) = L±

[1]L
±
[2] · · ·L

±
[n] for

all n ≥ 0, where ∆n
R : UR(g) → UR(g)

⊗n is the iterated coproduct defined
in Section 4.3. This implies that the coefficients of L+ and L− belong to
the Drinfeld–Gavarini subalgebra UR(g)

′ of UR(g). Indeed, one has

(id− εR)
⊗n∆n

R(L
±) = ℏnT±

[1]T
±
[2] · · ·T

±
[n] ∈ ℏnUR(g)

⊗n

which implies that L± ∈ End(V ) ⊗C UR(g)
′ by definition of UR(g)

′; see
Section 4.3. In fact, since T± reduces to the generating matrix L± of gr
modulo ℏ and the coefficients of L± span gr , UR(g)

′ is generated as a topo-
logical algebra (with respect to the subspace topology) by the coefficients
of L+ and L−; see [G1, §3.5].

(2) The expressions for ∆R(L
±), SR(L

±) and εR(L
±) given in the above the-

orem coincide with those output by the R-matrix formalism developed by
Faddeev, Reshetikhin and Takhtajan; see Theorems 1 and 9 of [FRT], in
addition to [KS1, Prop. 8.32], for instance.

We note that it is easy to verify directly that they satisfy the relations
(5.9) with A taken to be UR(g)

⊗2, UR(g)
op or C[[ℏ]], respectively; see Propo-

sitions 8.32 and 9.1 of [KS1] and [M5, Thm. 1.5.1], for example. However,
it is perhaps less clear that the triangularity relations (5.8) are preserved.
This difficulty dissipates if one takes into account that L± satisfies the
seemingly stronger relation L± =

∑
λ∈Q±

L±
λ , which in fact follows from

the definition of UR(g), as is made clear by Theorem 5.7.
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Recall from Section 4.2 that Uℏg is Q-graded as a topological Hopf algebra. Using
Theorem 4.6, we may extend this to a topological Q-grading on

D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V )
∼= Uℏg⊗ S(h)[[ℏ]]⊗ Sℏ(z

+
V )⊗ Sℏ(z

−
V ),

by imposing that Sℏ(z
±
V ) and S(h)[[ℏ]] consist of degree zero elements. It follows

by Theorem 5.7 that UR(g) is also Q-graded as a topological Hopf algebra. This
grading admits a natural interpretation in terms of the automorphisms introduced
in Section 5.2, as we now explain.

As seen in Section 5.2, the ℏ-formal torus G = exp(ℏπ(h)) acts on UR(g) by the
algebra automorphisms ϑAdh defined in (5.11). Explicitly, one has

qπ(h) · T± = ϑAdh (T±) = qπ(h)T±q−π(h) ∀ h ∈ h.

Corollary 5.9. The action of G on UR(g) induces on UR(g) the structure of a
Q-graded topological Hopf algebra, with homogeneous components

UR(g)β = {x ∈ UR(g) : ϑ
Ad
h (x) = qβ(h)x ∀ h ∈ h} ∀ β ∈ Q.

In addition, Υ is an isomorphism of Q-graded topological Hopf algebras.

Proof. For each h ∈ h, let ϑ̇Adh be the gradation automorphism of D(Uℏb) ∼= Uℏg⊗
S(h)[[ℏ]] uniquely determined by

ϑ̇Adh (h±
i ) = h±

i and ϑ̇Adh (X±
i ) = q±αi(h)X±

i ∀ i ∈ I,

where h±
i and X±

i are as in Lemma 4.5. Each ϑ̇Adh extends to an automorphism
ϑ̈Adh of the topological Hopf algebra D(Uℏb) ⊗ Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) defined by ϑ̈Adh =

ϑ̇Adh ⊗ idSℏ(z
+
V ) ⊗ idSℏ(z

−
V ), and one has

(D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V ))β = {x : ϑ̈Adh (x) = qβ(h)x ∀ h ∈ h} ∀ β ∈ Q.

It thus suffices to see that Υ ◦ ϑh = ϑ̈Adh ◦Υ for all h ∈ h. This follows readily from
the definition of Υ and the observation that (id⊗ ϑ̇Adh )(L±ω ) = qπ(h)L±ω q

−π(h), which
is deduced from Part (1) of Proposition 4.9 following the same type of argument as
used to prove (4) therein. □

5.5. Recovering D(Uℏb). Recall that, for each C belonging to the direct product
of groups G := GLI(V )g ×GLI(V )g, there is a corresponding automorphism χC of
UR(g), defined in Proposition 5.4. Let UR(g)

χ denote the (closed) unital, associative
C[[ℏ]]-subalgebra of UR(g) consisting of elements fixed by all such automorphisms.
That is, if UR(g)

χC = {x ∈ UR(g) : χC(x) = x}, then

UR(g)
χ =

⋂
C∈G

UR(g)
χC.

The following lemma is a straightforward consequence of the definition of χC.

Lemma 5.10. For each A, C∈ G = GLI(V )g ×GLI(V )g, one has

χA⊗ χC ◦∆R = ∆R ◦ χA·C and χC−1 ◦ SR = SR ◦ χC.

Consequently, UR(g)
χ is a Hopf subalgebra of the topological Hopf algebra UR(g).
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Consider now the Hopf algebra epimorphism

Υ̇ := (idD(Uℏb) ⊗ ϵ
+ ⊗ ϵ−) ◦Υ : UR(g) ↠ D(Uℏb),

where ϵ± denotes the counit of Sℏ(z±V ), defined by ϵ±(Z±) = 0 (in particular, ϵ+ = ε
from Lemma 5.5). Let Z(UR(g)) denote the center of the C[[ℏ]]-algebra UR(g). The
following theorem, which provides the second main result of this section, realizes
D(Uℏb) as both a fixed point Hopf subalgebra of UR(g) and as a quotient by a Hopf
ideal generated by certain distinguished central elements.

Theorem 5.11. Υ̇ restricts to an isomorphism of topological Hopf algebras

Υ̇|UR(g)χ : UR(g)
χ ∼−→ D(Uℏb).

