COMPLEX VARIABLES: HOMEWORK 1

Notations: A complex number z is written as x + yi where x, y are real numbers. Its real and imaginar parts are denoted by Re(z) and Im(z) respectively.

- (1) Find the real and imaginary parts of the $\frac{1-i}{2+3i}$.
- (2) Write z = -1 + i in its polar form. Use this to compute z^{20} .
- (3) Recall that the conjugate of z = x + yi is defined as $\overline{z} = x yi$. Prove the following, for any two complex number z_1 and z_2 .
 - (a) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
 - (b) $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
 - (c) $|z_1 + z_2|^2 = |z_1|^2 + 2\operatorname{Re}(z_1\overline{z_2}) + |z_2|^2$.
- (4) Let z_1, \dots, z_n be *n* distinct solutions of the equation $z^n = 1$ (assume $n \ge 2$). Prove that (a) Product of z_1, \dots, z_n is $(-1)^{n-1}$.
 - (b) The sum of z_1, \dots, z_n is 0.
 - (c) If $z_1 = 1$, then $(1 z_2)(1 z_3) \cdots (1 z_n) = n$.
- (5) Let $f: D \to \mathbb{C}$ be a function, where $D \subset \mathbb{C}$ is an open set. Let u(x, y) and v(x, y) be its real and imaginary parts respectively:

$$f(x+yi) = u(x,y) + v(x,y)i$$

(Assume that partial derivatives of u(x, y) and v(x, y) exist and are continuous). Prove that, if f is \mathbb{C} -differentiable, then $u_{xx} + u_{yy} = 0$. Use this to show that there is no \mathbb{C} -differentiable function whose real part is e^x .

(6) Prove that for any two complex numbers z_1, z_2 the following inequality holds

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

Prove that this inequality is an equality if, and only if $\arg(z_1) = \arg(z_2)$ (or one of them is zero).