
COMPLEX VARIABLES: HOMEWORK 3 SOLUTIONS

All simple closed curves considered below are assumed to be counterclockwise oriented. You can
use the results proved in class, except when it is explicitly prohibited (see problems 3 and 4).

(1) Prove that

∫
C

z−n dz equals 0 if n > 1 and 2πi if n = 1. Here n is a natural number and C

is the counterclockwise circle of radius R > 0.

Solution. As an application of Cauchy’s integral formula∫
C

1

zn
dz =

2πi

(n− 1)!

[
(
d

dz
)n−11

]
z=0

= 0 if n ≥ 2

= 2πi if n = 1

(2) Compute all possible values of

∫
C

1

z(z2 − 1)
dz for different choices of simple closed curves

C which do not pass through 0, 1,−1.

Solution. z(z2 − 1) = 0 if, and only if z = 0, 1,−1. There are following choices for C:
(a) C does not contain either 0, 1,−1 in its interior:∫

C

1

z(z − 1)(z + 1)
dz = 0

(b) C contains exactly one of them: let C0, C1, C−1 be the corresponding choices. Then by
Cauchy’s integral formula:∫

C0

1

z(z − 1)(z + 1)
dz = 2πi

1

(0 − 1)(0 + 1)
= −2πi∫

C1

1

z(z − 1)(z + 1)
dz = 2πi

1

1(1 + 1)
= πi∫

C−1

1

z(z − 1)(z + 1)
dz = 2πi

1

(−1)(−1 − 1)
= πi

(c) C contains two of 0, 1,−1:∫
C0+C1

1

z(z − 1)(z + 1)
dz = −2πi+ πi = −πi∫

C0+C−1

1

z(z − 1)(z + 1)
dz = −2πi+ πi = −πi∫

C1+C−1

1

z(z − 1)(z + 1)
dz = πi+ πi = 2πi

(d) C contains all of them:∫
C

1

z(z − 1)(z + 1)
dz = −2πi+ πi+ πi = 0

1
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(3) Write the partial fraction decomposition for
z2 + 2

(z − 1)(z − i)2
. Use this to verify directly

(without using the result of section (6.2) of Lecture 6) that

1

2πi

∫
C

z2 + 2

(z − 1)(z − i)2
dz = 1

where C is a simple closed curve whose interior contains 1 and i.

Solution. Let us write
z2 + 2

(z − 1)(z − i)2
=

A

z − 1
+

B

z − i
+

C

(z − i)2
. Then we get (by clearing

denominator)

z2 + 2 = A(z− i)2 +B(z−1)(z− i) +C(z−1) = (A+B)z2 + (C−2iA− (1 + i)B)z+ (−A+ iB−C)

Comparing coefficients of z0, z1, z2 on both sides gives:

A+B = 1 and − 2iA− (1 + i)B + C = 0 and −A+ iB − C = 2

This system can be easily solved to get:

A =
3

2
i B =

2 − 3i

2
C =

−1 − i

2

Now by Cauchy’s integral formula, we get

1

2πi

∫
C

z2 + 2

(z − 1)(z − i)2
dz = A+B = 1

(4) Recall that in Homework 2, problem 4, we proved that∣∣∣∣∫
γ

1

z4 + 9
dz

∣∣∣∣ ≤ 4π

R3

where γ is the counterclockwise circle of radius R and R4 > 18. Use this to prove directly

that

∫
γ

1

z4 + 9
dz = 0.

Solution. By Cauchy’s Theorem, the integral

∫
γ

1

z4 + 9
dz is independent of the radius R,

as long as it is sufficiently large so that γ contains all the zeroes of z4 + 9. But by the
inequality proved above: ∣∣∣∣∫

γ

1

z4 + 9
dz

∣∣∣∣ ≤ 4π

R3

we see that

∣∣∣∣∫
γ

1

z4 + 9
dz

∣∣∣∣ is smaller than any positive real number, hence it has to be zero.

(5) Let z1, · · · , zn be n distinct non–zero complex numbers. Let q be another non–zero complex
number. Let C be a simple closed curve such that z1, z2, · · · , zn and 0 are in the interior of
C.
(a) Consider the function

f(z) =
1

z

qz − q−1z1
z − z1

qz − q−1z2
z − z2

· · · qz − q−1zn
z − zn

Use the result proved in class (from section (6.2) of Lecture 6), to verify that

1

2πi

∫
C

f(z) dz = qn
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Solution. This is clear, since the numerator is a polynomial of degree n, with leading
coefficient qn and the denominator is a polynomial of degree n+ 1 with leading coeffi-
cient 1. Hence the integral is the ratio qn/1 = qn by the result proved in section (6.2)
of Lecture 6.

Let C0, C1, · · · , Cn be small closed curves which enclose (only) 0, z1, z2, · · · , zn respec-
tively. Meaning that 0 is in the interior of C0 and none of the z1, · · · , zn are in the
interior of C0. Similarly z1 is in the interior of C1 and none of the 0, z2, z3, · · · , zn are in
the interior of C1, and so on. Cauchy’s theorem implies that (you don’t have to prove
this, but it is always a good idea to convince yourself that it is true)∫

C

f(z) dz =

∫
C0

f(z) dz +

∫
C1

f(z) dz + · · · +

∫
Cn

f(z) dz

(b) Prove that
1

2πi

∫
C0

f(z) dz = q−n

Solution. This is again an easy application of Cauchy’s integral formula:

1

2πi

∫
C0

f(z) dz =

[
n∏
k=1

qz − q−1zk
z − zk

]
z=0

= q−n

(c) Prove that for each k = 1, 2, · · · , n:

1

2πi

∫
Ck

f(z) dz = (q − q−1)
∏

l=1,2,··· ,n
l 6=k

qzk − q−1zl
zk − zl

Solution. This is again an easy application of Cauchy’s integral formula:

1

2πi

∫
Ck

f(z) dz =
1

zk
(qzk − q−1zk)

∏
l=1,2,··· ,n

l 6=k

qzk − q−1zl
zk − zl

= (q − q−1)
∏

l=1,2,··· ,n
l 6=k

qzk − q−1zl
zk − zl

(d) Put all the computations above together to see that
n∑
k=1

∏
l=1,2,··· ,n

l 6=k

qzk − q−1zl
zk − zl

=
qn − q−n

q − q−1

Solution. We have

qn =
1

2πi

∫
C

f(z) dz =
1

2πi

(∫
C0

f(z) dz +

∫
C1

f(z) dz + · · · +

∫
Cn

f(z) dz

)
= q−n + (q − q−1)

n∑
k=1

∏
l=1,2,··· ,n

l 6=k

qzk − q−1zl
zk − zl

Hence, we get
n∑
k=1

∏
l=1,2,··· ,n

l 6=k

qzk − q−1zl
zk − zl

=
qn − q−n

q − q−1