Moreover, there are Σ± ∈ gl(V )g ⊗ Z(UR(g)) whose coefficients generate the kernel
of Υ̇ as an ideal and admit the following properties:

(1) The subspace z±Σ = {f ⊗ id(Σ±) : f ∈ z±V } has dimension dim gl(V )g.
(2) The C[[ℏ]]-subalgebra of UR(g) topologically generated by z+Σ and z−Σ is iso-

morphic to the symmetric algebra

S(z+Σ ⊕ z−Σ )[[ℏ]] ∼= S(z+Σ)[[ℏ]]⊗ S(z−Σ )[[ℏ]].

(3) The matrices Σ̊± = (I + ℏΣ±)±1 satisfy the Hopf algebraic relations

∆R(Σ̊
±) = Σ̊±

[1]Σ̊
±
[2], SR(Σ̊

±)−1, εR(Σ̊
±) = I.

Proof. First note that, since Υ is an isomorphism of topological Hopf algebras,
the matrices Σ± := Υ−1(Z±) satisfy the properties (1) – (3). In addition, since
the kernel of the epimorphism idD(Uℏb) ⊗ ϵ+ ⊗ ϵ− is generated by z+V and z−V as a
topological ideal, the coefficients of Σ+ and Σ− generate Ker(Υ̇) as a topological
ideal in UR(g).

We are thus left to prove the first assertion of the theorem, concerning the
restriction Υ̇|UR(g)χ . To this end, note that, for each C = (C+, C−) ∈ G, the
assignment

χSC : Z+ 7→ Z+ + Ċ+ + ℏZ+Ċ+, Z− 7→ Z− + Ċ− + Ċ−ℏZ−,

uniquely extends to a C[[ℏ]]-algebra automorphism χSC of S(z+V ⊕ z−V )[[ℏ]] ∼= Sℏ(z
+
V )⊗

Sℏ(z
−
V ), where Ċ± ∈ gl(V )g[[ℏ]] are defined by C± = (1 + ℏĊ±)±1.

Indeed, that χSC extends to a C[[ℏ]]-algebra endomorphism is immediate. To see
that it is in fact an automorphism, note that the elements Z̊± = (I+ℏZ±)±1 satisfy

(5.15) χSC(̊Z
±) = Z̊±C±,

from which it follows readily that (χSC)
−1 = χS

C−1 . Consider now the subalgebra

S(z+V ⊕ z−V )[[ℏ]]
χS

=
⋂
C∈G

S(z+V ⊕ z−V )[[ℏ]]
χS

C

consisting of all elements fixed by all automorphisms χSC.

Claim: S(z+V ⊕ z−V )[[ℏ]]χ
S

is trivial. That is, it is equal to C[[ℏ]].
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Proof of claim. Consider the semiclassical limit χ̄SC : S(z+V ⊕ z+V ) → S(z+V ⊕ z+V ) of
χSC. It is a C-algebra automorphism uniquely determined by

χ̄SC(Z
±) = Z± + Ċ±

0 ,

where we have written Ċ± =
∑

k Ċ
±
k ℏk ∈ gl(V )g[[ℏ]]. Let us expand Z± as

Z± =
∑

j Ej ⊗ z±j , where {Ej}j∈J is any fixed basis of gl(V )g. Then the sub-
algebra S(z+V ⊕ z+V )

χ̄S

fixed by all these automorphisms consists of all polynomials
in {z+j , z

−
j }j∈J which are invariant under the natural action of the addititive group

CJ × CJ on S(z+V ⊕ z+V )
∼= C[z+j , z

−
j : j ∈ J ] by translations: z±j 7→ z±j + c±j

for ((c+j )j∈J ; (c−j )j∈J ) ∈ CJ × CJ . The only such polynomials are the constant
polynomials:

S(z+V ⊕ z+V )
χ̄S

= C.
Now suppose that x ∈ S(z+V ⊕ z−V )[[ℏ]]χ

S

, and in addition that x /∈ C[[ℏ]]. Write
x =

∑
k xkℏk ∈ S(z+V ⊕ z−V )[[ℏ]]. Let b ≥ 0 be minimal such that xb /∈ C. Then

y =
∑

k≥b xkℏk−b also belongs to S(z+V ⊕z
−
V )[[ℏ]]χ

S

. It follows that xb ∈ S(z+V ⊕z
−
V )

χ̄S

,
and hence xb ∈ C by the above. This contradicts the choice of b, and therefore we
may conclude that we must have x ∈ C[[ℏ]], as desired.

Consider now the C[[ℏ]]-algebra automorphism χ̇C = idD(Uℏb) ⊗ χSC of D(Uℏb)⊗
S(z+V ⊕ z−V )[[ℏ]], for each C ∈ G. Using the above claim and the exactness of the
topological tensor product ⊗ over C[[ℏ]], we see that the subalgebra fixed by all such
automorphisms is given by

(D(Uℏb)⊗ S(z+V ⊕ z−V )[[ℏ]])
χ̇ = D(Uℏb)⊗ S(z+V ⊕ z−V )[[ℏ]]

χS

= D(Uℏb).

Finally, it follows from the definitions of χC and Υ (see Proposition 5.4 and Theorem
5.7), together with the equality (5.15), that χ̇C◦Υ = Υ◦χC, where we work through
the identification of algebras

D(Uℏb)⊗ S(z+V ⊕ z−V )[[ℏ]] ∼= D(Uℏb)⊗ Sℏ(z
+
V )⊗ Sℏ(z

−
V ).

Therefore, we have UR(g)
χ = Υ−1(D(Uℏb)), as claimed. □

Remark 5.12. In Section 6.3, we will obtain uniform formulas for the coefficients
of the central matrices Σ± in terms of the entries of T±, under the assumption that
the underlying g-module V is a direct sum of distinct irreducible representations.

5.6. Recovering Uℏg. As the quantum double of Uℏb admits the C[[ℏ]]-algebra
decomposition D(Uℏb) ∼= Uℏg⊗ S(h)[[ℏ]], the quantized enveloping algebra Uℏg can
also be recovered as a both a quotient and subalgebra of UR(g). In this subsection,
we unravel this in detail.

