COMPLEX VARIABLES: MID TERM 1

- The use of notes, calculators etc. is not permitted.
- There is a formula sheet provided on the last page for your use.
- Do not forget to write your name and UNI in the space provided below.

Name: \qquad

UNI: \qquad

For grader's use only.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
10	$\frac{10}{10}$	$\frac{10}{10}$	$\frac{10}{10}$	50	

Problem 1 (10 points) Compute $\int_{C} \frac{3 z^{3}+2}{z^{2}-1} d z$ where C is the counterclockwise oriented circle of radius 2 centered at 0 .

Problem 2 (10 points) $\int_{C} \frac{1}{z^{3}-z^{2}+z-1} d z$ where C is the counterclockwise oriented ellipse with equation $4 x^{2}+\frac{y^{2}}{4}=1$.

Problem 3 (10 points) Let γ be the following simple curve, joining 1 and 5 :

$$
\gamma(t)=\left\{\begin{array}{cl}
\cos (t)+i \sin (t) & 0 \leq t \leq \pi \\
2+3(\cos (t)+i \sin (t)) & \pi \leq t \leq 2 \pi
\end{array}\right.
$$

Prove that

$$
\int_{\gamma} \frac{1}{z} d z=\ln (5)+2 \pi i
$$

Problem 4 (10 points) Consider the following function, where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.

$$
f(z)=\left(e^{x}+e^{-x}\right) \cos (y)+i\left(e^{x}-e^{-x}\right) \sin (y)
$$

Verify that $f(z)$ and $f^{\prime}(z)$ are \mathbb{C}-differentiable. Prove that $f^{\prime \prime}(z)=f(z)$.

Problem 5 (10 points) Let $f(z)=\frac{1}{z-1}$. Prove that for z lying on the vertical line $\operatorname{Re}(z)=2$, the values of $f(z)$ lie on a circle. Find the radius and center of this circle.

Formula sheet

Statements of important results.

(1) $f(z)=u(x, y)+i v(x, y)$, where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$. Then f is \mathbb{C}-differentiable if, and only if the partial derivatives of u and v exist and are continuous, and $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. In this case, $f^{\prime}(z)=u_{x}+i v_{x}$.
(2) Cauchy's Theorem. If $f: D \rightarrow \mathbb{C}$ is \mathbb{C}-differentiable, where $D \subset \mathbb{C}$ is a non-empty open set, and γ is a simple closed curve whose interior is contained in D, then $\int_{\gamma} f(z) d z=0$.
(3) Cauchy's Integral formula. With the same hypotheses on f, D, γ as in the previous statement, assume $a \in \operatorname{Int}(\gamma)$, then $\int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}(a)$.
(4) Let $p(z), q(z)$ be two polynomials of degree n and m respectively. Let γ be a simple closed curve, which contains all the roots of $q(z)$ in its interior. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{p(z)}{q(z)} d z=\left\{\begin{array}{lll}
0 & \text { if } & m \geq n+2 \\
\frac{a_{n}}{b_{n+1}} & \text { if } & m=n+1
\end{array}\right.
$$

where a_{n}, b_{m} are coefficients of z^{n}, z^{m} in $p(z)$ and $q(z)$ respectively.

Anti-derivatives of a few functions over \mathbb{R}.

$$
\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}(n \neq-1) & \int \frac{1}{x} d x=\ln (x) \\
\int \sin (x) d x=-\cos (x) & \int \cos (x) d x=\sin (x) \\
\int \sec (x) \tan (x) d x=\sec (x) & \int \sec ^{2}(x) d x=\tan (x) \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x) & \int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)
\end{array}
$$

Trigonometric identities.

$$
\begin{gathered}
\sin ^{2}(x)+\cos ^{2}(x)=1 \\
\sec ^{2}(x)-\tan ^{2}(x)=1 \\
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y) \\
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
\end{gathered}
$$

