COMPLEX VARIABLES: HOMEWORK 1

Notations: A complex number z is written as $x+y i$ where x, y are real numbers. Its real and imaginar parts are denoted by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
(1) (5 points) Find the real and imaginary parts of the $\frac{1-i}{2+3 i}$.

Solution. Multiply and divide by the conjugate of the denominator.

$$
\frac{1-i}{2+3 i}=\frac{1-i}{2+3 i} \frac{2-3 i}{2-3 i}=\frac{-1-5 i}{13}
$$

Hence the real part is $\frac{-1}{13}$ and the imaginary part is $\frac{-5}{13}$.
(2) (5 points) Write $z=-1+i$ in its polar form. Use this to compute z^{20}.

Solution. $|z|=\sqrt{2}$ and $\arg (z)=\frac{3 \pi}{4}$. Thus

$$
z=\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+\sin \left(\frac{3 \pi}{4}\right) i\right)
$$

So, $\left|z^{20}\right|=(\sqrt{2})^{20}=2^{10}=1024$. And $\arg \left(z^{20}\right)=20 \frac{3 \pi}{4}=15 \pi$. Hence we get

$$
z^{20}=1024(\cos (15 \pi)+\sin (15 \pi) i)=-1024
$$

(3) ($\mathbf{1 0}$ points) $(2+3+5)$ Recall that the conjugate of $z=x+y i$ is defined as $\bar{z}=x-y i$. Prove the following, for any two complex number z_{1} and z_{2}.
(a) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$

Proof. Let us write $z_{1}=a+b i$ and $z_{2}=c+d i$. Then

$$
\overline{z_{1}+z_{2}}=(a+c)-(b+d) i=(a-b i)+(c-d i)=\overline{z_{1}}+\overline{z_{2}}
$$

as required.
(b) $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$

Proof. Again we can compute the left-hand side as

$$
\begin{aligned}
& \overline{z_{1} z_{2}}=\overline{a c-b d+(a d+b c) i}=(a c-b d)-(a d+b c) i=(a-b i)(c-d i)=\overline{z_{1}} \overline{z_{2}} \\
& (c)\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)+\left|z_{2}\right|^{2}
\end{aligned}
$$

Proof. Let us start by writing $\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right) \overline{\left(z_{1}+z_{2}\right)}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)$. (This is because, for any complex number w, we know $\left.|w|^{2}=w \bar{w}\right)$. Hence the left-hand side can be written as

$$
\begin{aligned}
\text { L.H.S. } & =z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}+\left(z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}\right) \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left(z_{1} \overline{z_{2}}+\overline{z_{1}} \overline{z_{2}}\right) \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)
\end{aligned}
$$

(since for any complex number w, we know that $w+\bar{w}=2 \operatorname{Re}(w)$).
(4) ($\mathbf{1 5}$ points $)=\mathbf{5}+\mathbf{5}+\mathbf{5}$ Let z_{1}, \cdots, z_{n} be n distinct solutions of the equation $z^{n}=1$.

This means that

$$
\begin{equation*}
z^{n}-1=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) \tag{*}
\end{equation*}
$$

(a) Product of z_{1}, \cdots, z_{n} is $(-1)^{n-1}$.

Proof. Take the constant term on both sides of equation (*). The left-hand side gives -1 and the right-hand side gives $(-1)^{n}$ times product of all z_{1}, \cdots, z_{n}. Hence, we get

$$
(-1)^{n}\left(z_{1} z_{2} \cdots z_{n}\right)=-1 \Rightarrow\left(z_{1} z_{2} \cdots z_{n}\right)=(-1)^{n-1}
$$

(b) Sum of z_{1}, \cdots, z_{n} is 0 .

Proof. Take the coefficient of z^{1} on both sides of equation $(*)$. The left-hand side gives 0 (since $n \geq 2$) and the right-hand side gives the sum of all z_{1}, \cdots, z_{n}.
(c) If $z_{1}=1$, then $\left(1-z_{2}\right)\left(1-z_{3}\right) \cdots\left(1-z_{n}\right)=n$.

Proof. Let us divide both sides of equation $(*)$ by $z-1$:

$$
\frac{z^{n}-1}{z-1}=\left(z-z_{2}\right)\left(z-z_{3}\right) \cdots\left(z-z_{n}\right)
$$

Now use the following identity

$$
\frac{z^{n}-1}{z-1}=z^{n-1}+z^{n-2}+\cdots+z+1
$$

Then we get

$$
\left(z-z_{2}\right)\left(z-z_{3}\right) \cdots\left(z-z_{n}\right)=z^{n-1}+z^{n-2}+\cdots+z+1
$$

Set $z=1$ in this equation, to get

$$
\left(1-z_{2}\right)\left(1-z_{3}\right) \cdots\left(1-z_{n}\right)=n
$$

(5) (5 points) Let $f: D \rightarrow \mathbb{C}$ be a function, where $D \subset \mathbb{C}$ is an open set. Let $u(x, y)$ and $v(x, y)$ be its real and imaginary parts respectively:

$$
f(x+y i)=u(x, y)+v(x, y) i
$$

(Assume that partial derivatives of $u(x, y)$ and $v(x, y)$ exist and are continuous). Prove that, if f is \mathbb{C}-differentiable, then $u_{x x}+u_{y y}=0$. Use this to show that there is no \mathbb{C}-differentiable function whose real part is e^{x}.

Proof. By Cauchy-Riemann equations, we have $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Hence

$$
u_{x x}+u_{y y}=v_{y x}-v_{x y}=0
$$

Since for $u(x, y)=e^{x}$, we get $u_{x x}+u_{y y}=e^{x}+0 \neq 0$, there cannot be any \mathbb{C}-differentiable function f whose real part is e^{x}.
(6) (10 points) Prove that for any two complex numbers z_{1}, z_{2} the following inequality holds

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|
$$

Prove that this inequality is an equality if, and only if $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ (or one of them is zero).

Proof. Use (c) of Problem (3) above to see that

$$
\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)
$$

Now $\arg \left(z_{1} \overline{z_{2}}\right)=\arg \left(z_{1}\right)+\arg \left(\overline{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ (if neither of them is zero). Note that if one of z_{1} or z_{2} is zero, then the statement to prove is obviously true. Moreover $\left|z_{1} \overline{z_{2}}\right|=\left|z_{1}\right|\left|\overline{z_{2}}\right|=\left|z_{1}\right|\left|z_{2}\right|$. Hence we get

$$
\begin{aligned}
\left|z_{1}-z_{2}\right|^{2} & =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\arg \left(z_{1}\right)-\arg \left(z_{2}\right)\right) \\
& \geq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \\
& =\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}
\end{aligned}
$$

Thus taking square-root gives $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$. Also, the inequality in the third line above is equality, if and only if $\cos \left(\arg \left(z_{1}\right)-\arg \left(z_{2}\right)\right)=1$, that is, $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$.