Let L±
0 = I+ℏT±

0 , where T±
0 = 10(T

±) ∈ gl(V )h⊗CUR(g) and we recall that 10 is
the projection of End(V ) = gl(V ) onto its zero weight component gl(V )0 = gl(V )h.
In what follows, we set Σ̊ = Σ̊+Σ̊−, where Σ̊± = (I + ℏΣ±)±1, as in Theorem 5.11.

Lemma 5.13. There is a unique matrix Θ ∈ π(h)⊗C Z(UR(g)) satisfying

L+
0 L

−
0 = qΘΣ̊ ∈ gl(V )h ⊗C Z(UR(g)).

Moreover, one has Υ(Θ) = −
∑

i∈I π(ϖ
∨
i )⊗ ζ(hi) ∈ π(h)⊗C S(h)[[ℏ]]
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Proof. If Θ and Θ′ both lay in π(h)⊗CZ(UR(g)) and solve L+
0 L

−
0 = qXΣ̊ for X, then

they commute and thus satisfy qΘ−Θ′
= 1. As End(V ) ⊗C UR(g) is topologically

free, this is only possible if Θ = Θ′. Let us now establish that a solution Θ to this
equation exists, and is given as claimed.

Since Z̊± = (I +ℏZ±)±1 ∈ gl(V )h⊗C Sℏ(s
±
V ) and Υ(L±

0 ) = L±ω Z̊
± (see (5.13) and

Theorem 5.7), Part (1) of Proposition 4.9 implies that

Υ(L±
0 ) = (L±ω )0Z̊

± = q∓
∑

i∈I π(ω
∨
i )⊗h±

i Z̊±.

It follows readily that Θ = −
∑

i∈I π(ϖ
∨
i )⊗Υ−1(ζ(hi)) is the sought after solution.

Indeed, we have

Υ(L+
0 L

−
0 ) = q

∑
i∈I π(ω

∨
i )⊗(h−

i −h+
i )Z̊+Z̊− = q−

∑
i∈I π(ω

∨
i )⊗ζ(hi)Υ(Σ̊). □

Recall that, for each h ∈ h, ϑh and ϑAdh/2 are the automorphisms of UR(g) given
by (5.11). Let us introduce an additional automorphism γh by setting

(5.16) γh := ϑ−h ◦ ϑAdh/2 ∀ h ∈ h.

Explicitly, one has γh(L±) = q−π(h)/2L±q−π(h)/2. In particular, the automorphism
γh commutes with χC for each C ∈ G, and so γh restricts to an automorphism
of UR(g)

χ. Consider now the subalgebra UR(g)
χ◦γ of UR(g) fixed by all automor-

phisms of the form χC ◦ γh:

UR(g)
χ◦γ =

⋂
(h,C)∈h×G

UR(g)
χC◦γh =

⋂
h∈h

(UR(g)
χ)

γh .

We will prove in Theorem 5.14 that UR(g)
χ◦γ is isomorphic to Uℏg as a C[[ℏ]]-

algebra. To make this precise, let us introduce the Hopf algebra epimorphism

Ϋ := ψℏ ◦ Υ̇ : UR(g) ↠ Uℏg,

where we recall from (4.1) that ψℏ : D(Uℏb) ↠ Uℏg coincides with the projection
idUℏg⊗ϵh : Uℏg⊗S(h)[[ℏ]] ↠ Uℏg under the identification D(Uℏb) ∼= Uℏg⊗S(h)[[ℏ]] of
Theorem 4.6, where ϵh : S(h)[[ℏ]]→ C[[ℏ]] is the counit. We then have the following
theorem, which provides the third main result of this section.

Theorem 5.14. Ϋ restricts to an isomorphism of C[[ℏ]]-algebras

Ϋ|UR(g)χ◦γ : UR(g)
χ◦γ ∼−→ Uℏg.

Moreover, the coefficients of Θ, Σ+ and Σ− generate the kernel of Ϋ as an ideal.

Proof. Since Υ(Θ) = −
∑

i∈I π(ϖ
∨
i ) ⊗ ζ(hi) is a generating matrix for the central

subalgebra S(h)[[ℏ]] ⊂ D(Uℏb) ∼= Uℏg ⊗ S(h)[[ℏ]] and Z± = Υ(Σ±) generates Sℏ(z
±
V )

as a topological algebra, the kernel of Ϋ is generated as a topological ideal by Θ,
Σ+ and Σ−.

Let us now prove the first statement of the theorem. Consider the automorphism
γΥh of D(Uℏb)⊗Sℏ(z

+
V )⊗Sℏ(z

−
V ) induced by γh via the isomorphism Υ of Theorem

5.7. Recall that Υ is uniquely determined by the property that Υ(L±) = L±ω Z̊
±,

where L±ω is defined in (5.13) and Z̊± = (I + ℏZ±)±1. Since every element of
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the group G = exp(ℏπ(h)) commutes with Z̊+ and Z̊− (as they lay in gl(V )g ⊗C(
Sℏ(z

+
V )⊗ Sℏ(z

−
V )

)
), we have

γΥh (L
±
ω Z̊

±) = q−π(h)/2L±ω q
−π(h)/2Z̊±.

By Theorem 5.11 and Corollary 4.7, it therefore suffices to show that the automor-
phism γDh of Corollary 4.7 satisfies γDh (L±ω ) = q−π(h)/2L±ω q

−π(h)/2. This, follows by
applying π⊗id to the identity (id⊗γDh )(R±

ω ) = q
−h/2
1 R±

ω q
−h/2
1 which was established

in Part (4) of Proposition 4.9. □

5.7. The quantum Borel subalgebras. To conclude Section 5, we apply the
above machinery to quantize (and upgrade) the results of Section 3.7.

Definition 5.15. Let UR(b
+) and UR(b

−) denote the unital, associative C[[ℏ]]-
algebras topologically generated by {t+ij}i,j∈I and {t−ij}i,j∈I , respectively, subject
to the relations

T±
λ = 0 ∀ λ ∈ Q̇∓,

[T±
2 ,T

±
1 ] = [Ṙπ,T

±
1 +T±

2 ] + ℏ
(
ṘπT

±
1 T

±
2 − T±

1 T
±
2 Ṙπ

)
,

where T± is the generating matrix

T± =
∑
i,j∈I

Eij ⊗ t±ij ∈ End(V )⊗C UR(b
±).

Here we follow the same conventions as in Section 3.7: each symbol± and∓ takes
only its upper value for UR(b

+), and its lower value for UR(b
−). This definition

implies that, for each value of ±, there is a C[[ℏ]]-algebra homomorphism

ı± : UR(b
±)→ UR(g),

uniquely determined by ı±(T±) = T±. We then have the following corollary, which
provides a quantization of Corollary 3.10.

Corollary 5.16. The composite Υ± = Υ ◦ ı± is an isomorphism of C[[ℏ]]-algebras
Υ± : UR(b

±) ∼−→ Uℏb
± ⊗ Sℏ(z

±
V ).

In particular, ı± is injective and identifies UR(b
±) with the Hopf subalgebra of UR(g)

generated by the coefficients of T±.

Proof. This follows by the same argument as used to establish that Υ is an isomor-
phism in the proof of Theorem 5.7, where the role of Theorem 3.6 is played instead
by Corollary 3.10. We refer the reader to the proof of Theorem 5.7, and to (5.14)
in particular, for further details. □

Next, note that for any C∈ GLI(V )g×GLI(V )g the automorphism χC of UR(g)
defined in Proposition 5.4 restricts to an automorphism of UR(b

±) ∼= ı±(UR(b
±)).

This automorphism only depends on one component of C: if C and D satisfy
CD−1 ∈ GLI(V )g × {I} then

χC|UR(b+) = χD|UR(b+)
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and, similarly, if CD−1 ∈ {I} × GLI(V )g then χC|UR(b−) = χD|UR(b−). Let
UR(b

±)χ denote the subalgebra of UR(b
±) fixed by all such automorphisms. That

is, one has
UR(b

±)χ = UR(b
±) ∩UR(g)

χ,

where we recall that UR(g)
χ is the subalgebra of UR(g) fixed by all χC; see Section

5.5. Consider now the Hopf algebra homomorphism

Υ̇± := Υ̇ ◦ ı± : UR(b
±) ↠ Uℏb

±,

where Υ̇ is as in Theorem 5.11. Equivalently, Υ̇± = (idUℏb± ⊗ ϵ±) ◦ Υ±, where
ϵ± : Sℏ(z

±
V ) → C[[ℏ]] is the counit. Combining Theorem 5.11 with Corollary 5.16

then outputs the following characterizations of Uℏb
± as a subalgebra and quotient

of UR(b
±).

Corollary 5.17. Υ̇± restricts to an isomorphism of topological Hopf algebras

Υ̇±|UR(b±)χ : UR(b
±)χ ∼−→ Uℏb

±.

Moreover, the kernel of Υ̇± is generated as an ideal by the coefficients of the central
matrix Σ± ∈ gl(V )g ⊗ Z(UR(b

±)).

Here we note that Σ± is as defined in the statement of Theorem 5.11, and may
be viewed as an element of gl(V )g ⊗ Z(UR(b

±)) as a consequence of Corollary
5.16. Indeed, one has Σ± = (Υ±)−1(Z±), where we work through the identification
UR(b

±) ∼= ı±(UR(b
±)) ⊂ UR(g).

6. Quasitriangularity and the space of g-invariants

In this section, we address the problem of obtaining a sufficient and necessary
condition on V for which UR(g) is quasitriangular and, in addition, isomorphic to
the quantum double of UR(b) := UR(b

+); see Theorem 6.3.

6.1. Characterizing Sℏ(z
+
V ) as a trivial deformation. To begin, we prove the

following elementary lemma which characterizes the cocommutativity of the topo-
logical Hopf algebra Sℏ(z

+
V ).

Lemma 6.1. The following three statements are equivalent:

(1) The composition factors of the g-module V are pairwise non-isomorphic.
(2) The algebra of invariants gl(V )g = Endg(V ) is commutative.
(3) The topological Hopf algebra Sℏ(z

+
V ) is cocommutative.

Proof. Let {Vj}j∈J be the distinct composition factors of V , and write nj for the
multiplicity of Vj , so that V ∼=

⊕
j∈J V

nj

j as a g-module. Then, by Schur’s lemma,
we have

Endg(V ) ∼=
⊕
j∈J

Endg(V
nj

j ) ∼=
⊕
j∈J

End(Cnj )

and so Endg(V ) is commutative if and only if nj = 1 for all j ∈ J . This establishes
the equivalence of (1) and (2).
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Let us now argue that (2) and (3) are equivalent. By Lemma 5.5, the generating
matrix Z+ of Sℏ(z+V ) satisfies ∆(Z+) = Z+

[1] + Z+
[2] + Z+

[1]Z
+
[2], and thus Sℏ(z

+
V ) is co-

commutative if and only if [Z+
[1],Z

+
[2]] = 0. Since Z+ belongs to gl(V )g⊗CSℏ(z

+
V ) and

its coefficients span the dim gl(V )g space z+V ⊂ Sℏ(z
+
V )
∼= S(z+V )[[ℏ]], the commutator

[Z+
[1],Z

+
[2]] vanishes if and only if gl(V )g is commutative. □

For the remainder of this subsection, we narrow our focus to the case where the
compositions factors of V are non-isomorphic, as in the above lemma.

Let Z± ∈ gl(V )g ⊗C Sℏ(z
±
V ) be the unique solution of the equation

(6.1) qZ
±
:= exp

(ℏ
2Z

±) = I + ℏZ±.

Then Z± coincides with 2·Z± modulo ℏ and, since gl(V )g⊗CSℏ(z
±
V ) is commutative,

Lemma 5.5 implies that the coefficients of Z± are primitive elements:

∆(Z±) = Z±
[1] + Z±

[2].

Consequently, if z±Z denotes the complex vector space spanned by the coefficients
of Z±, then the assignment Z± 7→ Z± uniquely extends to an isomorphism of
topological Hopf algebras

S(z±Z )[[ℏ]] ∼−→ Sℏ(z
±
V ),

where S(z±Z )[[ℏ]] is the trivial Hopf algebra deformation of the symmetric algebra
S(z±Z )

∼= U(z±Z ). It follows from this observation and the general theory of quan-
tum duality that S(z−Z )[[ℏ]] (and thus Sℏ(z

−
V )) can be identified with the quantized

enveloping algebra dual to S(z+Z )[[ℏ]] ∼= Sℏ(z
+
V ).

For the sake of completeness, let us spell out some of the relevant details. Let

Rℏ(S(z
+
Z )) =

⊕
n∈N

ℏnSn(z+Z ) ⊂ S(z+Z )[ℏ]

denote the Rees algebra of the symmetric algebra S(z+Z ), with respect to its standard
filtration. Equivalently, it is the subalgebra S(ℏz+Z )[ℏ] of S(z+Z )[ℏ]. By Proposition
3.8 of [KT], the Drinfeld–Gavarini subalgebra S(z+Z )[[ℏ]]′ of S(z+Z )[[ℏ]] (see Section
4.3) is given explicitly by

S(z+Z )[[ℏ]]
′ = ̂Rℏ(S(z

+
Z )) ⊂ S(z+Z )[[ℏ]],

where Rℏ(S(z
+
Z )) is completed with respect to its natural grading. The quantized

enveloping algebra dual of S(z+Z )[[ℏ]] can then be identified with the trivial deforma-
tion of the graded dual S(z+Z )

⋆
=

⊕
n∈N Sn(z+Z )

∗. Explicitly, there is an isomorphism
θ : S(z+Z )

⋆
[[ℏ]] ∼−→ S(z+Z )[[ℏ]]

• uniquely determined by

θ(f)(ℏnx) = f(x) ∀ x ∈ Sn(z+Z ) and f ∈ S(z+Z )
⋆
.

Since the symmetrization map σ : S((z+Z )
∗) ∼−→ S(z+Z )

⋆, defined on Sn((z+Z )
∗) by

σ(f1f2 · · · fn)(z1z2 · · · zm) = δn,m
∑
π∈Sn

n∏
j=1

fj(zπ(j)) ∀ zi ∈ z+Z ,

is an isomorphism of Hopf algebras over C, it extends trivially to an isomorphism
of topological Hopf algebras σ : S((z+Z )

∗)[[ℏ]] ∼−→ S(z+Z )
⋆
[[ℏ]]. Collecting all of the

above facts, we obtain the following.
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Corollary 6.2. For each non-degenerate bilinear form ⟨ , ⟩ : z−Z × z+Z → C, there is
an isomorphism of topological Hopf algebras ϑ : S(z−Z )[[ℏ]] ∼−→ S(z+Z )[[ℏ]]

• satisfying

ϑ(z−1 z−2 · · · z−n )(ℏmz+1 z
+
2 · · · z+m) = δn,m

∑
π∈Sn

n∏
j=1

⟨z−j , z+π(j)⟩ ∀ z
±
i ∈ z±Z .

In particular, Sℏ(z−V ) is the quantized enveloping algebra dual of Sℏ(z+V ).

6.2. Quasitriangularity. With Lemma 6.1 and Corollary 6.2 at our disposal, we
are now prepared to formulate and prove the main result of this section.

Theorem 6.3. UR(g) is quasitriangular if and only if the underlying g-module V
has no repeated composition factors. In this case, one has

UR(g) ∼= D(UR(b)) ∼= D(Uℏb⊗ Sℏ(z
+
V )).

Proof. Suppose that UR(g) is quasitriangular. Then, by Theorem 5.7, D(Uℏb) ⊗
Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) is as well. Consider the Hopf subalgebra Sℏ(z

+
V ). Since it is con-

tained in the center of D(Uℏb)⊗Sℏ(z+V )⊗Sℏ(z
−
V ), the quasitriangularity assumption

implies that it is cocommutative. Indeed, we have

(∆−∆op)(z) = R∆(z)R−1 −∆op(z) = 0 ∀ z ∈ Sℏ(z
+
V ),

where R is the associated universal R-matrix of D(Uℏb) ⊗ Sℏ(z
+
V ) ⊗ Sℏ(z

−
V ). By

Lemma 6.1, this is only possible if V has no repeated composition factors.

Conversely, if V has pairwise non-isomorphic composition factors, then Sℏ(z
+
V )

and Sℏ(z
−
V ) are both cocommutative (by Lemma 6.1), and the universal R-matrix

RD of D(Uℏb) defines a quasitriangular structure on D(Uℏb)⊗Sℏ(z
+
V )⊗Sℏ(z

−
V ), for

instance. Hence, UR(g) is quasitriangular.

The last assertion of the theorem follows from the observation that, when V has
no repeated composition factors, UR(g) ∼= D(Uℏb) ⊗ Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) satisfies the

defining properties (1)–(3) of the quantum double D(Uℏb ⊗ Sℏ(z
+
V ))
∼= D(UR(b))

spelled out in Section 4.4. In detail, first observe that

(Uℏb⊗ Sℏ(z
+
V ))

‹ ∼= Uℏb

‹ ⊗ Sℏ(z
+
V )

‹ ∼= Uℏb

‹ ⊗ Sℏ(z
−
V ).

where the last isomorphism is due to Corollary 6.2, and depends on a fixed choice
of perfect pairing ⟨ , ⟩ : z−Z × z+Z → C; see Corollary 6.2. It follows that the Hopf
algebra D(Uℏb) ⊗ Sℏ(z

+
V ) ⊗ Sℏ(z

−
V ) satisfies the defining properties (1) and (2) of

D(Uℏb⊗ Sℏ(z
+
V )). As for the property (3), the canonical element

R ∈ (Uℏb⊗ Sℏ(z
+
V ))⊗ (Uℏb⊗ Sℏ(z

+
V ))

∗ ⊂ D(Uℏb⊗ Sℏ(z
+
V ))

⊗2

admits the factorization R = RDeℏΩZ , where ΩZ ∈ z+Z ⊗z−Z ⊂ Sℏ(z
+
V )⊗Sℏ(z

−
V ) is the

canonical element associated to ⟨ , ⟩. Since z+Z and z−Z consist of primitive central
elements and RD is a universal R-matrix for D(Uℏb), the element R indeed defines
a quasitriangular structure on D(Uℏb)⊗ Sℏ(z

+
V )⊗ Sℏ(z

−
V ), as required. □

Remark 6.4. The problem of characterizing the quasitriangularity of R-matrix
algebras defined similarly to UR(g) (or, more precisely, UR(g)

′) has been considered
from several different perspectives, perhaps most notably in the work of Majid; see
Corollaries 4.1.8–4.1.9 and Lemma 4.1.10 of [M4], in addition to [M1,M2,M3].
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The characterization provided by Theorem 6.3 is particularly natural from the
point of view Lie bialgebra quantization. Indeed, UR(g) is a quantization of the
Lie bialgebra gr (see Theorems 3.6 and 5.7) which, as a Lie algebra, coincides with
the trivial central extension g ⊕ (h ⊕ z+V ⊕ z−V ). By Proposition 3.13 and Remark
3.14 of [FJ], such an extension is a coboundary precisely when the Lie cobracket
δr annihilates h⊕ z+V ⊕ z−V . As the central copy of h satisfies δr (h) = 0, this occurs
exactly when z±V is trivial as a Lie coalgebra or, equivalently, precisely when gl(V )g

is commutative.

6.3. From diagonal entries to central elements. To conclude this section, we
obtain an explicit description of the coefficients of the central matrices Σ± defined in
Theorem 5.11 in terms of the diagonal entries of L± and T±, under the hypothesis
that the composition factors {Vj}j∈J of V are pairwise non-isomorphic.

Let {1j}j∈J ⊂ gl(V )g be the basis consisting of the orthogonal idempotents
1j : V ↠ Vj associated to the decomposition V =

⊕
j∈J Vj . We may then write

Υ−1(Z±) =
∑

j∈J 1j ⊗ z±j , where Z± is as in (6.1) and Υ is the isomorphism of
Theorem 5.7. It follows that

I + ℏΣ± = q
∑

j 1j⊗z±j =
∑
j

1j ⊗ qz
±
j .

In particular, {z±j }j∈J are primitive, central elements in UR(g) which topologically
generate a Hopf algebra isomorphic to S(z+Σ ⊕ z−Σ )[[ℏ]], and generate the kernel of
Υ̇ : UR(g) ↠ D(Uℏb) as an ideal; see Theorem 5.11 and Section 6.1 above.

Corollary 6.5. The h-invariant part L±
0 of L± admits the block diagonal form

L±
0 =

∑
j,λ

l±j,λ · idVj,λ
= I + ℏ

∑
j,λ

t±j,λ · idVj,λ
,

where the summation runs over all pairs (j, λ) ∈ J × h∗ such that Vj,λ ̸= 0, and
{lj,λ = 1+ ℏt±j,λ}j,λ are grouplike elements generating a commutative subalgebra of
UR(g). Moreover: ∏

λ∈h∗

(l±j,λ)
dj,λ = q± dimVj ·z±j ∀ j ∈ J ,

where dj,λ = dimVj,λ. In particular, z±j is given explicitly by

z±j = ±
∑
λ∈h∗

2dj,λ
dimVj · ℏ

log(1 + ℏt±j,λ) ∀ j ∈ J .

Proof. We have seen in the proof of Lemma 5.13 that

Υ(L±
0 ) = q∓

∑
i∈I π(ω

∨
i )⊗h±

i Z̊± = q∓
∑

i∈I π(ω
∨
i )⊗h±

i

∑
j∈J

1j ⊗ q±Υ(z±j ).

Hence, on each weight space Vj,λ of Vj , we have

Υ(L±
0 |Vj,λ

) = q∓
∑

i∈I λ(ω
∨
i )h±

i q±Υ(z±j ) · idVj,λ
.

The first assertion of the corollary therefore follows by taking l±j,λ and t±j,λ to be
the elements uniquely determined by the formulas

(6.2) l±j,λ = 1 + ℏt±j,λ = Υ−1
(
q∓

∑
i∈I λ(ω

∨
i )h±

i

)
q±z±j .
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The second assertion of the corollary now follows from the observation that, for
each j ∈ J , we have∏

λ∈h∗

Υ(l±j,λq
∓z±j )dj,λ =

∏
λ∈h∗

q∓
∑

i∈I dj,λλ(ω
∨
i )h±

i = q∓
∑

i∈I TrVj
(π(ω∨

i ))·h±
i = 1. □

Remark 6.6. Suppose that the underlying basis {vi}i∈I of V is taken to be a
weight basis which is compatible with the g-module decomposition V =

⊕
j∈J Vj .

That is, I admits a partition I =
⊔

j Ij =
⊔

j,λ Ij,λ for which {vi}i∈Ij
and {vi}i∈Ij,λ

are bases of Vj and Vj,λ, respectively, and is ordered so that, for each j ∈ J , the
elements of Ij,λ precede those in Ij,γ if γ − λ ∈ Q+. Theorem 5.7 then implies
that, with respect to the basis, L+ and L− are lower and upper triangular matrices,
respectively, and L+

0 and L−
0 are the diagonal factors in their Gaussian decomposi-

tions
L+ = L+

0

(
I + ℏX+

)
and L− =

(
I + ℏX−)L−

0 ,

where X+ and X− are strictly lower and upper triangular, respectively. Then, by
Corollary 6.5, the diagonal entries l±ii and l±kk of L± (resp. t±ii and t±kk of T±)
coincide for any i, k ∈ Ij,λ, and are equal to l±j,λ (resp. t±j,λ). In particular, one has∏

i∈Ij,λ

l±ii = q± dimVj ·z±j ,

z±j = ± 2

dimVj

∑
k>0

(−ℏ)k−1

k
TrVj ((T

±)k),

for each j ∈ J . By Theorem 5.11, D(Uℏb) is isomorphic to the unital associative
C[[ℏ]]-algebra topologically generated by {t±ik}i,k∈I , subject to the relations (5.1)–
(5.3) and ∑

k>0

(−ℏ)k−1

k
TrVj

((T±)k) = 0 ∀ j ∈ J .

Moreover, by Theorem 5.14 and (6.2), to recover Uℏg as a quotient of UR(g) one
imposes the additional family of relations

ℏt+iit
−
ii = −(t

+
ii + t−ii) = ℏt−ii t

+
ii ∀ i ∈ I.

In particular, in this quotient one has the familiar identities∏
i∈Ij,λ

l±ii = 1 and l+kkl
−
kk = 1 = l−kkl

+
kk

for all k ∈ I, and pairs (j, λ) ∈ J × h∗ for which Vj,λ ̸= 0 (cf. [FRT, §2.2]).

Remark 6.7. If λ = 0 is a weight of Vj , then by (6.2), we have

l±j,λ = Υ−1
(
q∓

∑
i∈I λ(ω

∨
i )h±

i

)
q±z±j = q±z±j .

For example, if V is the adjoint representation of g, then we may write l±λ = l±j,λ
and z± = z±j , and the diagonal part L±

0 of L± decomposes as

L±
0 = q±z± · idh +

∑
α∈Φ+

(l±α · idgα + l±−α · idg−α).
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7. The vector representation of sln

In this final section, we narrow our focus to the special case where V is the vector
representation of Uℏsln (see Section 7.1) with the intention of providing a detailed
example of our main results and illustrating how they recover some well-known
constructions.

7.1. The natural representations of sln and Uℏsln. Let us now restrict our
attention to the special linear Lie algebra g = sln, where n ≥ 2. We take I =
{1, . . . , n− 1}, so that the Cartan matrix (aij)i,j∈I is given by

aij = 2δij − δi+1,j − δi−1,j ∀ i, j ∈ I.

In addition, we henceforth fix V = Cn to be the natural representation of g = sln,
with {vi}i∈I ⊂ Cn taken to be its standard basis. That is, I = I∪ {n} and vi = ei
for each 1 ≤ i ≤ n. The associated algebra homomorphism π : U(sln) → End(V )
outputs the standard realization of sln, and is given explicitly by

π(hi) = Eii − Ei+1,i+1, π(x+
i ) = Ei,i+1, π(x−

i ) = Ei+1,i ∀ i ∈ I,

where hi and x±
i are as in Sections 2.1 and 2.3, respectively.

In this case, the action of g = sln on the general linear Lie algebra gl(V ) = gln
introduced in Section 3.2 coincides with the standard adjoint action of sln on gln.
In particular, one has the sln-module decomposition gl(V ) = ad(sln) ⊕ CI, with
weight space decomposition

(7.1) gl(V ) =
⊕
i,j

gl(V )ϵi−ϵj ,

where gl(V )0 = gl(V )h = h⊕ CI is the space of all diagonal matrices, and

gl(V )ϵi−ϵj = Hom(Vϵj , Vϵi) = CEij ∀ i ̸= j.

Here {ϵi}i∈I ⊂ h∗ are defined by ϵi(hj) = δi,j − δi,j+1 for all j ∈ I, so that
Φ+ = {ϵi − ϵj : i < j} is the standard set of positive roots.

Consider now Uℏsln. By the results recalled in Section 4.7, there exists a (unique,
up to isomorphism) Uℏsln-module structure on V = Cn[[ℏ]] with the property that
the associated algebra homomorphism

πℏ : Uℏsln → EndC[[ℏ]](V) ∼= End(Cn)[[ℏ]]
has semiclassical limit π̄ℏ = π. In fact, the assignment

πℏ(hi) = Eii − Ei+1,i+1, πℏ(Ei) = Ei,i+1, πℏ(Fi) = Ei+1,i ∀ i ∈ I

uniquely extends to an algebra homomorphism with the desired property, as is
readily verified using Definition 4.3; see [CP, Ex. 8.3.17], for instance. Note that
πℏ also satisfies the auxiliary conditions πℏ|h = π|h and πℏ(Uℏsln) ⊂ π(U(sln))[[ℏ]]
imposed in Section 5.1. Moreover, in this particular case, the evaluation Rπ =
(πℏ ⊗ πℏ)(R) of the universal R-matrix of Uℏsln is not difficult to compute using
the explicit factorizations established in [KR] and [LS], and is given by

(7.2) q1/nRπ =
∑
i,j

qδijEii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji.

We refer the reader to [CP, §8.3.G] or [KS1, §8.4.2] for a detailed derivation of this
formula, in addition to equation (3.7) of [FRT, Thm. 18] and [J2].
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7.2. The R-matrix realization of Uℏsln associated to Cn. We now focus on
illustrating some of the main results of this paper in the special case where g, V ,
{vi}i∈I and Rπ are as in the previous subsection.

To begin, note that Definition 5.1 for UR(sln) collapses to the following concrete
definition: UR(sln) is the unital associative C[[ℏ]]-algebra topologically generated
by {t±ij}i∈I , subject only to the relations

t+ij = 0 = t−ji ∀ i > j,(7.3)

qδiktσ1
ij t

σ2

kl − qδjltσ2

kl t
σ1
ij

= δkl(q
δjk − qδik)tσ1

ij + δij(q
δil − qδik)tσ2

kl

+
(q − q−1)

ℏ

(
δl<jl

σ2

kj t
σ1

il − δi<kt
σ1

kj l
σ2

il + δi<j(δilt
σ2

kj − δkjt
σ2

il )
)
,

(7.4)

where (σ1, σ2) takes value (±,±) or (+,−), l±ij = δij + ℏt±ij for all i, j ∈ I, and we
recall that q = eℏ/2.

Indeed, from (7.1) and the remarks that follows it, the projection T±
λ of T± onto

gl(V )λ ⊗C UR(sln) is zero unless λ = ϵi − ϵj for some 1 ≤ i, j ≤ n, in which case

T±
0 =

n∑
i=1

Eii ⊗ t±ii and T±
ϵi−ϵj = Eij ⊗ t±ij ∀ i ̸= j.

Hence, the set of relations (7.3) is equivalent to the triangularity relations (5.1).

Remark 7.1. In particular, T+ and T− are upper and lower triangular, respec-
tively. Note that this is opposite to the situation described in Remark 6.6; this is
due to the fact that the natural ordering on the standard basis of Cn is dual to the
partial ordering on sln-weights: Indeed, if i > j then ϵi − ϵj ∈ Q− and so ϵi < ϵj .

Similarly, the relations (5.2) and (5.3) are equivalent to (7.4) with (σ1, σ2) =

(±,±) and (σ1, σ2) = (+,−), respectively. This is easily seen by inputting Ṙπ =
ℏ−1(Rπ−1) into (5.2) and (5.3), with Rπ as in (7.2), and then taking the coefficient
of Eij ⊗ Ekl in both relations and simplifying.

Next, since Cn is an irreducible representation of sln, the space of g-invariants
gl(V )g coincides with CI. Theorem 5.7 therefore outputs an isomorphism of topo-
logical Hopf algebras

UR(sln) ∼= D(Uℏb)⊗ C[z+, z−][[ℏ]],
where b ⊂ sln is the standard Borel subalgebra of upper triangular matrices in sln,
and we have used that Sℏ(z

±
V )
∼= S(z±Z )[[ℏ]] ∼= C[z±][[ℏ]]; see Section 6.1. Moreover,

by Corollary 6.5 and Remark 6.6, the primitive central elements z± are uniquely
determined in UR(sln) by the formulas

q±nz± = l±11l
±
22 · · · l±nn =

n∏
i=1

l±ii .

In addition, by Theorem 6.3, UR(sln) is isomorphic to the quantum double of
Uℏb ⊗ C[z+], which itself is isomorphic to the subalgebra of UR(sln) topologically
generated by {t+ij}i,j∈I ; see Corollary 5.16.
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Finally, as a consequence of the above conclusions, the formulas for the Hopf
algebra structure maps given in Theorem 5.7, the statement of Theorem 5.14, and
Remark 6.6, we obtain the following characterization of the quantized enveloping
algebra Uℏsln.

Corollary 7.2. Uℏsln is isomorphic to the unital, associative C[[ℏ]]-algebra topo-
logically generated by {t±ij}i,j∈I , subject to the relations

(7.5)

t+ij = 0 = t−ji ∀ i > j,

qδiktσ1
ij t

σ2

kl − qδjltσ2

kl t
σ1
ij

= δkl(q
δjk − qδik)tσ1

ij + δij(q
δil − qδik)tσ2

kl

+
(q − q−1)

ℏ

(
δl<jl

σ2

kj t
σ1

il − δi<kt
σ1

kj l
σ2

il + δi<j(δilt
σ2

kj − δkjt
σ2

il )
)
,

ℏt+iit
−
ii = −(t

+
ii + t−ii) = ℏt−ii t

+
ii ,

n∑
i=1

∑
k>0

1

k
(−ℏ)k−1(t±ii)

k = 0,

where (σ1, σ2) takes value (±,±) or (+,−), and l±ij = δij + ℏt±ij for all i, j ∈ I.
Moreover, the coproduct ∆, counit ε and antipode S on Uℏsln are determined by

∆(t±ij) = t±ij ⊗ 1 + 1⊗ t±ij + ℏ
n∑

a=1

t±ia ⊗ t±aj , ε(t±ij) = 0,

S(t±ij) = −t
±
ij −

∑
b>0

1≤a1,...,ab≤n

(−ℏ)bt±i,a1
t±a1,a2

· · · t±ab,j
.

7.3. Remarks. We conclude our analysis of the R-matrix algebra UR(sln) associ-
ated to the natural representation V = Cn of sln with a sequence of remarks:

(1) The topological generators {l±ij }i,j∈I of the quantum formal series Hopf
algebra (Uℏsln)

′ ⊂ Uℏsln (see Section 4.3 and Remark 5.8) satisfy the alge-
braic relations

l+ij = 0 = l−ji ∀ i > j,

qδiklσ1
ij lσ2

kl − qδjllσ2

kl l
σ1
ij = (q − q)−1

(
δl<jl

σ2

kj l
σ1

il − δi<kl
σ1

kj l
σ2

il

)
,

l+ii l
−
ii = 1 = l−ii l

+
ii ,

l±11l
±
22 · · · l±nn = 1,

where (σ1, σ2) takes value (±,±) or (+,−). In addition, one has S(L±) =
(L±)−1, while

∆(l±ij ) =

n∑
a=1

l±ia ⊗ l±aj and ε(l±ij ) = 1 ∀ i, j ∈ I.

It is these relations that have predominantly appeared in the literature,
rather than those of Corollary 7.2; see §2.2 and Theorem 12 of [FRT], in
addition to [KS1, §8.5], [GM, §2.1], [MRS, §2] and [DF, §2], for example.
We emphasize that they are not defining relations for the quantized en-
veloping algebra Uℏsln. However, they are defining relations for its C(q)
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form Uq(sln), and this is the context in which they have primarily arisen in
the literature.

(2) Removing the last relation in (7.5) of Corollary 7.2 yields a presentation of
the quantized enveloping algebra Uℏgln of the general linear Lie algebra gln;
see [J2, §2] and [DF, Thm. 2.1]. It may also be realized as the subalgebra
of UR(sln) consiting of those elements fixed by all automorphisms of the
form χ̊C ◦ γh, for h ∈ h and C ∈ GLI(V )g ∼= 1 + ℏC[[ℏ]]. Here γh is as in
(5.16) and we have set χ̊C = χC with C= (C,C−1) (see Proposition 5.4).
Explicitly, χ̊C ◦ γh is uniquely determined by

L± 7→ q−π(h)/2L±q−π(h)/2 · C±1.

(3) Finally, we note that it is possible to repeat the analysis carried out in this
section in the special case where g is of symplectic or orthogonal type and
V is its vector representation. In this setting, all the underlying data is
available; see (1.9) and (3.7) in [FRT], [CP, §8.3.G], [KS1, §8.5] and the
articles [JLM1, JLM2, GRW]. It is worth emphasizing that in this setting
the underlying V is again irreducible and all the observations from Remark
6.6 apply (cf. [FRT, Rem. 21] and [KS1, Prop. 8.28]).
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